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We study the influence of third-order dispersion effects on the propagation of an incoherent nonlinear wave in an
optical fiber system. The wave spectrum is shown to exhibit a highly asymmetric deformation characterized by a
lateral spectral shoulder and the subsequent formation of an unexpected constant spectral pedestal. A kinetic
approach to the problem reveals the existence of an invariant that explains in detail the essential properties of such
asymmetric spectral evolution of the wave. © 2010 Optical Society of America
OCIS codes: 190.4370, 190.4380, 030.1640.

The analysis of the long-term evolution of an incoherent
nonlinear optical field is attracting growing interest [1–8].
In particular, the thermalization of an optical wave has
been studied in various circumstances, such as supercon-
tinuum generation [9,10] or spontaneous repolarization
[11], as well as in various optical media characterized
bydifferent nonlinearities [5,7,12,13]. In complete analogy
with the kinetics of a gas system, optical wave thermaliza-
tion manifests itself by means of an irreversible evolution
of the optical field toward the thermodynamic equilibrium
state, i.e., the Rayleigh–Jeans (RJ) spectrum. Wave turbu-
lence (WT) theory [14] is known to provide a detailed de-
scriptionof this nonequilibrium thermalization process. In
a recent work, we identified a process of anomalous ther-
malization [15] that originates in degenerate resonances
of the wave system. It is characterized by an irreversible
evolution of thewave toward a local equilibrium state that
violates the property of energy equipartition inherent to
the RJ spectrum.
Our aim here is to address the consequences of this

anomalous thermalization in an optical system of practi-
cal interest. We consider the problem of the propagation
of an incoherent wave in an optical fiber near by the zero
dispersionwavelength. In spite of its simplicity and its nat-
ural fundamental importance, this problem has not been
treated so far, to the best of our knowledge. We show that
the perturbative third-order dispersion (TOD) effect is
responsible for a highly asymmetric deformation of the
spectrum, which may be described in detail by the WT
theory: Following the methodology developed in [15],
we derive a kinetic equation that describes the spectral
evolution of the wave in quantitative agreement with
the numerical simulations of the nonlinear Schrödinger
equation (NLSE). Furthermore, the kinetic approach re-
veals the existence of a rather simple conserved quantity
(invariant), which explains all the essential properties of
the complex evolution of the wave spectrum.
We consider the scalar NLSE in the presence of TOD:

i∂zu ¼ −σ∂2tuþ iα∂3tuþ juj2u: ð1Þ

We normalized the problem with respect to the nonlinear
length L0 ¼ 1=γP and time τ0 ¼ ðjβ2jL0=2Þ1=2, where γ is
the nonlinear coefficient, P is the average power of the

wave, and β2 is the second-order dispersion coefficient.
In these units, the normalized TOD parameter reads

α ¼ β3=ð6L1=2
0

ðjβ2j=2Þ3=2Þ, with β3 as the TOD coefficient
and σ ¼ signðβ2Þ. The NLSE conserves three important
quantities: the normalized power N ¼

R

juðtÞj2dt, the mo-

mentum M ¼
R

ωj~uðωÞj2dω, and the “energy” (Hamilto-
nian) H ¼ E þ U , which has a linear (dispersive)
kinetic contribution E ¼

R

kðωÞj~uðωÞj2dω and a nonlinear

contribution U ¼ 1

2

R

juðtÞj4dt, where kðωÞ ¼ σω2 þ αω3 is

the linear dispersion relation and ~uðz;ωÞ ¼ 1
ffiffiffiffi

2π
p

R

uðz; tÞ
expð−iωtÞdt is the Fourier transform of uðz; tÞ. The zero
dispersion frequency is ω0 ¼ −σ=ð3αÞ. We recall that
TOD breaks the integrability of the scalar NLSE.

Figure 1 illustrates the first stage of the typical evolu-
tion of the spectrum of the field obtained by integrating

Fig. 1. First stage of the spectral evolution obtained by inte-
grating numerically the NLSE (1) (dotted curve) and the kinetic
Eq. (3) (solid curve) for α ¼ 0:05 (left column) and α ¼ 0:1
(right column): (a), (b) at z ¼ 30; (c), (d) at z ¼ 2500

(σ ¼ 1). The dashed curve shows the initial condition
(z ¼ 0). (e), (f) Corresponding invariant JðωÞ determined from
the initial condition (dashed curve) and obtained by solving the
NLSE (1) at z ¼ 2500 (solid curve).
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numerically theNLSE(1).The initial condition is apartially
coherent wave with a Gaussian spectrum and random
spectral phases (dashed curve), i.e., uðz ¼ 0; tÞ is of zero
mean and obeys stationaryGaussian statistics.We remark
that the high-frequency tail of the spectrum does not exhi-
bitanysignificantspectralbroadening,whereas, in the low-
frequency part (anomalous dispersion), a broad spectral
shoulder emerges, which is then preserved for long propa-
gation lengths [Figs. 1(a) and 1(c)]. In this example, the in-
itial spectrum lies essentially in the normal dispersion
regime.We remark, however, that a similar spectral defor-
mation is obtained by pumping in the anomalous disper-
sion (σ ¼ −1), although, in this case, the deformationof the
spectrum is reversed, i.e., the spectral shoulder emerges in
normal dispersion. Note that such a reversed deformation
of thespectrumalsooccursbychanging thesignofα (keep-
ing σ ¼ 1). The system is not sensitive to the sign of the
dispersion coefficient (σ), because we deal here with the
weakly nonlinear regime, U=E ≪ 1, which is known to
suppress the modulational instability [13], and the genera-
tion of robust coherent soliton structures [9,10,14].
Another consequence of U=E ≪ 1 is that the field statis-
tics do not need to be Gaussian initially: linear dispersive
effects dominate the interaction and bring the system to a
state of stationary Gaussian statistics (a feature that we
have verified). Note that the simulation of Fig. 1 (α ¼
0:05) typically corresponds to light propagation in a photo-
nic crystal fiber with γ ¼ 50 × 10−3 W−1 m−1, β2 ¼
50 × 10−27 s2=m, and β3 ¼ 27 × 10−41 s3=m. A thousand

of nonlinear propagation lengths L0 would then corre-
spond toa fiber lengthof50 mandanaveragepowerofP ¼
400 W (neglecting the influence of the dissipative Raman
effect).

A physical insight into this problem is obtained by mak-
ing use of the WT theory. The kinetic wave theory is es-
sentially based on the random phase approximation,
which is known to break the formal reversibility of the
NLSE. One may thus derive an irreversible kinetic equa-
tion describing the evolution of the averaged spectrum of
the field, nðz;ωÞ ¼ hj~uj2ðz;ωÞi [9–14]. It reads ∂znðz;ωÞ
¼ Coll½n�, where the collision term is Coll½n� ¼
R

dω1dω2dω3WnðωÞnðω1Þnðω2Þnðω3Þ½n−1ðωÞ þ n−1ðω1Þ
−n−1ðω2Þ − n−1ðω3Þ�, with W ¼ 1

π
δðωþ ω1 − ω2 − ω3Þ

δ½kðωÞ þ kðω1Þ − kðω2Þ − kðω3Þ�. Two integrals of Coll½n�
may be computed exactly owing to the δ functions in
W . Oneobtains ∂znðω; zÞ ¼ 1

3πjαj
R

G½n�dω1,where the func-

tional G½n� exhibits a remarkable property: it is invariant
under the substitution ω → �ω ¼ q − ω, i.e., G½nð�ωÞ� ¼
G½nðωÞ�, where q ¼ −2σ=3α ¼ 2ω0. This peculiar property
implies ∂znðω; zÞ ¼ ∂znð�ω; zÞ, which thus reveals the
existence of the following local invariant:

JðωÞ ¼ nðω; zÞ − nðq − ω; zÞ: ð2Þ

This invariant is local in the sense that it is verified for each
frequency ω individually, ∂zJðωÞ ¼ 0. It means that the
subtraction of the spectrum by the reverse of itself trans-
lated by q ¼ 2ω0 remains invariant during the whole evo-
lution of the wave. The invariant of Eq. (2) finds its origin
in the degenerate resonance of the phase-matching con-
ditions: a pair of frequencies ðω; q − ωÞmay resonate with
any pair of frequencies ðω0; q − ω0Þ, because kðωÞ þ kðq −
ωÞ ¼ σq2=3 does not depend onω. Making use of JðωÞ, we
obtain the following kinetic equation governing the evolu-
tion of the averaged spectrum of the wave:

∂znðω; zÞ ¼
1

3πjαj

Z

F ½n; J�
jω − ω1jjωþ ω1 − qj dω1; ð3Þ

with F ½n;J�¼nω1
ðnω−JωÞðnω1

−Jω1
Þþnωnω1

ðnω1
−Jω1

Þ
−nωðnω−JωÞðnω1

−Jω1
Þ−nω1

nωðnω−JωÞ, where Jω stands
for JðωÞ. This kinetic equation has been integrated nu-
merically [see Figs. 1(a) and 1(c), solid curve]. The invar-
iant in Eq. (3) is fixed by the initial spectrum of the field,
Jω ¼ nωðz ¼ 0Þ − nq−ωðz ¼ 0Þ. Let us stress the quantita-
tive agreement (down to −80 dB) with the numerical
simulations of the NLSE without any adjustable param-
eter, a feature that is corroborated by the fact that the
NLSE conserves (in average) the invariant Jω [see
Fig. 1(e)]. This good agreement stems from the fact that
we considered the weakly nonlinear regime, i.e., jU=Ej∼
0:1 in Fig. 1. Note, however, that, as the parameter α in-
creases, a significant amount of power evolves in the
neighborhood of the zero dispersion frequency where
nonlinear effects dominate, so that the criterion jU=Ej ≪
1 is not verified for ω∼ ω0. We thus observed a discre-
pancy between the kinetic Eq. (3) and the NLSE (1)
(see Fig. 1, right column), although the invariant Jω is still
preserved by the NLSE [Fig. 1(f)].

Fig. 2. (a) Second stage of the spectral evolution obtained by
integrating numerically the NLSE (1) (dotted curve) and the ki-
netic Eq. (3) (solid curve) at z ¼ 20000 and (b) for different pro-
pagation lengths: a constant spectral pedestal emerges in the
tails of the spectrum (α ¼ 0:05, σ ¼ 1). The spectrum slowly re-
laxes toward the equilibrium state neqðωÞ given by Eq. (4) (solid
curve). (c), (d) Equilibrium spectrum neqðωÞ [Eq. (4)] (solid
curve), initial condition (dashed curve), and corresponding in-
variant jJωj (dashed–dotted curve) for (c) α ¼ 0:05 and (d)
α ¼ 0:08: the invariant Jω determines the essential properties
of neqðωÞ.
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The analysis of the invariant Jω provides a simple qua-
litative interpretation of the asymmetric deformation of
the spectrum discussed in Fig. 1. For this purpose, one
should consider that the natural tendency of a nonlinear
wave is to generate new frequency components in the tails
of its spectrum, which leads to a lowering of the central
part of the spectrum. Here, the lowering of the spectrum is
constrained by the existence of the invariant Jω, because
nω ¼ Jω þ nq−ω ≥ Jω (nq−ω ≥ 0). It turns out that the spec-
trum tends to approach the spectral profile of Jω for those
frequencies verifying Jω ≥ 0, i.e.,nω ≃ Jω forω ≥ q=2 ¼ ω0

[also see Fig. 2(d)]. For the frequencies ω ≤ ω0, the above
expression reads nq−ω ≃ −Jω (because Jq−ω ¼ −Jω),
which leads to nω ¼ Jω þ nq−ω ≃ 0. In summary, in the
normal dispersion regime (ω ≥ ω0), the spectrum evolves
toward Jω, while, in the anomalous dispersion regime
(ω ≤ ω0), the spectral amplitude is small and almost
constant. This provides a simple interpretation of the
emergence of the spectral shoulder discussed in Fig. 1,
which characterizes the first stage of the spectral
evolution.
Next the system enters into a second stage, in which

one observes the emergence of a constant spectral ped-
estal in the far tails of the wave spectrum [see Figs. 2(a)
and 2(b)]. The spectral pedestal progressively emerges as
a result of two fronts that propagate in opposite direc-
tions in frequency space, and symmetrically with respect
to the zero dispersion frequency, ω0 ¼ q=2. Such a
symmetric front propagation is a consequence of the
degenerate resonance discussed above through Jω, sim-
ply because the pairs of frequencies ðωj; q − ωjÞ involved
in the conversion ðω1; q − ω1Þ → ðω2; q − ω2Þ are always
symmetric with respect to ω0. It turns out that the two
fronts propagate with the same velocity in frequency
space, although they are asymmetric with respect to
the carrier frequency of the wave, i.e., ω ¼ 0.
The unexpected formation of a constant spectral ped-

estal is, in fact, a consequence of the natural relaxation of
the wave toward its equilibrium state. Indeed, the kinetic
Eq. (3) exhibits anH theorem of entropy growth, ∂zS ≥ 0,
with the nonequilibrium entropy SðzÞ ¼

R

logðnωÞdω.
Equation (3) also conserves the power N , the energy E,
and the momentum M . The equilibrium spectrum
neqðωÞ that realizes the maximum of S½n� reads

neqðωÞ ¼ Jω=2þ
�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2J2
ω=4

q

�

=λ: ð4Þ

The parameter λ is determined from the conservation of
the power, N ¼

R

neqðωÞdω ¼
R

nðω; z ¼ 0Þdω, while the
conservations of E and M are implicitly verified through
the invariant Jω. This equilibrium distribution is of a dif-
ferent nature than the conventional RJ equilibrium distri-
bution, as discussed in detail in [15]. Apeculiar property of
neqðωÞ is precisely the fact that it exhibits a constant spec-
tral pedestal, neqðωÞ → 2=λ for jωj ≫ jqj. We remark that
the equilibrium spectrum neqðωÞ exhibits a lateral dip in
the anomalous dispersion regime, whose frequency pre-
cisely corresponds to the frequency of the minimum of
JðωÞ [see Figs. 2(c) and 2(d)].

In summary, we developed a kinetic theory of incoher-
ent light propagation in the presence of TOD. It reveals
the existence of an invariant Jω that determines the es-
sential properties of the spectral evolution of the wave.

This research was supported by the Agence Nationale
de la Recherche (ANR-COSTUME 08-SYSC-004-03).
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