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Abstract

In many applications, the estimation of derivatives has to be done from noisy
measured signal. In this paper, an original method based on a distribution
approach is presented. Its interest is to report the derivatives on infinitely
differentiable functions. Thus, the estimation of the derivatives is done only
from the signal. Besides, this method gives some explicit formulae leading to
fast calculus. For all these reasons, it is an efficient method in the case of noisy
signals as it will be confirmed in several examples.
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1. Introduction

In many estimation and observation problems [3], [6], [12], derivatives, some-
times of high order, have to be evaluated from a noisy signal given by discrete
samples of measurements. It is wellknown that it is an ill-posed problem in
numerical analysis and in signal processing and control.
Several approaches for estimating the derivatives of a noisy signal have been
proposed in the literature. We can name, for example, methods which consist
in approximating the signal by polynomials using least-squares and adding a
regularization criteria [2], [7]. A recent one proposed in [1] consists in project-
ing the signal onto a set of orthogonal functions or modes and approximating
the projection by a linear combination of a few of these modes. Fliess et al.
have introduced a method based on the local approximation of the signal by a
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truncature Taylor expansion and the properties of the Mikusinski field [5], [9].
A study of errors due to the method and the noise on the signal has been treated
in [8].
A new method using the distribution theory and the test functions is proposed
in this paper. It is based too on the idea of approximating locally the signal by
a truncature Taylor expansion but then it uses the properties of the distribution
theory. Its first advantage comes from the fact that it allows one to report the
derivatives on the test functions which are explicitly known. Thus, the estima-
tion of the derivatives is done only from the signal. Then, this theory introduces
naturally integrals which enable us to annihilate a part of the noise on the sig-
nal in our estimations. In [9], their formulae are based on the estimation of
integrals too which are obtained by integral iterations. An other advantage of
our method is that it does not require any statistic knowledge about the noise
and gives some explicit expressions leading to fast calculus. Compared to the
one proposed by [9], no delay has to be taken into account for improving the es-
timation of the derivatives. Thus, the derivatives of the signal can be estimated
from the transmission of the signal.

This paper is organized as follows. In section 2, the derivative estimation
method based on the distribution theory is presented. From some theoretical
recall done in section 2.1, the derivative estimation method is deduced and
presented at section 2.2 as well as the explicit formulae. In section 3, two
types of errors are analyzed: the first one is the error due to the method and
which does not consider the noise, the second one is the error due to the noise
on the signal. Two inequalities will be given and will serve in the numerical
applications, first in giving a criteria for choosing the best test function among
others, then for reducing the search of test functions support length. In section
4, the method is applied on different examples. In order to see how the method
works, a simple model based on a sinusoid is used. Then, a pharmacokinetic
model is taken again from [12]. In this paper, the estimation of the derivatives
specially at 0+, the right limit of 0, was important for a parameters estimation
problem. Thus, the method is particularly well adapted since it gives explicit
formulae at 0+. Finally, in 4.4, our method is compared with two others. The
first one is the method proposed by S. Ibrir and S. Diop in [4]. In this article,
they proposed a regularization method based on the B-splines. The second
one comes from the article [9] where Fliess et al. analyzed and improved their
method by considering barycentric coordinates and by authorizing a delay.

2. A derivative estimation method based on the distribution theory

2.1. Theoretical results

The signal x is supposed to be an analytic function on ]0, a[, equal to zero on
]− b, 0] where a > 0 or a = +∞ and b > 0 or −b = −∞. Besides, x is supposed
to coincide on ]0, a[ with an analytic function x̃ defined on ]− b, a[. Afterwards,
we will say that x verifies the assumption H.
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The signal x can also be associated to a distribution which, in this case,
is regular and which operates on the test functions space noticed D(] − b, a[).
These functions are infinitely differentiable and their supports are a compact in
] − b, a[. The associated distribution is noticed Tx and is defined by:

< Tx, ϕ >=

∫

]−b,a[

x(t)ϕ(t)dt where ϕ ∈ D(] − b, a[).

One of the motivations of distributions’ use is that they are infinitely differen-
tiable and that the derivation can be reported on the test function. Besides
they can take into account the discontinuities, in our case at 0 as it is explicited
in the following theorem [10]:

Theorem 1. The Dirac distribution δ0 verifies for all integer i:

< δ
(i)
0 , ϕ >= (−1)iϕ(i)(0).

Moreover, if x verifies the assumption H, one gets for all k ∈ [0, N ]:

< T (k)
x , ϕ >= (−1)k < Tx, ϕ

(k) >, (1)

T (k)
x = Tx(k) +

k−1
∑

i=0

σk−1−iδ
(i)
0 , k > 0 (2)

with σj = x(j)(0+) − x(j)(0−) = x(j)(0+) for 0 ≤ j ≤ N .

The notation 0+ (respectively 0−) designates the right limit at 0 (respectively
left limit) of the corresponding functions.

The use of the truncated Taylor expansion for the derivatives estimation is
classical (finite difference, etc...). The difference is the way to use it.
Let us consider x a function verifying H and tl ∈]0, a[ or tl = 0+ for the right
limit at 0.
Let D(tl, R) defined for all R by {t ∈] − b, a[; | t− tl |< R}
Then x̃ is a real analytic function in ] − b, a[ and it can be expanded in a
power series about the point tl which is its Taylor expansion at tl. There exists
a number h, h > 0, such that the series converges in D(tl, h) and converges
uniformly in the compact set D̄(tl, ǫ) for all ǫ such that 0 < ǫ < h. Let ǫ be
given such that 0 < ǫ < h. If 0 ∈]tl − ǫ, tl + ǫ[ (respectively 0 6∈ [tl − ǫ, tl + ǫ]),
the function x is defined by:

x(t) =



















+∞
∑

n=0

x(n)(tl)
(t− tl)

n

n!
, t ∈]0, tl + ǫ]

(resp. t ∈ [tl − ǫ, tl + ǫ])
0, t ≤ 0,

(3)
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and the function xN which corresponds to the truncated Taylor expansion

xN (t) =



















N
∑

n=0

x(n)(tl)
(t− tl)

n

n!
, t ∈]0, tl + ǫ]

(resp. t ∈ [tl − ǫ, tl + ǫ])
0, t ≤ 0,

(4)

is an approximation of x(t).

Now consider some test functions ϕ ∈ D(] − b, a[) whose supports are in
[tl − ǫ, tl + ǫ]. Afterwards, ϕ is supposed to be positive without any restric-
tion. According to theorem 1, three cases appear. Before giving them, let us

introduce αi =
1

i!

∫

Vt
l

(t − tl)
iϕ(t)dt, where Vtl

is specified in each cases. The

function test are chosen such that α0 6= 0. According to (1), (2) and (4), one
gets the three following cases:

- If 0 6∈ [tl − ǫ, tl + ǫ], Vtl
= [tl − ǫ, tl + ǫ] and for k = 1, . . . , N ,

N
∑

i=k

x(i)(tl)αi−k = (−1)k

∫ tl+ǫ

tl−ǫ

xN (t).ϕ(k)(t)dt. (5)

- If tl = 0+, Vtl
= [0, ǫ] and for k = 1, . . . , N ,

N
∑

i=k

x(i)(0+)αi−k +

k−1
∑

i=0

(−1)k−1−ix(i)(0+)ϕ(k−1−i)(0)

= (−1)k

∫ ǫ

l

xN (t).ϕ(k)(t)dt,

(6)

- If 0 ∈]tl − ǫ, tl + ǫ[, Vtl
= [0, tl + ǫ] and for k = 1, . . . , N ,

k−1
∑

i=0

(−1)k−1−ix
(i)
N (0+)ϕ(k−1−i)(0) +

N
∑

i=k

x(i)(tl)αi−k

= (−1)k

∫ tl+ǫ

l

xN (t)ϕ(k)(t)dt

(7)

And in each previous case, one gets:

N
∑

i=0

x(i)(tl)αi =

∫

Vt
l

xN (t).ϕ(t)dt, (8)

In systems (5), (6), (7) and (8), xN (t) which is an approximation of x(t) is
generally an unkown value. In concrete applications, only measured values of
x(t) corrupted by noise are available. Afterwards, y(t) = x(t)+η(t) where η will
denote the noise is the measured signal. The aim of the following section will
be to give systems depending uniquely of the measured value y(t) and allowing
the estimation of the derivatives.
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2.2. Estimation of the derivatives

In this section, formulae deduced from (5), (6), (7) and (8) for evaluating
derivatives are explicited in substituting xN (t) by y(t). The deduced systems

provide us an estimator C
(i)
ǫ,N (tl) of x(i)(tl) when 0 6∈ [tl − ǫ, tl + ǫ] (respectively

tl = 0+ and 0 ∈]tl − ǫ, tl + ǫ[). As previously, the test function ϕ ∈ D(] − b, a[)
has a support in [tl − ǫ, tl + ǫ]. Consider,

Aǫ,ϕ,N =











α0 α1 . . . αN

0 α0 . . . αN−1

...
. . . . . .

...
0 . . . . . . α0











, (9)

Bǫ,ϕ,N =















0 0 . . . . . . 0
ϕ(0) 0 . . . . . . 0

−ϕ
′

(0) ϕ(0) 0 . . . 0
...

. . .
. . .

. . .
...

(−1)N−1ϕ(N−1)(0) . . . . . . ϕ(0) 0















, (10)

Cǫ,N (tl) =
(

C
(i)
ǫ,N (tl)

)

0≤i≤N
, X(tl) = (x(i)(tl))0≤i≤N , (11)

and finally,

Iǫ,ϕ,x(tl) =

(

(−1)i

∫

Vt
l

x(t)ϕ(i)(t)dt

)

0≤i≤N

. (12)

Clearly, matrices Aǫ,ϕ,N and Bǫ,ϕ,N are Triangular Toeplitz matrix.

System (5) completed by (8) with Vtl
= [tl−ǫ, tl+ǫ] and ϕ1 the corresponding

test function, becomes

Aǫ,ϕ1,NX(tl) = Iǫ,ϕ1,xN
(tl) (13)

and the estimate Cǫ,N(tl) verifies:

Aǫ,ϕ1,NCǫ,N(tl) = Iǫ,ϕ1,y(tl). (14)

Matrix Aǫ,ϕ1,N is triangular and det(Aǫ,ϕ1,N ) = αN
0 6= 0.

System (6) completed by (8) with Vtl
= [0, ǫ] and ϕ2 the corresponding test

function becomes

(Aǫ,ϕ2,N +Bǫ,ϕ2,N )X(0+) = Iǫ,ϕ2,xN
(0+) (15)

and the estimate Cǫ,N(0+) verifies

(Aǫ,ϕ2,N +Bǫ,ϕ2,N )Cǫ,N (0+) = Iǫ,ϕ2,y(0+). (16)
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Matrix Dǫ,ϕ2,N = Aǫ,ϕ2,N + Bǫ,ϕ2,N is a Toeplitz matrix and has a non-zero
determinant with a good choice of test function ϕ2.

System (7) completed by (8) with Vtl
= [0, tl + ǫ] and ϕ3 the corresponding

test function becomes

Aǫ,ϕ3,NX(tl) = Iǫ,ϕ3,xN
(tl) −Bǫ,ϕ3,NX(0+) (17)

and the estimate Cǫ,N(tl) verifies:

Aǫ,ϕ3,NCǫ,N (tl) = Iǫ,ϕ3,y(tl) −Bǫ,ϕ3,NCǫ,N (0+) (18)

where Cǫ,N(0+) is given by (16). MatrixAǫ,ϕ3,N is triangular and det(Aǫ,ϕ3,N ) =
αN

0 6= 0.

In all the cases, the estimation C
(i)
ǫ,N (tl) of the derivatives x(i)(tl) will be

done only from the observation y.

3. Error analysis

Two types of error have to be analyzed. The first one which does not consider
the noise is the error due to the method. It permits to know if the problem is
well-posed. The second one is the error due to the noise on the signal. A
compromise has to be down between these two errors. Indeed, in order to
minimize the first one, the test functions support length must be as small as
possible. However, it is in opposition for reducing the second one since the noise
is better filtered if the integration interval is greater.
Afterwards, the errors will be evaluated in the more usual case that is, the first
one when the support of the test function, denoted ϕ1, is included in [tl−ǫ, tl+ǫ]
and [tl − ǫ, tl + ǫ] ⊂]0, a[. Thus, only the matrix Aǫ,ϕ1,N is considered. From the
studie of these errors, a criteria will be given for choosing the best test function
among others. Then a method for reducing the search of the test functions
support length will be deduced. Finally, since our estimates are obtained as
output of FIR filters with a noisy input, the output signal to noise ratio can be
estimated in the case of a zero-mean white Gaussian and will be given at the
end of this section.

3.1. Error due to the method

In this section, the notations given in sections 2.1 and 2.2 are taken again and
the test functions are supposed to be positive. In order to ease the presentation,
the proofs of this section are given at the end of this article.

According to the following theorem, the error due to the method can be
controlled owing to the choice of the test function and its support length.
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Theorem 2. For all N ∈ IN by using previous notations, there exist real num-
bers S, R and r such that for ǫ ≤ R:

‖ Cǫ,N (tl) −X(tl) ‖1≤ S
( ǫ

r

)N+1

2ǫ φ(N) (19)

with φ(N) =
∑N

i=0 φi and φi = supt∈[tl−ǫ,tl+ǫ](| ϕ
(i)
1 (t) |).

φ(N) gives a criteria for choosing a test function from a family of them, a similar
criteria will be given in section 3.2.
The following proposition gives the way that the condition number evolves ac-
cording to the support length of the test function.

Proposition 1. For all N ∈ IN,

1 ≤ χ(Aǫ,ϕ1,N ) ≤ eǫ(1 + h(ǫ)) (20)

with lim
ǫ→0

h(ǫ) = 0

The latter proposition ensures that for an interval length sufficiently small,
the condition number of the matrix defined by system (14) is near to one and this
for any test functions. Thus, the resolution of this system is a stable problem
according to the perturbations of the second member. However, since in the
numerical applications the integrals will be estimated by a discrete method and
the noise has to be considered, the support length can not be taken as small as
possible.

3.2. Error due to the noise on the signal

In [5], the authors bring out two kinds of perturbations. The first ones,
like the constant perturbations whose amplitude is unknown are said structured
and are solutions of a linear homogeneous differential equation. They can be
annihilated by linear differential operators and it is, for example, the case of
a random noise whose mean is constant and unknown. The second ones are
said unstructured and correspond to a high frequency perturbation which can
be reduced by low pass filters like iterative integrals. Thus, any noise η(t) can
be written as η(t) = η0(t)+γ where η0(t) is a noise whose mean is equal to zero
and γ is a constant representing the mean of η(t).

The method based on the distribution theory permits to annihilate a part of
the structured noises. When the estimation of the derivatives are done with the
formulae (14), (16), (18), the measured signal is only in the second member of the

equations. According to the integral linearity, noise appears as

∫ tl+ǫ

tl−ǫ

η(t)ϕ(k)(t).

Since η(t) = η0(t) + γ, one gets

∫ tl+ǫ

tl−ǫ

η(t)ϕ(k)(t) =

∫ tl+ǫ

tl−ǫ

η0(t)ϕ
(k)(t)dt+ γ

∫ tl+ǫ

tl−ǫ

ϕ(k)(t)dt.
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If k ≥ 1,

∫ tl+ǫ

tl−ǫ

ϕ(k)(t) = ϕ(k−1)(tl +ǫ)−ϕ
(k−1)(tl−ǫ) is equal to zero as soon as

0+ /∈ [tl−ǫ, tl +ǫ] which will be generally our case in the numerical applications.
Thus, constant perturbations are annihilated.

On the other hand, if 0+ ∈ [tl − ǫ, tl + ǫ] then

∫ tl+ǫ

tl−ǫ

ϕ(k)(t) = −ϕ(k−1)(0+).

Thus, constant perturbations can be controlled owing to the test function. Fur-
thermore, according to the following inequality, the choice of the test function
can permit to attenuate the zero-mean noise effect. Indeed, one gets:

‖

(∫ tl+ǫ

tl−ǫ

η0(t)ϕ
(i)(t)dt

)

0≤i≤N

‖2
1 ≤

∫ tl+ǫ

tl−ǫ

(η0(t))
2dt× ψǫ,ϕ,N (21)

and

E(

∫ tl+ǫ

tl−ǫ

(η0(t))
2dt× ψǫ,ϕ,N) ≤

∫ tl+ǫ

tl−ǫ

var(η0(t))dt × ψǫ,ϕ,N (22)

where var denotes the variance, E(X) the expected value of a random variable

X and ψǫ,ϕ,N =

N
∑

i=0

∫ tl+ǫ

tl−ǫ

|ϕ(i)(t)|2dt. ψǫ,N,ϕ gives a criteria for choosing a test

function among others. Besides, it permits to determine a lower bound for the
test functions support length in order to attenuate a part of the noise. This
criteria will be tested on the first example of section 4.2.

Let us return to the first case that is when ϕ1 is considered. In the case of
a zero-mean white Gaussian, the bias and variance can be evaluated in order to
validate the results. Indeed, if y(t) = x(t) + η0(t) where x(t) is the non noisy
signal and η0 is a zero-mean white gaussian noise then the signal derivatives
estimates are obtained as output of FIR filters with a noisy input. Suppose
that L is the number of samples in [a, b] regularly spaced 1 and the test function
used to estimate the derivatives of x at the sampling time tl (0 ≤ l ≤ L) has
its support contained in an interval of the form [tl−M , tl+M ]. Each estimated
derivative can be expressed as:

C
(n)
ǫ,N (tl) =

∫ tM

−tM

β(s)y(tl − s) ds,

where β is a linear combination of the test function ϕ1(tl− .) and its derivatives.
If Wm are the weights associated with a given numerical integration method and
βm = β(tm), for each sampling time tl, the following expression is computed:

C
(n)
ǫ,N(tl) ≈ C̃

(n)
ǫ,N (l) =

M
∑

m=−M

Wmβmyl−m.

1Notice that the following reasoning can be done with a non-uniform sampling.
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Denote cm = Wmβm and x
(n)
l = x(n)(tl). Thus, the output signal to noise ratio

(SNRout) is given by:

SNRout =
1

L−2M

∑L−M
l=M |x

(n)
l |2

σ2
∑M

m=−M |cm|2
.

Concerning the bias, the relative sample mean squared error due to the bias
term and to the numerical approximation of the integrals is computed as:

SBR =

∑L−M
l=M |x

(n)
l |2

∑L−M
l=M |x

(n)
l − Es(C

(n)
ǫ,N (l))|2

,

where Es(C
(n)
ǫ,N (l)) is the sample means.

In the numerical applications, the SNRout and SBR will be given in the
decadic logarithm.

3.3. Reduction of the support length search

The estimation of a upper bound of the relative error between Cǫ,N (tl) and
X(tl) will allow one to determine the maximal value of the test functions support
length. Without noise, one gets:

‖ Cǫ,N(tl) −X(tl) ‖
2
2

‖ X(tl) ‖2
2

≤ χ(Aǫ,ϕ1,N)2
‖ Iǫ,ϕ1,x(tl) − Iǫ,ϕ1,xN

(tl) ‖
2
2

‖ Iǫ,ϕ1,x(tl) ‖2
2

(23)

where χ(Aǫ,ϕ1,N) is the condition number of the matrix Aǫ,ϕ1,N . Thus,

‖ X(tl) ‖
2
2

‖ Cǫ,N (tl) −X(tl) ‖2
2

≥
Ẽǫ,ϕ1,N

M2χ(Aǫ,ϕ1,N )2
(24)

where M = sup
t∈[tl−ǫ,tl+ǫ]

|x(N+1)(t)| and

Ẽǫ,ϕ,N =

N
∑

i=0

(∫ tl+ǫ

tl−ǫ

x(s)ϕ(i)(s)ds

)2

N
∑

i=0

(∫ tl+ǫ

tl−ǫ

(s− tl)
N+1

(N + 1)!
ϕ(i)(s)ds

)2 (25)

In order to obtain good numerical results, Ẽǫ,ϕ,N should be maximum. Ẽǫ,ϕ,N

can be put in correspondance with the SBR. Thus, in the same way as previously
and since in the numerical applications only the measured signal y(t) will be
accessible at discrete samples, Eǫ,ϕ,N defined by

Eǫ,ϕ,N = 10 log10

∑N
i=0

∑l+M
k=l−M

∣

∣y(tk)ϕ(i)(tk)
∣

∣

2

∑N
i=0

∑l+M
k=l−M

∣

∣

∣

(tk−tl)N+1

(N+1)! ϕ(i)(tk)
∣

∣

∣

2 (26)

will be used for reducing the search of the support length of the test functions.
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4. Numerical applications

In the previous section, the method for estimating the derivatives from the
distribution theory have been established as well as two inequalities. The first
one depends on ψǫ,ϕ,N (22) and minimizes the error due to the noise. The
second one depends on Eǫ,ϕ,N and has to be maximized. Since ψǫ,ϕ,N does not
depend on the signal, it can be used as a criteria for choosing the best test
function and as it will be seen in our examples, it can give the minimal value of
the test functions support length. Thus, ψǫ,ϕ,N will be analyzed with two test
functions in a first subsection. Then, a simple example is treated for testing
the formulae presented at section 2. In this example, (26) will be analyzed
and a method for reducing the search of the interval length will be deduced
from ψǫ,ϕ,N and Eǫ,ϕ,N . An application in the pharmacokinetic domain will be
then treated. And finally, two examples will be used in order to compare this
derivative method with two classical ones.
Thereafter, all the integrals are evaluated with the trapezoidal method.

4.1. Study of ψǫ,ϕ,N

ψǫ,ϕ,N is an expression depending uniquely on the chosen test function, its
derivatives and N and it minimizes the error due to the noise. Thus, in choos-
ing correctly ǫ, ϕ, N for minimizing ψǫ,ϕ,N , this choice permits to attenuate the
effect of zero-mean noise on the signal.
In this paper, the measured data are supposed to come from an analytic func-
tion. When the derivatives are estimated at tl, bell-shaped functions centered
at tl have been chosen in order to take into account all the informations of the
measured signal in the neighborhood of tl. ψǫ,ϕ,N will be evaluated with the
two following test functions:

ϕ̂(t) =

{

e
ǫ
2

t2−ǫ2 if | t |< ǫ
0 if | t |≥ ǫ,

(27)

and

ϕ̌(t) =

{

cos2(t)e
ǫ
2

t2−ǫ2 if | t |< ǫ
0 if | t |≥ ǫ,

(28)

where [−ǫ, ǫ] is the support of the test function. A translation allows to obtain
an infinitely differentiable function on any interval.
Afterwards, the solid line curve corresponds to ϕ̂ and the dashed line curve to
ϕ̌.

Figure 1 (resp. 2) represents Ψǫ,ϕ,1 (resp. Ψǫ,ϕ,2). First, one can notice that
for attenuating the effect of the noise with the distribution derivative method,
the support length of the chosen test functions must be greater than one. Fur-
thermore, the test function ϕ̌ seems more efficient than ϕ̂ for attenuating the
noise on the signal. These remarks will be confirmed in the following example.
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Figure 2: Ψǫ,ϕ,2
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4.2. Example 1: Study of Eǫ,ϕ,N

In this subsection, a very simple model is chosen:

y(t) = sin(̟0 +̟1t) + n(t), t ∈ [0, 10]

where ̟1 = 0.8 is the angular frequency of the signal, ̟0 = 1 the phase and
n(t) is a perturbation. The latter is supposed to follow the normal law with
mean-zero and the measures are supposed to be done at each step h = 0.05,
thus there are 200 measured points on the interval [0, 10]. The signal y is drawn
at figure 3. For estimating the first and second order derivatives, the systems

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

time in sec

simulated data

Figure 3: Example 1

(14), (16), (18) are used with N = 1 (resp. N = 2).
The derivative estimation method presented at section 2 will be tested with the
two infinitely differentiable test functions ϕ̂ (27) and ϕ̌ (28).

Eǫ,ϕ,N given by (26) provides in our examples a criteria for estimating the
maximal value of the test functions support length. Figure (4) (resp. (5))
represents Eǫ,ϕ,1 (resp. Eǫ,ϕ,2). According to the figures, results on the deriva-
tive estimates are expected to degrade rapidly as soon as the support length is
greater than 3. Furthermore, in this example, for having equivalent results with
ϕ̂ and ϕ̌, the support length of ϕ̂ must be smaller than ϕ̌ when it is greater
than 1.5. In return, the effect of the noise will be less attenuate. In taken again
the remark done at section 4.1, that is the test functions support length must
be greater than one, the support length is chosen between 1 and 3 according to
the value of N . Indeed, when seeking to estimate a highter order derivative, the
support length must be greater for better filter the noise.

For N = 1, the interval length of ϕ̂ and ϕ̌ is equal to 1.5 and their curves
coincide. Thus, only the first derivative evaluated with ϕ̌ is represented at
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Figure 6: First derivative when N = 1
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Figure 7: Second derivative evaluated with ϕ̂ and N = 2
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Figure 8: Second derivative evaluated with ϕ̌ and N = 2
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figure 6. For N = 2, the interval length for the two test functions is equal
to 3. According to figure 5, the results for ϕ̌ should not vary much when the
support length vary near 3 and this is confirmed by numerical tests. The second
derivative evaluated with ϕ̂ is represented at figure 7. Some irregularities can
be noticed for the second derivative unlike the one evaluated with ϕ̌ (figure 8).
For avoiding this phenomenon, the support length of ϕ̂ must be chosen greater.
The results on the SNRout and the SBR are given at table I. The results confirm
that, in this example, the second test function gives better results when N = 2.

SNRout SBR
N = 1 ϕ̂′ 36.6 24

ϕ̌′ 34.1 24.01
N = 2 ϕ̂′ 36.4 19.58

ϕ̂′′ 23.5 18.38
ϕ̌′ 33.9 23.82
ϕ̌′′ 24.3 21.56

One can notice that numerically, the best results are obtained when the order
of the truncature Taylor expansion corresponds to the order of the derivative.
Furthermore, when the order of the derivative increases, the length of the test
function support has to be taken greater.
Afterwards, the function test ϕ̌ is chosen in the numerical estimation of the
derivatives. Besides, the derivatives will be estimated with (14), (16), (18) and
the truncature Taylor expansion will correspond to the desired derivative order.

4.3. Example 2

The following example (29) is now taken from [12]. Since in this article
the estimation of the derivatives near 0 was important for finding the system
parameters, the distribution approach is appropriate. This example has been
chosen owing to the difficulties of estimating the derivatives, specially the second
order derivative whose values are of order 10−3. Even if they seem negligible,
they were important for estimating the system parameters.











ẋ1 = k12(x2 − x1) − kv
x1

1 + x1
, x1(0) = x10,

ẋ2 = k21(x1 − x2), x2(0) = 0
y = x1

(29)

where x ∈ IR2 and y ∈ IR denote the state variables and the output respectively.

The simulated signal y represented at figure 9 is calculated from the true
signal ȳ computed with θ̄ = (0.011, 0.02, 0.1) and with the initial condition
x10 = 0.625. The output y is supposed to follow a random law with ȳ mean
and (σȳ)2 variance. The coefficient σ is computed so that the relative error has
a maximum value of 0.05 with an error probability less than 0.003.
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Figure 9: Example 2

The observations are supposed to be done at discrete time (ti)i=1,...,N on the
interval [0, 117] with a step equal to 0.5.

With the same principle as previously, one can deduce from Eǫ,ϕ̌,1 and Eǫ,ϕ̌,2

that the intervals length of ϕ̌ must be less than 30. The best results are given
for an interval length equal to 24 for the first derivative and 29 for the second
derivative. The first and second derivatives curves are represented at figure 10
and 11 respectively. As it can be noticed, the results are very satisfactory.
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Figure 10: First derivative
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Figure 11: Second derivative

4.4. Comparison with other methods

In this section, two other methods for estimating derivatives are considered
and compared with the distribution method. The first one is presented in [7]
and is based on the B-splines. The second one is proposed by M. Fliess et al.
([5], [9]). As for the distribution method, these two methods do not require any
knowledge of the statistics of measurement uncertainties.

4.4.1. Example 3

This example taken from [7] is based on the following noisy signal:

y(t) = cos(30t) sin(t) + ǫ(t)

and is supposed to be measured for each step δ = 0.01 s. The function ǫ follows
the normal law whose the variance is unknown. The noisy signal is represented
at figure (12). The method proposed in [7] is a regularization method based on
the De Boor criteria, 1978, [2] :

J =
1

n

n
∑

i=1

(yi − ŷi)
2 + λ

∫ t

l

ŷ(m)(s)ds, (30)

which contains a least-squares term symbolizing the connection between the
solution of the optimization problem and the measures and a second smoothing
term measuring the degree of the solution filtering. The equilibrium between the
two distances is controlled by the choice of a parameter λ which will be obtained
from the optimality condition of GCV criterion (Generalized Cross-Validation
criterion) introduced by Craven and Wahba in 1979. De Boor has shown in
1978 that the best results were obtained with a spline function of order 2m.
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Figure 12: Example 3

In [7], the 3-B-splines have been chosen and an explicit algorithm is deduced.
In drawing Eǫ,ϕ̌,1 and Eǫ,ϕ̌,2, the support length of ϕ̌ must be less than 0.3. The
interval on which the integrals are evaluated have a length equal to 0.09 (resp.
0.11) for the first derivative (resp. second derivative) which corresponds to 9
points of integration (resp. 11).

The results on the first and second derivatives are represented at figures 13
and 14 respectively.
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Figure 13: Estimation of the first derivative
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Figure 14: Estimation of the second derivative

4.4.2. Example 4

This example comes from [9]. Its starting point is the truncation of the Tay-
lor series expansion of the signal. Instead of working in the distribution space,
they operate in the operational calculus domain. Then, in order to have an

explicit expression for estimating
dnx(t)

dtn
|t=τ , they use differential elimination

and a series of algebraic manipulations. Back in the time domain, they obtain
its estimate as an integral operator of the noisy observation within a short time
interval [τ, τ + T ].
The quality of the estimation can be significantly improved by admitting a de-
lay. The delay used in the numerical examples will be τ = ζ2T where ζ2 is the

largest root of P
{κ,µ}
2 which is the third Jacobi orthogonal polynomial. The

parameters κ and µ will be given afterwards.

Let y(t) = x(t) +̟(t), 0 ≤ t ≤ 5 (without unit) be the noisy measurement
of the signal

x(t) = tanh(t− 1) + e−t/1.2 sin(6t+ π) with t ∈ [0, 5]

and which is measured for each δ = 0.025. It corresponds to 1000 samples in the
interval [0, 5]. The signal is supposed to be noisy by a zero-mean white gaussian
iid sequence. The variance is adjusted in such a way the signal to noise ratio

in dB, i.e, SNR = 10 log10

(
∑

|yi|
2

∑

|̟i|2

)

, corresponds to SNR = 25 dB (see figure

15).
In [9], the authors test their method with different values of parameters.

Moreover, in order to validate their results, they investigate the bias and vari-
ance in each simulation.

For N = 1, the integrals involved in the formulae are estimated with 60
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Figure 15: Example 4

points for the two methods. Mboup et al. obtained with κ = µ = 0: SBR=23.2dB
and SNRout=26.5. For the distribution method, we obtain: SBR=24.3 and
SNRout=30.3. The derivatives are drawn at figure 16.

For the second derivative, the integrals are calculated with 110 points for
the two methods except in the neighborhood of 0+ for the distribution method.
Indeed, they are evaluated with 80 points. However, the derivatives in the
neighborhood of 0+ are not taken into account for calculating the SBR and the
SNRout. The parameters for the Mboup et al. method are N = 2, κ = 0, µ = 1
and the SBR and SNRout are equal respectively to 18.1dB and 22.6dB. For
the distribution method, we obtain SBR=16.2dB and SNRout=27.2dB. The
obtained figures are drawn at figure 17. In the case of 70 points in the test
functions support lenght, the results are: SBR=20.3 and SNRout=20.2.

5. Conclusion

In this paper, a new derivative method based on the distribution theory and
the test functions is presented. Its first interest comes from the fact that it al-
lows one to report the derivatives on the test functions. Thus, the estimation of
the derivatives is done only from the signal. Then, some explicit expressions re-
quiring any knowledge of the statistics of measurement uncertainty are deduced
and they lead to fast calculus. Finally, the fact that a regular distribution is
a linear integration functional and the use of test functions whose support is
chosen adequately permit to annihilate a part of the structured noises. This
method was applied and compared with two other methods in order to estimate
the derivatives of noisy signals and as it was seen, it gives satisfactory results.
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Figure 16: Estimation of the first derivative
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Figure 17: Estimation of the seconde derivative
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Proofs

Recall that the inverse of an upper triangular Toeplitz invertible matrix is
also an upper triangular Toeplitz matrix.

Proof (Proof of theorem 2) From (13) and (14) the following inequality is ob-
tained:

‖ Cǫ,N(tl) −X(tl) ‖1≤‖ A−1
ǫ,ϕ1,N ‖1‖ Iǫ,ϕ,x(tl) − Iǫ,ϕ,xN

(tl) ‖1 . (31)

The two following lemmae will give a priori bounds on
‖ A−1

ǫ,ϕ1,N ‖1 and ‖ Iǫ,ϕ,x(tl) − Iǫ,ϕ,xN
(tl) ‖1.

Lemma 1. There exist real numbers M and r such that:

‖ Iǫ,ϕ,x(tl) − Iǫ,ϕ,xN
(tl) ‖1≤M

( ǫ

r

)N+1

2ǫ φ(N) (32)

with φ(N) =
∑N

i=0 φi and φi = supt∈[tl−ǫ,tl+ǫ](| ϕ
(i)
1 (t) |).

Proof (Proof of Lemma 1) Since x is analytic, there exists θi,s ∈]tl − ǫ, tl + ǫ[
such that

Iǫ,ϕ,x(tl) − Iǫ,ϕ,xN
(tl) =

(∫ tl+ǫ

tl−ǫ

(s− tl)
N+1

(N + 1)!
x(N+1)(θi,s)ϕ

(i)
1 (s)ds

)

0≤i≤N

.

(33)

Furthermore, the analycity of x on ]0, a[ implies the existence of real numbers
M and r ([11]) such that for all t ∈ [tl − h, tl + h]

| x(N+1)(t) |

(N + 1)!
≤

M

rN+1
, (34)

where [tl − ǫ, tl + ǫ] ⊂ [tl − h, tl + h] ⊂]0, a[. Thus lemma 1 is proved.

Lemma 2. There exist real numbers A0, ..., AN depending only on the test func-
tion ϕ1 such that:

‖ A−1
ǫ,ϕ1,N ‖1≤

i=N
∑

i=0

Aiǫ
i−1 (35)

with for all k ∈ {1, ..., N}:

-A0 =
1

2ϕ1(c)
-0 < A0 = A1 < ... < AN and

-Ak =
A0

k!
+

A1

(k − 1)!
+ ..+

Ak−1

1!
.
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Proof (Proof of Lemma 2) The knowledge of the first line or the last column of
the matrix A−1

ǫ,ϕ1,N gives all the entries of this matrix. Putting,

A−1
ǫ,ϕ1,N =











β0 β1 . . . βN

0 β0 . . . βN−1

...
. . . . . .

...
0 . . . . . . β0











, (36)

The last column of this matrix is solution of the system:















β0 = 1
α0

β1 = −α1

α0
β0

..........
βN = −αN

α0
β0 −

αN−1

α0
β1 − ...− α1

α0
βN−1

(37)

Because α0 =

∫ tl+ǫ

tl−ǫ

ϕ1(t)dt and ϕ1 is a continuous function there exists c ∈

]tl − ǫ, tl + ǫ[ such that α0 = 2ǫϕ1(c) and because ϕ1 is a positive function
1

i!
|

∫ tl+ǫ

tl−ǫ

(t− tl)
iϕ1(t)dt |≤

ǫi

i!
α0

This leads to:

|
αi

α0
|≤

ǫi

i!
(38)

By using (38):







| β0 |=
1

α0
=

1

2ǫϕ1(c)
| β1 |≤ ǫ | β0 |

(39)

Putting A0 = 1
2ϕ1(c)

and A1 = A0

1! , this gives

{

| β0 |=
A0

ǫ
| β1 |≤ A1ǫ

0
(40)

with A1

A0
= 1.

Given any k ∈ {1, ...N − 1} and suppose that for all i ∈ {1, .., k − 1},

| βi |≤ Aiǫ
i−1 with Ai such that

Ai

A0
is a rational number. According to (38),

one gets:

| βk | ≤
ǫk

k!

A0

ǫ
+ ...+

ǫi

i!
Ak−iǫ

k−i−1 + ...+
ǫ

1!
Ak−1ǫ

k−2, (41)

that is,
| βk |≤ Akǫ

k−1
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with Ak =
A0

k!
+

A1

(k − 1)!
+ ..+

Ak−1

1!
.

Notice that
Ai

A0
is a rational number because

A1

A0
, ...,

Ak−1

A0
are rational numbers.

Furthermore, A0 =
1

2ϕ1(c)
> 0 and by simple recurrence Ak > 0 for all k ∈ IN.

Since Ak =
Ak−1

1!
+ ...+

A1

(k − 1)!
+
A0

k!
, one gets Ak > Ak−1 for all k ∈ IN∗−{1}.

Thus, the proof of the lemma 2 is done.

Finally, one can deduce the following lemma.

Lemma 3.

‖ Cǫ,N(tl) −X(tl) ‖1≤ 2

(

i=N
∑

i=0

Aiǫ
i

)

M
( ǫ

r

)N+1

φ(N). (42)

For proving the theorem 2, it is sufficient to prove that the series

i=+∞
∑

i=0

Aiz
i is

convergent when ǫ is near to zero. This is done by the following lemma.

Lemma 4. The power series

i=+∞
∑

i=0

Aiz
i converges for | z |< R with R >

1

e− 1
.

Proof (Proof of Lemma 4) By using the lemma 2, one gets

Ak+1

Ak
=
Ak

Ak

1

1!
+ ...+

A1

Ak

1

(k − 1)!
+
A0

Ak

1

k!

and since
Ai

Ak
≤ 1 for all i ∈ {0, 1, .., k − 1} and k ∈ IN∗,

Ak+1

Ak
≤

1

1!
+ ...+

1

(k − 1)!
+

1

k!
≤ e− 1 for all k ∈ IN∗.

Hence lim sup
k→+∞

Ak+1

Ak
≤ e− 1 and the power series

+∞
∑

i=0

Aiz
i has a radius of con-

vergence R ≥
1

e− 1
. Finally by using lemmae 3 and 4, the proof of theorem 2

is done.

Proof (Proof of Proposition 1) By using (38), one gets

‖ Aǫ,ϕ1,N ‖1≤

i=N
∑

i=0

| αi |≤ α0

i=N
∑

i=0

ǫi

i!
≤ α0e

ǫ. (43)

And since there exists c ∈]tl − ǫ, tl + ǫ[ such that α0 = 2ǫϕ1(c), the following
inequalities are obtained:

α0 ≤‖ Aǫ,ϕ1,N ‖1≤ 2ϕ1(c)ǫ e
ǫ = eǫ α0 (44)
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Besides,

1

α0
≤‖ A−1

ǫ,ϕ1,N ‖1≤

i=N
∑

i=0

Aiǫ
i−1 =

1

α0
+

i=N
∑

i=1

Aiǫ
i−1 (45)

and by using (44) and (45), one gets

1 ≤ χ(Aǫ,ϕ1,N) ≤ eǫ + 2ϕ1(c)e
ǫ

+∞
∑

i=1

Aiǫ
i (46)

By using lemma 4, the series

+∞
∑

i=0

Aiǫ
i is convergent when ǫ is near zero, then

lim
ǫ→0

+∞
∑

i=1

Aiǫ
i = 0 and finally lim

ǫ→0
2ϕ1(c)e

ǫ
+∞
∑

i=1

Aiǫ
i = 0
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