
HAL Id: hal-00696678
https://hal.science/hal-00696678v1

Submitted on 13 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic revision of the control knowledge used by
trial and error methods: Application to cartographic

generalisation
Patrick Taillandier, Cécile Duchêne, Alexis Drogoul

To cite this version:
Patrick Taillandier, Cécile Duchêne, Alexis Drogoul. Automatic revision of the control knowledge used
by trial and error methods: Application to cartographic generalisation. Applied Soft Computing, 2011,
11 (2), pp.2818-2832. �hal-00696678�

https://hal.science/hal-00696678v1
https://hal.archives-ouvertes.fr


Automatic Revision of the Control Knowledge used by

Trial and Error Methods : Application to Cartographic

Generalisation

Patrick Taillandiera,b,c, Cécile Duchênea, Alexis Drogoulb,c,d

aIGN, COGIT, 2/4 avenue Pasteur, 94165 Saint-Mandé, France
bIRD, UMI UMMISCO 209, 32 avenue Henri Varagnat, 93143 Bondy, France

cIFI, MSI, UMI 209, ngo 42 Ta Quang Buu, Ha Noi, Viet Nam
dUPMC, UMI 209, 4 place Jussieu,75252 Paris, France

Abstract

Humans frequently have to face complex problems. A classical approach to
solve them is to search the solution by means of a trial and error method.
This approach is often used with success by artificial systems. However, when
facing highly complex problems, it becomes necessary to introduce control
knowledge (heuristics) in order to limit the number of trials needed to find the
optimal solution. Unfortunately, acquiring and maintaining such knowledge
can be fastidious. In this paper, we propose an automatic knowledge revision
approach for systems based on a trial and error method. Our approach allows
to revise the knowledge off-line by means of experiments. It is based on the
analysis of solved instances of the considered problem and on the exploration
of the knowledge space. Indeed, we formulate the revision problem as a search
problem: we search the knowledge set that maximises the performances of the
system on a sample of problem instances. Our knowledge revision approach
has been implemented for a real-world industrial application: automated
cartographic generalisation, a complex task of the cartography domain. In
this implementation, we demonstrate that our approach improves the quality
of the knowledge and thus the performance of the system.

Key words: Knowledge Revision, Problem Solving, Trial and Error
Method, Cartographic Generalisation

Email addresses: patrick.taillandier@gmail.com (Patrick Taillandier),
cecile.duchene@ign.fr (Cécile Duchêne), drogoul@bondy.ird.fr (Alexis Drogoul)

Preprint submitted to Applied Soft Computing November 8, 2010



1. Introduction

Since the beginning of Artificial Intelligence, researchers have drawn their
inspiration from human behavioral and reasoning capabilities. In particular,
the classical ”trial and error” resolution methods exhibited by human beings
when trying to solve a problem have been adapted and used very early in
artificial systems. These methods, combined with the increasing speed of
computers, have permitted to solve numerous problems, especially optimisa-
tion problems. However, the more complex the problems become, the more
numerous the number of trials necessary to find an optimal solution are, and
this increase is in most cases exponential. In order to limit the number of tri-
als, one strategy is to provide the system with relevant knowledge about the
problem instead or relying on a brute force approach. Indeed, this knowledge,
called control knowledge or heuristics, can allow, when relevant, to intelli-
gently guide the system toward the optimal solution and avoid useless trials.
Unfortunately, acquiring such knowledge, generally from experts, is a diffi-
cult task. Eward Feigenbaum described this issue in 1977 as the knowledge
acquisition bottleneck problem [1]. Indeed, the expert knowledge is seldom
formalised and its translation into a formalism usable by computers can be
very complex. Another issue concerns the evolution of this knowledge. Actu-
ally, as new elements (i.e. for instance, new actions to try) are integrated in
the system, it is necessary to update the existing knowledge in order to take
these elements into account. This update can be a complex process, which re-
quires the appraisal of an expert. It is thus of primary importance to propose
methods that would allow a knowledge-based system to revise its knowledge
by itself. In this paper, we propose a generic knowledge revision approach
dedicated to optimisation problem solver systems based on a specific trial
and error approach: the informed tree search strategy. Our approach allows
the system to revise its knowledge off-line by means of an exploration of the
set of possible values that can be taken by its knowledge (the knowledge
space). We propose a specialisation of our approach for knowledge expressed
by production rules. In Section 2, we introduce the general context in which
our work takes place and the difficulties that we had to face. Section 3 is
devoted to the presentation of our knowledge revision approach. Section 4
describes an application of our approach to cartographic generalisation tasks.
In this context, a real experiment we carried out, as well as its results, are

2



presented. Section 5 offers some conclusions and perspectives.

2. Context

2.1. Optimisation problems and solving systems considered

2.1.1. Description of considered optimisation problems

Many real world problems can be expressed as optimisation problems. In
this type of problems, the goal of the system is to find, among all possible
solutions, the one that maximises an evaluation function. In this paper, we
are interested in a family of optimisation problems that consists in finding,
by application of actions, the state of an entity that maximises an evaluation
function. We formalise this kind of optimisation problems as follows. P is
an optimisation problem that is characterised by:

• EP : A class of entities

• actionP : a set of actions that can be applied to an entity belonging
to EP . The result of the application of an action is supposed to be
non-predictable.

• QP : a function that defines the quality of the state of an entity belong-
ing to EP

An instance p of P is defined by an entity ep of the class EP characterised
by its initial state. Solving p consists in finding the state s of ep that optimises
QP , by applying actions from actionP to the initial state of ep.
Let us consider the following example. Let Probot be an optimisation problem
where a robot, considering its initial position in a maze built according to
a specific model, seeks to find the exit. EP , actionP and QP are defined as
follows:

• EProbot
: a kind of robot. A robot of the kind EProbot

is characterised by
its initial position in the maze.

• actionProbot
: moveforward, turnleft, turnright

• QProbot
: distance separating the robot from the exit of the maze

In this example, an instance probot of Probot is characterised by eprobot
, a

robot of the kind EProbot
, with an initial position in the maze. Solving probot

consists in allowing eprobot
to find the exit or at least to reach the closest

possible position to the exit.

3



Figure 1: Example of state tree

2.1.2. Description of the considered systems

There are many ways to solve such an optimisation problem. In this pa-
per, we are interested in systems that solve them by using a specific trial
and error approach: the informed tree search strategy. This strategy con-
sists in searching the best state of the entity by exploring a search tree. The
transition from a state of the search tree to another corresponds to the ap-
plication of an action from actionP . The ”informed” aspect comes from the
use of control knowledge (e.g. which action to apply) to guide the search
tree exploration. This approach is commonly used in Artificial Intelligence.
Figure 1 presents an example of state tree. The first artificial intelligence
program, ”Logic Theorist” [2], dedicated to proving theorems, was based on
this type of approach. In order to find the proof of a logic problem, the
Logic Theorist explores a state tree in which the root represents the initial
hypothesis, and each branch, a deduction based on logic rules. This solving
approach is particularly effective in contexts where expert knowledge can be
used to guide the exploration process. Indeed, in contrary to optimisation
approaches such as simulated annealing [3] or genetic algorithms [4] that
allow to find a good solution to a problem without prior knowledge on it,
the informed tree search approach requires to define domain specific knowl-
edge to guide the exploration process. When this knowledge is relevant, the
systems based on this approach can achieve excellent performances.

In this paper, we are interested in the revision of control knowledge used
by systems based on an informed depth-first exploration of state trees. In
order to build the state tree, the system carries out an action cycle. Figure 2
presents a classical action cycle.

It begins with the characterisation of the current state of the entity and its

4



Figure 2: Action cycle

evaluation using the function QP . Then, the system tests if the current state
is good enough or if it is necessary to continue the exploration of other states.
If the system decides to continue the exploration, it tests if the current state
is valid or not. A valid state is a state whose children have to be explored, an
invalid state is a useless state from which it is not necessary to continue the
exploration. If the state is not valid, the system backtracks to its previous
state; otherwise, the system builds a list of actions to apply. If the action list
is empty, the system backtracks to its previous state, otherwise it chooses
the best action, applies it, then goes back to the first step. The action cycle
ends when the stopping criterion is reached or when all actions have been
applied for all valid states.
This generic system uses three types of control knowledge:

• The action application knowledge builds, for a current state, the action
list, i.e. the list of the actions available in the current state and their
application order. The role of this knowledge is to propose only relevant
actions for each state, i.e. to avoid proposing actions that lead to
uninteresting branches of the tree (ones that contains a priori no better
state than the ones already found) and to order them in order to explore
in priority the most interesting branches.

• The validity criterion determines, with respect to the previously visited

5



states, if the current state is valid or not. The role of this knowledge
is to allow the system to skip uninteresting branches of the tree.

• The ending cycle criterion determines, with respect to the previously
visited states, if the system action cycle has to continue the exploration
or not. The role of this knowledge is to allow the system to stop the
exploration when it is a priori not possible to find a state better than
the ones already found.

Each type of knowledge can be expressed by one piece of knowledge or
by several. For example, a system can integrate one knowledge base that
defines, given a particular state, which action to apply or one knowledge
base for each action that defines its application domain (when the action has
to be applied).

In this paper, we are particularly interested in pieces of knowledge ex-
pressed by production rules. This kind of representation is commonly used
in domains in which expert knowledge exists. Its interest is to be easily in-
terpretable by domain experts and thus to ease the knowledge validation and
update.

A production rule has the following form: If Condition then Conclusion
We assert that a set of measures is defined per piece of knowledge. For

example, if a system integrates one piece of knowledge per action application
domain, a measure set is defined per action. For each piece of knowledge,
the conditions of the rules depend on the set of measures linked to the piece
of knowledge.

2.2. Related works

The question of automatic revision of control knowledge has already been
studied in the literature; in particular, in the context of speedup learning.
Speedup learning seeks to improve the efficiency of problem solving systems
with experience.

In the research works dedicated to speedup learning, many propose to
use domain knowledge in order to ease the learning [5–7]. This knowledge,
called domain theory, allows to learn from very few examples. However, this
approach has some limitations. The major one is that the quality of the
knowledge learnt this way is dependent of the quality of the domain theory.
Thus, an incomplete or incorrect domain theory can cause numerous prob-
lems. In the context of our knowledge revision problem, it is not possible to

6



directly use these works. Indeed, we do not have a strong domain theory,
just initial knowledge of uncertain quality. Other speedup learning works
propose to acquire control knowledge without using domain theory. The
most famous is the LEX system [8]. This system learns operator application
condition by analysing previously solved problem instances. The transition
from a particular operator application condition to a more generalised one is
done by exploring the version space. The LEX system has some limitations,
especially concerning the management of noisy data and the learning of dis-
junctive concepts. Other recent works such as [9] deal with the problems of
learning a ranking function for the action application. Our work is in the
continuity of the latter works. Our goal is also to allow the system to revise
itself its own knowledge by means of experience. However, we propose to
take advantage of the analysis of several resolved problem instances at the
same time and not examine only a resolved instance at a time. Moreover, we
propose to take better account of the interdependence between the different
pieces of knowledge. Indeed, sometimes, it is not possible to determine if a
piece of knowledge is really defective or if it is another piece of knowledge
that is defective and that influences results of the application of the first
piece of knowledge [10, 11].

In this paper, we are interested in the revision of knowledge expressed
by production rules. Whereas many learning algorithms propose to induce
rules from examples labelled by experts, very few allow to take initial rules
into account. Among them, some are interested in the inductive knowledge
base refinement. The goal of these works is to improve the system expert
knowledge base. Most of them make the assumption that the knowledge base
is almost valid and that only small improvements are needed [12]. Thus,
some approaches propose to improve rule bases only by refining or deleting
existing rules without giving the possibility to add new ones [13]. Others
do not aim at refining rule bases directly, but aim at supporting the user
during the refining process [14]. Many of these works are based on logical
operators and thus rarely deal with noisy data [15]. Another drawback of
many of these works is the increase of the number of rules [16] that can lead
to readability problems. One common point of all these works is that they
concern the revision of a unique rule base and do not allow to simultaneously
revise several rule bases that depend on various measure sets. Thus, it is
not possible to directly apply these approaches to our revision problem when
several pieces of knowledge have to be considered at the same time (typically

7



when one base of rules is defined per actions).

3. Approach proposed

3.1. General approach

As explained in Section 1, our goal is to automatically revise the knowl-
edge of a system based on an informed tree search strategy. The system has
already a defined initial knowledge that we propose to take into account for
the revision process. Indeed, we state the hypothesis that it is more inter-
esting to revise the existing knowledge that just acquiring new one. Some-
times, the initial knowledge can contain information that cannot be learnt
by Machine Learning techniques, such as the time-consuming aspect of some
actions, the defects of the evaluation function, etc.
Our approach is based on the analysis of the execution logs. Thus, we propose
to give the system capabilities to observe its own behaviour. The interest
to give systems such observation capabilities are presented in [17]. We do
not seek for on-line knowledge revision, i.e. to revise the control knowledge
each time a problem instance is solved by the system. Indeed, we consider
situations where it is possible to stop the system execution during several
hours (e.g. during the night) to improve the performances of the system. In
order to determine when the off-line revision process needs to be triggered,
we propose to integrate in the system a diagnosis module able to evaluate
on-line the knowledge quality. In this paper, we will not detail this diagnosis
module, interest readers can refer to [10, 18].

Our knowledge revision approach is composed of two stages:

• Exploration stage consists in logging the process while the system solves
a sample of problem instances.

• Analysis stage consists in analysing the logs obtained during the pre-
vious stage and in using them to revise the knowledge.

The exploration stage is independent of the way the knowledge is expressed.
On the contrary, the analysis stage, which is based on the exploration of the
knowledge space, has to be specialised for each type of knowledge represen-
tation. As mentioned above, in this paper, we present a specialisation of this
stage for knowledge expressed in the form of production rules.

8



3.2. Exploration stage

The exploration stage is composed of two steps: the selection of a sample
of problem instances that will be used for the revision process (Section 3.2.1)
and the resolution of these problem instances with a specific knowledge set
that will ensure a weak pruning of the state trees (Section 3.2.2).

3.2.1. Problem instance sample selection

In order to retrieve pertinent information from their resolution, the in-
stances belonging to the selected sample have to be versatile enough to be
representative of all available instances of the considered problem. However,
their number has to be restricted in order to limit the computing time of
the revision process: as it is off-line the time is not a hard constraint, but
the resolution of a problem instance with a weak pruning introduces a high
computational complexity and is very time consuming.
In order to select a representative sample, we proceed as follows:

1. Characterisation of all available instances of the considered problem;

2. Clustering of the instances;

3. Selection of a sample of instances in each cluster.

Characterisation of instances This step consists in building a charac-
terised instance set by characterising all available instances of the considered
problem by a measure set. A key point of this step is to choose the relevant
measure set in order to pertinently characterise the instances. This choice
has to be made according to the application domain. Feature subset selection
techniques such as the one proposed by [19] can be used to select a pertinent
subset of measures.

Clustering of the instances The goal of this step is to divide the available
instances into groups composed of similar instances. Defining such groups
allow to ensure that all kinds of instances will be represented in the instance
sample. The available instances are divided into groups thanks to clustering
techniques used on the characterised instance set. Clustering algorithms such
as EM [20] can divide a set of objects described by a set of attributes into
disjoint clusters. An important point of this step concerns the parameters
used for the clustering and in particular, the choice of the group number and
of the distance between objects. Concerning the first point, in the literature,
several methods allowing to automatically infer the best number of groups

9



have been proposed [21, 22]. For the distance choice problem, it is interest-
ing to use domain knowledge to define the distance. In the case where no
domain knowledge is available, it is still possible to use classical distances
like the Euclidian or the Manhattan ones. Most clustering algorithms allow
to compute, from the distance used to divide the objects into groups, the
probability for each object to belong to each group. In the context of our
sampling method, this probability is used for the selection of instances in
each group.

Instance selection This last step consists in selecting a sample of instances
in each previously formed group. The selected instances are the ones that
are the most representative of their group, i.e. the ones that have the highest
probability of belonging to their group. The number ni of instances selected
from a group i depends on the expected size of the sample and on the relative
size of the group in terms of the number of instances, compared to the total
number of instances. The goal is to keep a proportional representation of the
group, and, at the same time, to ensure that even the smallest groups are
represented in the sample. The number ni is computed as follows:

ni = Max([
expectedsizeofthesample × nbofinstancesinthegroupi

totalnbofavailableinstances
+0.5], 1)

For example, let us consider a problem P , for which 100 instances are
available. 20 instances of P are needed for the revision process. The clus-
tering algorithm divides the instances in 2 groups, the first one composed of
25 instances, the second one composed of 75 instances. The representative
sample will be composed of 5 instances of the first group and 15 instances of
the second one.

3.2.2. Resolution with a full-exploration knowledge set and logging

Once a sample of objects has been selected, a resolution process is run
on these instances and logged. In order to produce as much information as
possible, we propose to use a full-exploration knowledge set for this resolution.
We define the notion of full-exploration knowledge set as a knowledge set that
allows the system to construct all the possible states that can be visited by
all possible knowledge sets for each resolved problem instance. Typically, a
full-exploration knowledge set is a knowledge set for which all possible actions
are tested for each valid state and for which the ending cycle criterion and the
validity criterion are as weak as possible to just ensure the convergence of the

10



exploration. The full-exploration knowledge set has two interests. First, it
ensures to know the best states that can be obtained according to the action
set and to know the action sequences to apply to reach them. Secondly, once
an instance has been resolved with this knowledge set, it becomes possible for
this instance to simulate any possible knowledge set by rearranging the states,
without having to build new states i.e. without running again the resolution
process. Thus, once the problem instance sample selected during the first step
has been resolved with the full-exploration knowledge, it becomes possible to
test any knowledge set on this sample with very few computation resources.

3.3. Analysis stage

3.3.1. General revision approach by log analysis

After the exploration stage, we have a sample of problem instances re-
solved with a full-exploration knowledge set and the associated state trees
that compose the log. We are now interested in the use of these state trees
in order to revise the knowledge. We propose to formulate the revision prob-
lem as a search problem: we will search the knowledge set that maximises
the performances of the system. The problem of the system performance
evaluation is discussed in the next section (Section 3.3.2). Concerning the
search problem, the search space corresponds to the set of values that can
take the different pieces of knowledge. In order to reduce the search space,
we do not propose to revise all pieces of knowledge at the same time, but
by kind of knowledge. For example, to revise the pieces of knowledge that
define the constraint priority in a first step, then, in second step, the pieces of
knowledge that define the application domain of the actions are revised, and
so on. The search approach used to revise each piece of knowledge depends
on the nature of the piece. In section 3.3.3, we propose a search approach
dedicated to the rule base revision.

3.3.2. Evaluation of the system performance

As stated above, our revision approach consists in searching the knowl-
edge set that maximises the performances of the system.

The system performance can be expressed in terms of effectiveness and
efficiency. The effectiveness concerns the quality of the results obtained by
the system, i.e. the quality of the best state found. The efficiency concerns
the computational cost of the problem instances resolution, i.e. the system
speed to carry out the tree search exploration. Good knowledge allows the

11



system to be both effective and efficient, i.e. to guide the exploration di-
rectly toward an optimal state without visiting useless states. However, to
maximise both effectiveness and efficiency can be impossible for some ap-
plications. Thus, we are in the context of a multi-objective optimisation
problem. Several approaches exist to solve such problem. In this work, we
chose the simplest one, which consists in aggregating both effectiveness and
efficiency in an single objective function. The system performance is then
represented by an unique evaluation function. More complex approaches, for
example based on multicriteria analysis (e.g. [23, 24]) or on the building of
the Pareto set (e.g. [25]), could be studied.

We note Perf(SK , P ) the function used for evaluating the performance
of a system S while using a knowledge set K for the solving of all problem
instances of the class P . The computation of the function requires solving all
instances p of P . In practice, most of the time, it is impossible to compute
Perf(SK , P ). Indeed, it is rarely possible to solve each p of P . Thus, for our
revision approach, we will just estimate Perf(SK , Pn) on the sample of n

problem instances selected and solved during the exploration stage. In fact,
in the analysis stage we will search the knowledge set K that maximises
Perf(SK , Pn).

The choice of favouring the effectiveness or the efficiency has to be made
according to the user needs. In fact, there is no generic performance function
Perf(SK , Pn). This one has to be specifically defined for each application.
As an example, in Section 4.2.3, we describe the evaluation function that
we used for our application. The definition of this function can be difficult.
In the perspectives section of the paper (Section 5), we come back to this
definition problem.

3.3.3. Search approach dedicated to the rule base revision

In this Section, we propose a search approach dedicated to the revision
of rule bases. In Section 2.1.2, we asserted that a set of measures is defined
per rule base. All predicates of the rules are expressed (only) according to
the measures linked to the rule base. Thus, the search space associated to a
rule base is the set of the combinations of values that can be assumed by the
measures. This search space is infinite as soon as at least one measure returns
continuous values. In order to reduce the search space, we propose to divide
the measure set space into areas admitting a priori a same behaviour, an
area corresponding to the condition of a rule, and the behaviour associated
to this area to the conclusion of the rule. Actually, we state the hypothesis

12



that the ideal behaviour of the system is not chaotic, so that continuous
subspaces of the measure set space exist in which this ideal behaviour is
constant. Thus, our approach consists in trying to determine these areas
that admit a homogenous ideal behaviour of the system (i.e. homogeneous
conclusions of the rules), based on an analysis of the successes and failures
encountered when resolving the instances sample. For example, consider a
system that can propose only the action A that depends on a measure set
composed of only one real measure M . An example of partitioning can be to
decompose the domain of M (and thus the measure set space of A) into two
areas: (M < 0) and (M ≥ 0). The revision problem then consists in assigning
the best possible conclusion to each area of each piece of knowledge. We call
solution, a complete assignment of conclusions for the considered areas (a
conclusion is assigned to each area). Our approach is composed of four steps
as presented in Figure 3. The first one consists in building, from the logs (i.e.
from the state trees associated with the generalised sample objects), example
sets that translate the ideal behaviour of each rule base. The second step
consists in partitioning the measures set of each rule base in areas that admit
a priori a homogenous decision to apply (conclusion of the rule). The third
step consists in searching by the mean of a local search the best conclusion
to assign to each area. The last step consists in simplifying the rule bases by
rule aggregation.

Step 1: construction of the example sets The construction of the
example sets is achieved by analysing the state trees obtained during the
exploration stage. An example set is build per rule base. An example cor-
responds to one state of a state tree. It is composed of n predictors and a
label. The predictors are the measures associated with the rule base, and the
label is the decision assessed as the good one for this experienced state. For
example, in the case of a rule base concerning the application domain of an
action, the decision can be ”apply this action” or ”do not apply any action”.

The method used for the construction of the example sets has been de-
scribed in [26]. It first consists in extracting the best paths from each state
tree. A best path is a sequence of at least two states, which has the root of
a tree (or of a sub-tree) for initial state and the best state of this tree (or
sub-tree) for final state. Then, from each state of each best path, an example
is built that contains the relevant information, depending on the rule base
under revision.

For example, concerning the action application knowledge, if a state be-
longs to a best path and if the application of an action leads to another state

13



Figure 3: Search approach for rule base revision

of the same best path, the ideal decision is ”apply this action”. Figure 4
gives a simplified example of the example set built from the resolution of a
problem instance with two actions Act1 and Act2.

Step 2: partitioning of the measure set space The second step of
our approach requires to partition the measures set into disjoint areas. Each
area corresponds to the condition of a production rule. One constraint of
this partitioning is to take the initial rules into account. Initial rules already
form a partitioning of the measures space for which each area admits one
conclusion. In order to take initial rules into account, we impose that each
so-obtained area be a sub-area of an initial area, i.e. that a rule defining
a final area be either one of the initial rules or a specialisation of one of
the initial rules. The interest of this constraint is to keep the possibility
to obtain rules similar to the initial rules after the revision process. The
partitioning approach that we propose consists in learning a new partitioning
from the example set thanks to supervised Machine Learning techniques and
in combining it with the partitioning formed by the initial rules. Several
algorithms such as C4.5 [27] or RIPPER [28] can be used to learn a new
partitioning. The learnt partitioning is independent of the initial rules and is

14



Figure 4: Example of a built example set

based on the experience (the example set). The areas obtained by it are thus
homogenous according to the experience. At this stage of the partitioning
process, we have two partitionings of the same measure space: one coming
from the initial knowledge and the other from the experience. We state the
hypothesis that each partitioning contains pertinent pieces of information
that are not contained in the other one. Indeed, as stated in Section 3.1,
we assume that the initial knowledge can contain information that cannot
be learnt by Machine Learning techniques. Thus, we propose to not only
consider the learnt partitioning but to combine the two partitioning together.
We then specialise the partitioning formed by the initial rules by combining it
to this new partitioning (Figure 5). In practice, we propose to independently
partition each initial area (formed by an initial rule) by combining it with
the set of new areas. The method used to partition an initial area and thus
to specialise an initial rule is the following one. First, the initial area is
combined with a first new area. Then, the result of this combination, which
is a partition of the initial area, is combined with a second new area, and so
on until the result has been combined with all areas of the new partitioning.

It is possible to compute the maximum number of areas that can be
obtained at the end the partitioning process. Let RB be a rule base linked

15



Figure 5: Partitioning approach

to a measure set MS. We defined two partitioning for the RB: Pa and Pb.
We note nbintvls(P,m) the function returning the number of intervals for the
measure m defined by the partitioning P . For example, in Figure 5, the
partitioning formed by the initial rule base does not decompose M1 in any
interval (this measure is not used by the initial rule base) and decompose
the measure M2 in 2 intervals (]−∞, 5] and ]5,∞[). The learnt partitioning
decomposed the measure M1 in 2 intervals (] − ∞, 4] and ]4,∞[) and the
measure M1 in 2 intervals (] −∞, 3] and ]3,∞[). The maximum number of
areas that can be obtained by combining the two partitioning Pa and Pb is
bound by:

nb areas(Pa, Pb) ≤
∏

m∈MS

[nbintvls(Pa,m) + nbintvls(Pb,m) − 1]

Step 3: conclusion assignments by local search Once the partition-
ing carried out, the next step of our approach consists in assigning the best
possible conclusion to each area obtained at the end of the previous step.
We call solution a complete assignment of conclusions for each area of the
measured set linked to the rule base considered. We formalise the conclusion
assignment problem as an optimisation problem in which we search, for a
given system S, the solution sol among the possible solutions set Sol that
maximises the performance of the system (presented Section 3.3.2). Accord-
ing to the fact that, for each area, we have to assign a conclusion among a

16



set of conclusions Concl, the size of the solution space (size of Sol) is equals
to |Concl|numberofareas. We remind that the revision can concern several rule
bases, and thus several area sets, at the same time (e.g. the action applica-
tion knowledge). Therefore, the number of areas can be very high. To help
this search, we dispose of an initial solution (the initial rule base) that is of-
ten good. There are numerous methods to solve a problem of this kind. Due
to the size of the solution space, it is impossible to use a complete search ap-
proach. Thus, we use an incomplete approach. Indeed, in order to solve this
problem, we propose to use a local search algorithm. The principle of this
kind of algorithm is to start with an initial solution and to try to improve
it, step by step, by exploring its neighbourhood. Most of the time, these
algorithms are very effective for this kind of exploration problem. There
are numerous local search algorithms such as hillclimbing, tabusearch [29]
or simulatedannealing [3] that can be used to solve this problem. In the
context of our off-line revision process, the efficiency of the search method
is not a major issue. Thus, it is preferable to use methods allowing to avoid
to be stuck at local optimum like the tabusearch or the simulatedannealing

rather than a simple hill − climbing. Concerning the choice between these
two methods, the experiments we carried out showed similar results. In this
paper, we propose to use the tabusearch. Local search approaches require
to define the notion of neighbourhood of a solution. For our problem, we
define it as the set of solutions for which only one of the areas has its conclu-
sion value changed. Concerning the parameters specific to the tabusearch,
we have to define an ending criterion and the size of the tabu list. In out
context, we chose a simple criterion: the exploration process stops after 1
minute. This time was high enough to converse toward a best solution in all
the experiments we carried out. For the size of the tabu list, we propose to
linkit with the number of areas. Thus, the size of the tabu list is computed
with the following formulae:

TabuListsize = 1 +
numberofareas

4

Remark that other types of neighbourhood and parameter values can be
used. The ones we proposed gave good results during the experiments we
carried out, however a deeper study is needed.

Step 4: rule base simplification The exploring step allows to assign
a good conclusion to each area. The last step of our approach consists in
simplifying the obtained (revised) rules bases by merging the areas. The

17



Figure 6: Example of rule base simplification

goal of this step is to improve the readability of the rule bases as well as
their generalisation capacity. Thus, two kinds of merging are done: merging
between areas admitting the same conclusion (to make the rule base more
readable) and merging between areas that do not admit the same conclusion
(to generalise the rule base). At each iteration, two areas are merged in
order to form a bigger one. Two areas which admit different conclusions can
be merged. In this case, both conclusions are tested for the area obtained
after merging. If the performances of the system were better before the
merging, this one is cancelled and another merging is tested. Otherwise, the
conclusion kept is the one that maximise the performances of the system. The
performances of the system are computed by the same evaluation function as
the one used during the conclusion assignment step (Section 3.3.2). However,
in order to avoid the overfitting problem, we propose to use a method inspired
by the one used for the post-pruning of decision trees [30]. Thus, we propose
to divide the sample of problem instances selected and solved during the
exploration stage in two sub-samples: two thirds of the problem instances
are used for the conclusion assignment step, and the last third is used for the
simplification step.

Figure 6 gives an example of simplification: in a first iteration, the area
defined by the rule ”if M1 > 3 and M2 > 3 and M2 ≤ 5 then apply action
Act1” is merged with the area defined by the rule ”if M1 > 3 and M2 ≤ 3
then apply action Act1”. The resulting area is defined by the rule ”if M1 > 3
and M2 ≤ 5 then apply action Act1”. In a second iteration, the area defined
by the rule ”if M1 ≤ 3 and M2 > 3 then apply action Act1” is merged with
the area defined by the rule ”if M1 ≤ 3 and M2 ≤ 3 then apply action Act2”.
The resulting area is defined by the rule ”if M1 ≤ 3 then apply action Act1”.

18



3.4. Theoretical justification of the approach and comparison with existing
ones

The general principle of our approach is to search the knowledge base that
optimises an evaluation function estimated on a sample of problem instances.
Concerning the rule base revision, the knowledge base can only be modified
during two steps: the conclusion assignments step (step 3) and the rule base
simplification step (step 4). During these two steps, each modification of the
knowledge base is assesed by the evaluation function. Indeed, only modifica-
tions that do not deteriorate the value of this function are taken into account.
So, after revision, the value of the evaluation function will inevitably be equal
or higher than before revision. Thus, ensuring that the evaluation function is
in total adequacy with the user needs and that the problem instance sample
used by the revision process is perfectly representative of all instances of the
considered problem allows to guarantee that the knowledge base obtained
after revision is better than the initial one.

Our approach allows to improve the performance of problem solving sys-
tems with experience. In this context, it is in the continuity of the speedup
learning approaches. However, while most of speedup learning approaches
[5, 6] do not provide the system with the ability to solve new problem in-
stances (just improve the system efficiency), our approach allows it to infer
new knowledge. Moreover, unlike many speed up learning approaches, it
does not require a domain theory [5–7] and allows to manage noisy data [8]
–which is particularly important in the context of systems that apply actions
which results are non-predictable. In addition, our approach can be applied
to revise different kinds of control knowledge and not only knowledge related
to action application order [9]. At last, our approach allows to revise the
knowledge and not just to add new pieces of knowledge allowing the system
to be more efficient. Our approach can also be compared to case-based rea-
soning. Systems based on cased-based reasoning solve new problem instances
by using solutions of similar past problem instances. Numerous works such
as [31] dealt with the revision and the reorganisation of the knowledge in this
kind of systems. The main difference between case-based reasoning and our
approach concerns the type of knowledge considered. Indeed, in case-based
reasoning, the knowledge is represented by a set of solved cases, while it is
represented as sets of rules in our proposal.

19



Figure 7: Cartographic Generalisation

4. Application to cartographic generalisation

4.1. Context of the application

4.1.1. Automatic cartographic generalisation

We implemented our knowledge revision approach in the domain of car-
tographic generalisation. Cartographic generalisation is a process that aims
at decreasing the level of details of geographic data in order to produce a
map at a given scale (smaller than the reference scale of the initial data).
The goal of this process is to ensure the readability of the map while keeping
the essential information of the initial data. The cartographic generalisation
is not a simple map reduction; it requires to apply numerous operations such
as object scaling, displacements and eliminations. Figure 7 gives an example
of cartographic generalisation.

The automation of the generalisation process from vector geographic
databases is an interesting industrial application context. Indeed, this prob-
lem is far from being solved. Moreover, it directly interests the mapping
agencies that wish to improve their map production lines. At last, the mul-
tiplication of web sites allowing to create one’s own map increases the needs
of reliable and effective automatic generalisation processes. The problem of
the generalisation automation is complex. One approach to solve it is to
use a local, step-by-step and knowledge-based method [32–34]: each vector
object of the database (representing a building, a road segment, etc.) is
modified by application of a sequence of generalisation algorithms realising
atomic transformations. The sequence of algorithms is not predetermined
but built on the fly for each object according to control knowledge, depend-
ing on its characteristics and the measured effects of the algorithms on it.
This approach implies to manage a knowledge base. In particular, it requires

20



to adapt the knowledge when new elements such as new generalisation algo-
rithms are integrated in the generalisation systems or when the user needs
(the map specifications) change. Nowadays, this knowledge adaptation is
done ”manually” by generalisation experts and is often long and fastidious.
Indeed, it requires facing the problem of knowledge collecting and formalising
[33]. Thus, it is interesting to give the system capabilities to revise by itself
its own knowledge base. Several works have already used Machine Learning
to learn relevant control knowledge [33, 35, 36] but only few have proposed
to automatically revise existing knowledge. Among them, Burghardt and
Neun [37] proposes to use previously generalised objects to build a case base.
Concerning the rule base revision, the only work that we are aware of is [38].
It proposes to use experience to learn new rules that are added to the system.
Contrarily to our work, this work does not propose to revise existing rules,
but only to add new ones. Thus, even if an initial rule is not pertinent, this
one cannot be removed or modified.

4.1.2. The generalisation system

The generalisation system that we use for our experiment is based on the
AGENT model. This model, which is well-established in the generalisation
community, originates in [39] and was used during the AGENT European
Project [40]. The AGENT model has been described in details in [34]. In
this model, objects of the vector geographic database to generalise (roads,
buildings, etc) are modelled as agents. The geographic agents manage their
own generalisation, choosing and applying generalisation algorithms (actions)
to themselves. The generalisation of the agents is guided by a set of con-
straints that translate the specifications of the desired cartographic product.
An example of constraint is, for a building agent, to be sufficiently big to
be readable. In addition, constraints have the role of computing for their
associated agent, for each state, a list of actions to try. For example, if the
size constraint of a building assesses that the agent is too small, it will pro-
pose a scaling action to the agent. Each constraint has a level of satisfaction
ranged between 1 (constraint not satisfied at all) to 10 (constraint perfectly
satisfied). For each state, the agent computes its own satisfaction as the
sum of each constraint satisfaction weighted by their importance. To satisfy
its constraints as well as possible, a geographical agent carries out a cycle
of actions during which it tests several actions proposed by its constraints
in order to reach a perfect state (where all of its constraints are perfectly
satisfied) or at least the best possible state. The action cycle results in an in-

21



Figure 8: Example of a state tree for the generalisation of a building

formed exploration of a state tree. Each state represents the geometric state
of considered geographic objects The action cycle used is the one presented
in Figure 2. Figure 8 gives an example of a state tree obtained with the
generalisation system.

4.2. Settings of our test case

The knowledge revision method described in Section 3 has been imple-
mented in a research platform based on Clarity (1Spatial), resulting in a
prototype for knowledge revision associated to the AGENT generalisation
model. In this section, we report on one of the experiments carried out in
order to assess this knowledge revision method. This test case focuses on
the generalisation of urban space. Generalising the urban space is a complex
problem. It requires to manage a high density of data. The use of differ-
ent levels of analysis has proven to be a good solution for dealing with this
complexity. Several works were interested in the definition of these levels of
analysis [39, 41, 42]. In this test case, we concentrate on the analysis level
of the building groups defined by [43]: a building group is a space composed
of a set of ”close” buildings belonging to the same building block (space
surrounded by a minimum cycle of roads). The initial data are stemming
from BD TOPO, the 1m resolution database of the French NMA (reference
scale approximately 1:15 000). The target scale is 1:50 000. The choice of
this class of agents and of this target scale is due to the difficulty to de-
fine good knowledge for their generalisation. Actually, the generalisation of

22



building groups poses efficiency and effectiveness problems. The generalisa-
tion algorithms used to generalise them are often time consuming. Thus, it
is important to find a good state while exploring few states. Now, defining
knowledge allowing this is particularly complex.

4.2.1. Defined generalisation constraints and available generalisation algo-
rithms

In this section, we present the constraints and the actions used for our
experiments. We defined, with the contribution of generalisation experts, six
constraints and five actions for building group agents:

• Proximity constraint : this constraint states that the buildings should
not be too close to each others, neither to close to the roads. It is
assessed by computing distances between neighbouring buildings and
roads, following [44]. This constraint can propose building removal and
displacement actions:

– Building displacement action: this action displaces buildings that
have proximity problems. It is based on the displacement algo-
rithm proposed by [44].

– Local building removal action: this action removes buildings ac-
cording to a local context. It removes in priority the buildings
that have the most serious overlapping problems. The algorithm
of this action is presented in [11].

– Building removal/displacement action: this action selects the build-
ing that has the most serious proximity problems and removes it.
If another building is close to the removed one, it is displaced in
order to be closer to the removed building. This action is based
on the displacement algorithm proposed by [39].

Building satisfaction constraint : this constraint states that buildings
composing the building group should individually satisfy their internal
constraints. It is assessed by analysing the individual satisfaction of
the buildings. This constraint can propose a building generalisation
action:

– Building generalisation action: this action triggers the individ-
ual generalisation of the building agents composing the building
group.

23



Density constraint : this constraint states that the building density
should not be too high in comparison to the initial building density.
It is assessed by comparing the black/white ratios at the current state
and at the initial state. This constraint can propose a building removal
action:

– Global building removal action: this action removes buildings ac-
cording to the global context. It removes in priority buildings that
have the less space to move. This action is based on the algorithm
proposed by [39].

Spatial distribution constraint : this constraint states that the current
building spatial distribution should be close to the initial building spa-
tial distribution. It is assessed by checking that no empty space have
appeared where there were buildings initially. Big buildings preserva-
tion constraint : this constraint states that buildings, having an area
bigger than a threshold, should not be removed. It is assessed by com-
paring the number of big buildings at the current state and at the initial
state. Corner buildings preservation constraint : this constraint states
that buildings located in a corner of roads should not be removed. It
is assessed by comparing the number of corners, in which there are
buildings, at the current state and at the initial state. This constraint
is presented in [11].

The last two constraints represent a partial expression of the expectation
that most important buildings of the group should be preserved. It can
be noticed that no action is associated with the spatial distribution, big
buildings preservation and corner buildings preservation constraints. These
constraints are used by the system only to reject states of which the degree
of violation would be too high.

4.2.2. Initial knowledge set

For our experiment, we defined three different initial knowledge sets: one
ensuring to find the best possible state for each generalised building group
(but of much too high computational complexity), and two others defined
by experts. The experts defined their knowledge sets with the help of tools
allowing them to manually test the actions, to display measures values for a
given agent state, to generalise geographical agents with the AGENT system
including different pieces of knowledge and to visualise the resulting states

24



trees. In order to tune the control knowledge, they carried out their experi-
ments with building groups localised inside the town of Orthez (South-west of
France). This town is composed of 280 building groups. The three knowledge
sets are described as follows:

• Most effective knowledge set : knowledge set derived from the full-
exploration knowledge set. For each generalised building group, this
knowledge set ensures to find the best possible state considering the
constraints and the available actions proposed by them. Nevertheless,
it requires to explore many states per generalisation and is thus not
efficient at all. This efficiency problem leads to the impossibility to use
this knowledge set for real application.

• Cartographic expert knowledge set : knowledge set defined by an expert
on cartography but not on the AGENT model. The heuristic used by
the expert while defining this knowledge set was to search in priority
to define an effective knowledge set. Then, he tried to improve the effi-
ciency of its knowledge set by adding knowledge related to the pruning
of the states trees.

• AGENT model expert knowledge set : knowledge set defined by an ex-
pert on both cartography and the AGENT model. The heuristic used
by the expert while defining this knowledge set is the same as the one
used by the previous expert: the expert searched in priority to define
an effective knowledge set. Then, he tried to improve the efficiency of
its knowledge set by adding knowledge related to the pruning of the
states trees.

4.2.3. Revision parameters and test protocol

The implementation of our approach requires to choose three algorithms
and to define a performance function. Our general algorithm choice approach
was to choose well-established and well-known algorithms. Thus, for the
instance selection part (Section 3.2.1), which consists in choosing a sample
of building groups, we used the EM algorithm [20] to divide the building
groups into cluster. We used the C4.5 algorithm [27] to learn rules for our
partitioning method, and the tabusearch [29] for our conclusion assignment
approach. The function Perf(SK , Obj) was defined empirically by means
of experiments with different knowledge sets and different building groups

25



(not the ones used during this test case, in order to avoid risks of over-
fitting). We were considering the situation of a production line, where the
most important is to obtain good cartographic results and where it is possible
to retouch manually (by technicians) some generalised building groups. We
used the following Perf(SK , Obj) function:

Perf(SK , Obj) =
4 × Effectiveness(SK , Obj) + Efficiency(SK , Obj)

5

This function favours the effectiveness of the system over its efficiency thanks
to factor 4. The value of this factor was defined with the help of a gener-
alisation expert. The expert analysed the results obtained with different
knowledge sets on several datasets in terms of efficiency and effectiveness
and chose, from this analyse, a value for the effectiveness factor. Of course,
this value can be changed to reflect the needs of the user. Approaches such
as [45] can be used to adjust the weights.

The effectiveness evaluation function has been defined as follows:

Effectiveness(SK , Obj) =

(

4 × FirstQuartile(SK , Obj) + Mean(SK , Obj)

20

)2

This function allows to take the mean satisfaction of the generalised object
into account and to balance this result by the value of the satisfaction first
quartile. The interest of this weighting comes from the fact that it is prefer-
able for the mapping agencies to obtain three quarters of well generalised
objects and one quarter of bad-generalised objects (that can be retouched by
technicians) rather than obtaining average homogeneous results (which re-
quires much more retouches). The factor 1/20 is used to normalise the value
of this function. Actually, we remind that the satisfaction of a geographic
agent is ranged between 1 to 10. We add a power 2 in order to accentuate the
difference between values. Indeed, in terms of satisfaction, a good result for
our application scenario (building group that does not need to be retouched)
corresponds to a value higher than 9. A value lower than 8 corresponds to a
non-acceptable generalisation result.

Concerning the efficiency evaluation function, we used the following one:

Efficiency(SK , Obj) = NbStates(SK , Obj)
1

3
×( −5

√
NbStates(SK ,Obj)−1)

The choice of this efficiency function can be explained by the wish that
the efficiency function covers a large range of values (on the interval [0,1])

26



for values of mean number of states ranged between 10 to ∞. Actually, for
our application scenario, we have empirically defined that a mean number
of visited states of 10 can be considered as a very good result in terms of
efficiency (Efficiency value higher than 0.64). A number of states ranges
between 10 to 15 can be considered as a good result in terms of efficiency
(Efficiency value ranged between 0.52 and 0.64); a number of states ranged
between 15 to 25, an average result (Efficiency value ranged between 0.38
and 0.52); a number of states higher than 30 is not acceptable in terms of
efficiency for a real application (Efficiency value lower than 0.33).
Concerning the test protocol, we used 50 building groups to revise the three
initial knowledge sets. These 50 building groups were selected by our object
sample selection approach in the same area as the one used by the experts
to tune their knowledge sets (the town of Orthez). We then assessed the
initial knowledge sets and their revised versions on the 200 building groups
contained in another town of the South-West of France, namely Salies-de-
Barn.

4.2.4. Results

Figure 9 shows the results, obtained with the initial and revised knowl-
edge sets in terms of effectiveness and efficiency. One point represents a
generalised building group. The y-coordinate corresponds to the generalised
building group satisfaction (the system effectiveness) and the x-coordinate
to the number of states visited to generalise the building group (the system
efficiency). Ideally, all points (i.e. generalised building groups) should be
located in the top-left corner. This figure shows as well diagrams represent-
ing the distribution of the final satisfactions. Figure 10 gives an example of
cartographic results.

Firstly, we can notice the difficulties of defining a knowledge set that will
ensure both the effectiveness and the efficiency of the generalisation system.
Indeed, even with a good command of the AGENT model, it is not easy to
define a knowledge set that is both effective and efficient for all geographic
objects. This is shown by the presence of a high number of light grey squares
on the bottom right parts of the diagram on Figure 9c (satisfaction lower
than 8 and number of visited states higher than 30). The AGENT model
expert defined a good knowledge set (better than the one defined by the
cartographic expert in terms of effectiveness) but not a perfect one. Whereas
this knowledge set permits the acquisition of good cartographic results (most
squares above the threshold of 9 on Figure 9c, few errors in Figure 10c), it is

27



Figure 9: System effectiveness and efficiency: comparison results between the initial knowl-
edge sets and the revised ones

28



Figure 10: Example of cartographic results

29



not efficient (many light grey squares above the threshold of 30 on Figure 9c).
The cartographic expert whose effort favoured obtaining good efficiency came
up short in terms of effectiveness (light grey diamonds to low in Figure 9b).
Actually, the corresponding cartographic results (Figure 10b) suffer from
several problems: several buildings were not generalised while density and
proximity problems are evident. As to the results obtained with the most
effective knowledge set (Figures 9a and 10a), we can remark that the results
are very good in terms of effectiveness but quite poor in terms of efficiency.
Actually, the mean number of visited states is close to 150 per generalisation.
This number is far too high to consider using this knowledge set for a real
world application.

With regard to the result obtained after revision, we see that in all cases
they are good–both in terms of effectiveness and efficiency. Essentially, for
the most effective knowledge set, if the results are slightly less good in terms
of effectiveness, they are far better in terms of efficiency. Remember, for each
generalised building group, the most effective knowledge set ensures finding
the best possible state considering the constraints and the available actions
proposed. Therefore, after revision, it was not possible to obtain better
results in terms of effectiveness. Recall also that before the revision, the
most effective knowledge set was not usable for real applications due to its
efficiency problems. The revision allowed dividing the mean number of visited
states per generalisation by a factor of 10 and thus rendering it perfectly
usable. For the knowledge set defined by the cartographic expert, the results
are better in terms of both efficiency and effectiveness (Figure 9b). The
effectiveness is the most improved, notably, after revision; no more buildings
remain ungeneralised (Figure 10b). For the knowledge set defined by the
AGENT expert, we observe that the quality in terms of effectiveness is very
close for both initial and revised knowledge sets. Nevertheless, the revision
process allowed for great improvement in the system’s efficiency: actually,
the mean number of visited states per generalisation was divided by a factor 2
(Figure 9c). Comparing the results attained with the three revised knowledge
sets, we notice that they all achieved results that were very close in terms of
efficiency. Their mean number of visited states was lower than 13, and thus
lower than the threshold value of 15–which marks the limit between a good
and an average result in terms of efficiency. The best cartographic results
were achieved while using the revised version of the knowledge set defined by
the AGENT expert, which was the best of the three initial knowledge sets.
This experiment shows that if it is possible to obtain good knowledge sets

30



when revising bad knowledge sets, it is possible to get even better results
when revising good knowledge sets.

4.2.5. Conclusion of the presented experiment

In this section, we have presented an experiment carried out for the gen-
eralisation of building groups with the AGENT model.

This experiment shows that defining a knowledge set that allows the
system to be both effective and efficient is very complex. Our experts suc-
cessfully defined good knowledge in terms of effectiveness. Nevertheless, they
did not succeed in introducing pruning knowledge in order to improve the
efficiency of the system while ensuring the cartographic quality of the results.
Between our two experts, one chose to ensure the quality of the cartographic
result at the expense of the efficiency of the system (the AGENT expert).
The other one tried to improve the efficiency by introducing strict pruning
knowledge but deteriorated greatly the cartographic quality of the results
(the cartographic expert).

The results obtained with our revision approach shows that it allows to
answer the problem of the definition of a both effective and efficient knowl-
edge set. Actually, the three knowledge sets obtained after revision allowed
to obtain good generalisation results both in terms of efficiency and in terms
of effectiveness.

This experiment showed as well that our revision approach allows to take
the specificities of the initial knowledge into account. Actually the revision
from the knowledge set defined by the AGENT expert (which is the best
initial knowledge set of the three) allowed to obtain the best knowledge set
after revision. An explanation is that the revision process preserved some
pertinent elements defined by the AGENT expert that could not be acquired
directly by the experience (i.e. from the logs generated during the explo-
ration stage). Thus, it appears particularly interesting to revise existing
knowledge rather than just trying to acquire directly new knowledge. This
result confirms our initial hypothesis (Section 3.1).

5. Conclusion

In this paper, we have underlined the interest of integrating an automatic
module of knowledge revision inside a problem solving system based on an
informed tree search strategy. We have proposed a generic approach for the
revision of the control knowledge based on logs analysis. We developed a

31



specialisation of this approach allowing to revise knowledge expressed in the
form of production rules. We have assessed this method by implementing it
in the context of cartographic generalisation and by carrying out an experi-
ment with the AGENT model for the generalisation of building groups. This
experiment has showed that our revision approach can allow the system to
improve the initial control knowledge in terms of efficiency or/and effective-
ness. It also confirms our initial hypothesis that it is interesting to take the
initial knowledge into account and to revise it rather than just acquiring new
knowledge.

Our approach can be applied to other kinds of geographic objects and to
others scales. Carrying experiments for other geographic objects could allow
to test our approach in a more intensive manner and to study its limits.
In the same way, as our approach is generic, it can be applied to other
systems based on an informed tree search strategy. The implementation
of our approach for other systems could require adapting our approach to
other kinds of knowledge. In particular, adaptations could be proposed to
revise knowledge expressed in other formalisms than production rules. In this
context, proposing a specific approach for knowledge expressed by fuzzy logic
based on this logic mathematical properties (see [46]) could be particularly
interesting.

As mentioned in Section 3.4, ensuring that the evaluation function is in
total adequacy with the user needs and that the problem instance sample
used by the revision process is perfectly representative of all instances of the
considered problem allows to guarantee that the knowledge obtained after
revision is better than the initial one. In practice, it is difficult to ensure
these two points. Concerning the representativeness of the sample, in Sec-
tion 3.2.1, we proposed a method to automatically select a sample of problem
instances. This method is based on the utilisation of a clustering technique.
A key point of our method, in addition to the choice of the clustering al-
gorithm, concerns the choice of the measure set used to characterise the
problem instances. If the measure set is not pertinent, the clustering will be
bad, and thus the select problem instance sample will be not representative
of all the problem instances. Different methods proposed in the literature
can be used to evaluate the measure set [11, 47]. Concerning the evaluation
of the system performances, we already stated the difficulty of designing such
performance function (Section 3.3.2). Indeed, if the user can easily determine
if a given result is good enough, the lack of formalisation of its needs make
the design of the evaluation function complex. Thus, an interesting future

32



work will consist in developing methods to help users design this function.
A first approach that could be used to face this problem consists in directly
using machine learning techniques. Thus, a sample of solved instances of the
considered problem would be proposed to an expert. This one would give
an effectiveness mark, an efficiency mark and a global performance mark to
each of the results. These marks would be then used to learn an effectiveness
function, an efficiency function as well as a performance function depending
on the two previous marks. A second approach, more complex, could consist
in designing the performance function thanks to an active learning. Thus,
it could be interesting to use as a base the approaches presented in [48] and
in [49]. The system would present several samples of results (resolved with
different knowledge sets) to the expert. This one could define which one
contains the best results and add commentaries about them through a dedi-
cated interface. The system would then use these commentaries to refine the
effectiveness function, the efficiency function and the performance function
and to choose new result samples to present to the expert. In that case, the
learning would be the result of a form of participatory design, emerging from
the dialogue between the expert and the system.

Acknowledgements

The authors wish to thank Laurence Jolivet and Julien Gaffuri from the
COGIT laboratory for their participation to the experiments.

References

[1] E. Feigenbaum, The art of artificial intelligence 1: Themes and case
studies of knowledge engineering., Tech. rep., Stanford University, De-
partment of Computer Science (1977).

[2] A. Newell, H. Simon, The logic theory machine, IRE Transactions on
Information Theory 2(3) (1956) 61–79.

[3] S. Kirkpatrick, C. Gellatt, V. M.P., Optimization by simulated anneal-
ing, Science 220 (1983) 671–680.

[4] J. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor,
1975.

33



[5] S. Minton, Quantitative results concerning the utility of explanation-
based learning, Artificial Intelligence 42 (1990) 363–392.

[6] T. Mitchell, R. Keller, S. Kedar-Cabelli, Explanation-based generaliza-
tion: a unifying view, Machine Learning 1 (1986) 45–80.

[7] R. aler, D. Borrajo, P. Isasi, Using genetic programming to learn and
improve control knowledge, Artificial Intelligence 141 (2002) 29–56.

[8] T. Mitchell, P. Utgoff, R. Banerji, Learning by experi-mentation: acquir-
ing and refining problem-solving heuristics, Machine Learning 1 (1983)
163–190.

[9] Y. Xu, A. Fern, S. Yoon, Learning linear ranking functions for beam
search with application to planning, Journal of Machine Learning Re-
search 10 (2009) 1571–1610.

[10] P. Taillandier, Knowledge diagnosis in systems based on an informed tree
search strategy: application to cartographic generalisation, in: CSTST
Student Workshop, 2008.

[11] P. Taillandier, Révision automatique des connaissances guidant lex-
ploration informée darbres détats. application au contexte de la
généralisation de données géographiques, Ph.D. thesis, Thèse de luni-
versité Paris-Est, Laboratoire COGIT (2008).

[12] L. Carbonara, D. Sleeman, Effective and efficient knowledge base refine-
ment, Machine Learning 37 (1999) 143–181.

[13] A. Ginsberg, S. M. Weiss, P. Politakis, Automatic knowledge base refine-
ment for classification systems, Artificial Intelligence 35 (1988) 197–226.

[14] M. Atzmueller, J. Baumeister, Introspective subgroup analysis for inter-
active knowledge refinement, in: Proceedings of the 19th Intl. Florida
Artificial Intelligence Research Society Conference, 2006.

[15] D. Ourston, R. Mooney, Changing the rules: A comprehensive approach
to theory refinement, in: Proceedings of the Eighth National Conference
on Artificial Intelligence, 1990.

[16] G. Webb, Dlgref2: Techniques for inductive rule refinement, in: IJCAI
Workshop W16: Machine Learning and Knowledge Acquisition, 1993.

34



[17] J. Pitrat, An intelligent system must and can observe its own behavior,
in: COGNITIVA, 1991, pp. 119–128.

[18] P. Taillandier, C. Duchêne, A. Drogoul, Using belief theory to diagnose
control knowledge quality. application to cartographic generalisation, in:
RIVF, 2009.

[19] P. Mitra, C. Murthy, S. Pal, Unsupervised feature selection using fea-
ture similarity, in: IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2002.

[20] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from
incomplete data via the em algorithm (with discussion), Journal of the
Royal Statistical Society 39 (1977) 1–38.

[21] A. Jain, R. Dubes, Algorithms for Clustering Analysis, Printice-Hall,
1988.

[22] L. Xu, A. Krzyzak, E. Oja, Competitive learning for clustering analysi,
rbf net and curve detection, IEEE Trans. Neural Networks 4 (1993)
636–649.

[23] L. Deng-Feng, C. Guo-Hong, H. Zhi-Gang, Linear programming method
for multiattribute group decision making using if sets, Information Sci-
ences 180(9) (2010) 1591–1609.

[24] J. Figueira, V. Mousseau, B. Roy, Electre methods, in: Multiple Criteria
Decision Analysis: State of the Art Surveys, -, 2005.

[25] Y. Kim, O. de Weck, Adaptive weighted sum method for multiobjective
optimization: a new method for pareto front generation, Structural and
Multidisciplinary Optimizations 31 (2006) 105–116.

[26] P. Taillandier, Automatic knowledge revision of a generalisation sys-
tem, in: workshop on generalisation and multiple representation, ICA,
Moscow, Russia, 2007.

[27] J. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann
Publishers Inc., 1993.

[28] W. Cohen, Fast effective rule induction, in: ICML, 1995.

35



[29] F. Glover, Tabu search, Journal on Computing 1 (1989) 190–206.

[30] L. Breslow, D. Aha, Simplifying decision trees: A survey, The Knowledge
Engineering Review 12(1) (1997) 1–40.

[31] T. Roth-Berghofer, I. Iglezakis, Six steps in case-based reason-
ing:towards a maintenance methodology for case-based reasoning sys-
tems., in: Proceedings of the 9th German Workshop on Case-Based
Reasoning,, 2001.

[32] K. Brassel, R. Weibel, A review and conceptual framework of automated
map generalisation, International Journal of Geographical Information
Systems 2 (3) (1988) 229–244.

[33] R. Weibel, S. Keller, T. Reichenbacher, Overcoming the knowledge ac-
quisition bottleneck in map generalization: the role of interactive sys-
tems and computational intelligence, in: 2nd COSIT conference, 1995.

[34] A. Ruas, C. Duchêne, A prototype generalisation system based on the
multi-agent system paradigm, in: W. Mackaness, A. Ruas, L. Sarjakoski
(Eds.), Generalisation of Geographic information: cartographic mod-
elling and applications, Elsevier Ltd, 2007, Ch. 14, pp. 269–284.

[35] S. Mustière, Cartographic generalization of roads in a local and adapta-
tive approach: a knowledge acquisition problem, international journal of
geographical information science 19 (8–9) (2005) –, fisher P., Gahegan
M., Lees B. (ed.).

[36] T. Kilpelinen, Knowledge acquisition for generalization rules, Cartogra-
phy and Geographic Information Science 27(1) (2000) 41–50.

[37] D. Burghardt, M. Neun, Automated sequencing of generalisation ser-
vices based on collaborative filtering, in: 4th International Conference
GIScience, 2006.

[38] A. Ruas, A. Dyevre, D. Duchêne, P. Taillandier, Methods for improving
and updating the knowledge of a generalization system, in: Autocarto,
2006.

[39] A. Ruas, Modèle de généralisation de données géographiques a base
de contraintes et d’autonomie, Thèse de doctorat en informatique,

36



spécialité science de l’information géographique, Université de Marne
la Vallée, laboratoire COGIT (1999).

[40] M. Barrault, N. Regnauld, C. Duchne, K. Haire, C. Baeijs, Y. Demazeau,
P. Hardy, W. Mackaness, A. Ruas, R. Weibel, Integrating multi-agent,
object-oriented, and algorithmic techniques for improved automated
map generalization, in: 20th international conference of cartography,
Vol. 3, Beijing, Chine, 2001, pp. 2110–2116.

[41] A. Boffet, S. Rocca Serra, Identification of spatial structures within
urban block for town qualification, in: International Cartographic Con-
ference, Vol. 2, 2001, pp. 1974–1983.

[42] S. Steiniger, T. Lange, D. Burghardt, R. Weibel, An approach for the
classification of urban building structures based on discriminant analysis
techniques, Transactions in GIS 12(1) (2008) 31–59.

[43] J. Gaffuri, J. Trévisan, Role of urban patterns for building generali-
sation: An application of agent, in: Workshop on Generalisation and
Multiple representation, 2004.

[44] A. Ruas, A method for building displacement in automated map general-
isation, international journal of geographical information sciences 12 (8)
(1998) 789–803.

[45] L. Deng-Feng, An approach to fuzzy multiattribute decision making
under uncertainty, Information Sciences 169(1-2) (2005) 97–112.

[46] S. Gottwald, Mathematical fuzzy logic as a tool for the treatment of
vague information, Information Sciences 1972 (2005) 41–71.

[47] L. Molina, L. Belanche, A. Nebot, Feature selection algorithms: A sur-
vey and experimental evaluation, Tech. rep., Universitat Politcnica de
Catalunya, Barcelona, Spain (2002).

[48] S. Christophe, Creative cartography based on dialogue, in: In proceed-
ings of AutoCarto, 2008.

[49] P. Taillandier, J. Gaffuri, Objective function designing led by user pref-
erences acquisition, in: International Conference on Information Tech-
nology and Applications, Hanoi, Vietnam, 2009.

37


