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Abstract

This paper is concerned by the analysis of nonlinear controlled or uncontrolled dynamical model
identifiability. The proposed approach is based on the construction of an input-output ideal. The aim
is to develop an algorithm which gives identifiability results from this approach. Differential algebra
theory allows realization of such a project. In order to state the algorithm, new results of differential
algebra must be proved. Then the implementation is done in a symbolic computing language.

Introduction

In this paper, the following model is introduced in order to analyze nonlinear controlled or uncontrolled
dynamical model identifiability.
The initial conditions are ignored:

Σθ
{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

(1)

In this model, x(t, θ) ∈ IRn, y(t, θ) ∈ IRm, u(t) ∈ IR denote the state variables, the measured outputs, and
the input respectively. The parameter vector θ is in Ωq, a subset of IRq (or Cq). The single-input case
is taken into account for notational simplicity; all the results can be generalized readily. What follows is
developed in the case of controlled models and can be applied easily if models are uncontrolled (u = 0).
The functions f(x, θ), g(x, θ) and h(x, θ) are rational and may depend on a known constant vector de-
noted by a.
In the 90’s Diop and Fliess [7], Fliess and Glad [9], Ljung and Glad [14] and Ollivier [16] proposed a
new approach for identifiability, based on differential algebra. Following this idea, we have elaborated an
algorithm for analyzing identifiability, which requires some knowledge of differential algebra theory.

Now, let us introduce some useful notations (see also Appendix B).

• A differential ring (respectively field) is a ring (respectively field) endowed with a set of derivations
which commute pairwise.

• Let V be a set of differential indeterminates and ∆ be a set of derivations which commute pairwise.
We denote by Θ the commutative monoid generated by ∆ and by ΘV the set of all the derivatives
φv, φ ∈ Θ, v ∈ V . Given a differential field K, K{V } is the differential ring of the differential
polynomials built over the alphabet ΘV with coefficients in K.

• The differential field generated by K and Ṽ is denoted by K<Ṽ>, Ṽ ⊂ V and, by definition, it is
equal to K(ΘṼ ) (i.e. the smallest field which contains K and ΘṼ ).

Here, the field of constants is IR(a) (i.e. the field generated by IR and a) if the functions f(x, θ), g(x, θ)
and h(x, θ) depend on a, otherwise it is IR. Then the differential field K is defined as the field of constants
equipped with the derivation d

dt .
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Indeed, the model Σθ is considered as a set of variables {u, x, y, θ} linked by a differential ideal. More
precisely it can be rewritten as a differential polynomial model completed with θ̇i = 0, i = 1, . . . , q. The
resulting system Γ can be described by the following polynomial equations and inequations.

Γ


p(ẋ, x, u, θ) = 0,
q(x, y, θ) = 0,

θ̇i = 0, i = 1, . . . , q
r(x, y, θ) 6= 0.

(2)

Thus, the functions xj , j = 1 . . . n are differentially algebraic over K< u, θ>, and so are the functions
yi, i = 1 . . .m. The input u is assumed differentially transcendent. In this context, a solution of Γ is a
quadruplet of functions (x, y, u, θ) satisfying the system.

These models are very general. Thus, the solutions of the system may be non-unique and some solutions
might be of a degenerate character. Therefore, the concept of non-degenerate solutions [14] have to be
considered. In the following the definitions introduced in [7] are adopted:

Definition 0.1 A model is algebraically identifiable if and only if any parameter θi is algebraic over
K<u, y>.

This definition is strongly connected to the nonlinear observability.

Definition 0.2

A model is rationally identifiable if and only if any parameter θi belongs to the field K<u, y>.

Ljung and Glad [14] and Ollivier [16] exploited the concept of characteristic set. The characteristic
set of the differential ideal, defined by dynamical model equations, is a finite set of polynomials which
summarises the whole information contained in the differential ideal (see Appendix C). Ljung and Glad
perform a characteristic set which leads to the expression of each parameter as a rational function of u,
y and their derivatives. Ljung and Glad’s approach often leads to cumbersome computation.
Ollivier derives the identifiability from the computation of the characteristic set corresponding to the
input-output ideal of differential algebraic relations between u, y and θ. The identifiability is obtained by
analyzing the characteristic set. This last analysis is done by Audoly et al ([1]) by using Groebner basis
calculation. They have chosen numerical random points rather than symbolic points to enlarge the class
of models testable by their algorithm.

In the proposed method of this paper, the notion of characteristic presentation is considered instead of
characteristic set because it supplies an effective way for testing the equality of some ideals (see Appendix
C for more details) The identifiability is obtained after analyzing the characteristic presentation using
symbolic points rather than numerical random points and the suggested method allows the analysis of a
class of models that is as large as in [1]. The resulting algorithm is only based on differential algebra. It
is implemented in Maple, a symbolic computation language, and uses the package Diffalg especially.

The paper is organized as follows. First, section 1 proves some results necessary to the development of the
identifiability algorithm. Section 2 gives results of identifiability in the most general framework. Section 3
considers K(θ) instead of K, which allows a significant simplification of the algorithm while giving general
identifiability results. Then section 4 describes the algorithm and its features. Finally, the algorithm is
used for analyzing identifiability of some nonlinear academic, pharmacokinetic and physiological models
and its efficiency is pointed out.
In our approach, differential algebra allows the validation of the proposed algorithm. If the reader is
unfamiliar with such notions [13], some useful definitions and propositions can be found in Appendices
A, B and C.

1 Characteristic presentation

The differential ideal generated by the equations of Γ is considered in the differential field K<x,y,u, θ>.
Its radical is denoted by I. From the ranking:

[θ] ≺ [y, u] ≺ [x] (3)
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that eliminates state variables and from the equations of Γ, the characteristic presentations associated to
I are computed.

Proposition 1.1 If I, endowed with the ranking (3), admits a characteristic presentation, this presen-
tation has the following form:

{θ̇1, . . . , θ̇q, P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x), . . . , Qn(y, u, θ, x)} (4)

where the leader of the polynomial Pk is yk for k = 1, . . . ,m, and where the leader of the polynomial
Qj is xj for j = 1, . . . , n.

Proof - We propose to the reader unfamiliar with differential algebra to consult Appendices B and C,
necessary to the proof understanding.
Let C be a characteristic presentation of I.

• In a first time, we prove that the differential polynomials θ̇i, i = 1, . . . , q are in C:

θi has a minimal ranking in (3) so only differential polynomials which have θ̇i, or a lower ranked
variable as leader, are in C. Such a polynomial is written θi+W , with W ∈ K<θ1, ...., θi−1>. If such
a polynomial exists, it lies in the ideal I and, by definition, it will be rewritten as zero modulo the
rewriting rules of every characteristic presentation of this ideal, corresponding to different rankings.
If the ranking [θ] ≺ [u] ≺ [x] ≺ [y] is considered, the set of the polynomials involved in Γ consists in
the characteristic presentation of I (only implicit models are considered). However, no polynomial
of Γ admits θi as leader. Therefore, if W 6= 0, the rewritting rules cannot rewrite as zero the
differential polynomial θi+W . Finally, θi+W does not lie in I. Therefore, for i = 1, . . . , q, θ̇i ∈ C.

• In the same way, one can prove that C does not contain any polynomial of the form F (u, θ).

• Now we show that there exists a unique polynomial, in C, of the form Pi(y, u, θ) whose yi is the
leading variable, for all i = 1, . . . ,m:

Since yi is differentially algebraic over K<u, θ>, for all i = 1, ...,m, there exist some polynomials of
the form Pi(y, u, θ) in I. Let us suppose that yi is not the leading variable of any element of C and let
us consider the polynomials of C which have a leader lower than Pi(y, u, θ). B is the set containing
such elements. As it is a subset of a differentially triangular set, B is also a differentially triangular
set. A differentially triangular set lower than B is created by placing Pi(y, u, θ), or its partial
remainder w.r.t the polynomials Pk(y, u, θ)(1 ≤ k < i), as the last polynomial in B. The other
elements of C are partially reduced w.r.t this added polynomial in order to obtain a differentially
triangular set lower than C. But C is minimal by hypothesis. This contradiction implies that yi
is the leading variable of a polynomial of C for all i = 1, ..,m. As in ordinary differential algebra,
the polynomials of a triangular set have different principal variables, so there exists exactly the
quantity m of such polynomials.

• In the same way, the existence of exactly n polynomials of the form Q(y, u, θ, x) can be proved.2

In general, I should be written as the intersection of regular differential ideals, each one admitting a char-
acteristic presentation (see (34) in Appendix D). However in the following, I, endowed with the ranking
(3), is assumed to be a regular ideal presented by a characteristic presentation C. This assumption is
not so restrictive. Indeed in the opposite case, the next proposition must be applied to each system
corresponding to each component of the decomposition of the ideal.

Now let us introduce a few notations:

• C(θ) is the characteristic presentation C evaluated in the particular value of parameter θ.

• Iθ is the radical of the differential ideal generated by Γ for the particular value of parameter θ and
Cθ is the characteristic presentation associated with the ranking [y, u] ≺ [x].

In order to avoid the evaluation of C(θ) at each value of parameters, the following result gives a sufficient
condition for the equality Cθ = C(θ).
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Proposition 1.2 Let C = {c1, . . . , cm+n, θ̇1, . . . , θ̇q} be the characteristic presentation of the differential
ideal I endowed with the ranking (3).

If, for every θ ∈ Ωq and for every i = 1, . . . ,m+n, the initial of ci(θ) ∈ C(θ) is not equal to zero and
none of its factors (6= 1) is a divisor of all the other coefficients of ci(θ) in K[N ], then Cθ = C(θ) for all
θ ∈ Ωq.

Proof - In this proposition the set of the leaders L of the elements of C is considered, N denotes the other
derivatives occuring in C and K[N ] is the polynomial ring built over N with coefficients in K.
This proof uses the results and the notations of Appendix C.
Let us notice that C is strongly normalized. Thus, each initial of C is in K[N ], and θi cannot be the
leader of any polynomial in C (see [15]). C(θ) is a characteristic set since it satisfies the two following
points:

• C(θ) is an autoreduced set since the evaluation of the polynomials ci remains the leader (θ has
been assumed not to cancel initials). Moreover, such an evaluation does not change the degree of
elements of L appearing in the polynomials ci.

• Suppose that there exists a polynomial p reduced w.r.t C(θ). Such a polynomial is reduced w.r.t C
and, since C is a characteristic set of I, p = 0.

Next, the evaluation in θ does not change the leaders of any polynomial of C. Since C is strongly nor-
malized, C(θ) is also strongly normalized. The elements of C(θ) are primitive on K[N ] because, by
assumption, the evaluated coefficients have no common factor.
In this way, C(θ) is a characteristic presentation of Iθ. Therefore the uniqueness of the characteristic
presentation of an ideal, endowed with a ranking, implies Cθ = C(θ). 2

2 Input-output ideal and identifiability results

Now let us introduce Iioθ , the ideal obtained after eliminating state variables. Thus the set Cioθ =
Cθ ∩ K(θ){u, y} is a characteristic presentation of the ideal Iioθ , called the input-output characteristic
presentation. As a consequence of Proposition 1.1, Iioθ contains the polynomials Pi, i = 1 . . .m.
The polynomials Pi, i = 1 . . .m, of Cioθ can be seen as polynomials in y, u and their derivatives with
coefficients in K(θ). In the following, those polynomials will be written as

Pi(y, u, θ) = mi
0(y, u) +

ni∑
k=1

pik(θ)mi
k(y, u)

where mi
0 is not equal to zero. Let us denote by di for i = 1 . . .m, the Wronskians of functions

mi
k(y, u), k = 1 . . . ni. The non-degenerate solution, evocated in the introduction, is defined by:

Definition 2.1 A non-degenerate solution (x, y, u, θ) of Γ is a solution such that
(i) no separant or initial of Pi (i = 1 . . .m) and Qj (j = 1 . . . n) in (4) is zero,
(ii) no Wronskian di (i = 1 . . .m) is zero.

2.1 Rational identifiability and input-output characteristic presentation

In this section, we assume Cθ = C(θ) for all θ.

Proposition 2.1 Let θ and θ̄ two parameter vectors and Cioθ and Cio
θ̄

the corresponding input-output
characteristic presentations. The corresponding solutions of Γ are assumed to be respectively (x, y, u, θ)
and (x̄, y, u, θ̄) and non-degenerate solutions. Then

∀θ̄ ∈ Ωq Cioθ = Cioθ̄ ⇒ (pik(θ) = pik(θ̄), k = 1 . . . ni, i = 1 . . .m).

Proof - It is clear that Cioθ = Cio
θ̄

is equivalent to Pi(y, u, θ) = Pi(y, u, θ̄), i = 1 . . .m for all y and u (the
set of polynomials Pi(y, u, θ) is a triangular set). Since (y, u) satisfy (ii) (definition 2.1), the previous
equalities imply the equalities of the coefficients of the functions mi

k(y, u), k = 1 . . . ni,. 2
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Remark 2.1 Moreover, under the assumptions of the previous proposition, it is easy to prove that
pik(θ) for k = 1 . . . ni, i = 1 . . .m are in the field K < u, y >. Therefore, they will be rewritten as:
pik(θ) = gik(y, u) (k = 1 . . . ni, i = 1 . . .m).

2.2 Exhaustive summary and identifiability results

The exhaustive summary [20] of Γ is given by the vector of coefficients in θ:

{pik(θ), k = 1 . . . ni, i = 1 . . .m}.

In order to deduce identifiability results from the exhaustive summary, the following system is considered:

pik(θ) = pik(θ̄) , k = 1, . . . , ni , i = 1, . . . ,m . (5)

It can be rewritten as a differential polynomial system:

Su


p(θ, θ̄) = 0,
˙̄θi = 0, i = 1, . . . , q,

θ̇i = 0, i = 1, . . . , q.

(6)

Let us denote by S, the radical of the differential ideal generated Su, which is considered in K< θ,θ̄>
such that all particular cases are obtained.

Proposition 2.2 If S, endowed with the ranking [θ] ≺ [θ̄], admits a characteristic presentation C, C has
the following form:

A1(θ1), A1(θ1, θ2), . . . , Aq(θ1, . . . , θq), B1(θ, θ̄1), B2(θ, θ̄1, θ̄2), . . . , Bq(θ, θ̄1, . . . , θ̄q) (7)

where the leader of the polynomial Ak is θk or θ̇k for k = 1, . . . , q , and where the leader of the polynomial

Bj is θ̄j or ˙̄θj for j = 1, . . . , q.

Proof - The functions θ̇i are in S and θi has a minimal ranking in (3) so differential polynomials which
have θ̇i, or a lower ranked variable as leader, are in C. As C is a differentially triangular set, the leaders of
C are different and its elements are reduced pairwise. As a consequence, in the characteristic presentation
C, there exists a number of q polynomials whose leading variable is θi for all i = 1, . . . , q. In the same
way, the existence of Bj (j = 1, . . . , q ) can be shown. 2

In general, S should be written as the intersection of regular differential ideals which admit a charac-
teristic presentation (see (34) in Appendix D): a general component and particular components of the
decomposition of the ideal. The particular components correspond to particular values of (θ, θ̄) which
are such that some separants or initials of (7) of the general component are equal to zero.

Proposition 2.3 Let us assume that all separants and initials of polynomials in C are non-zero. Then
three different situations can arise in (7):

(i) All Bi are of order 0 and degree 1 in θ̄i, and moreover Bi = θ̄i − θi.

(ii) All Bi are of order 0 in θ̄i, and some Bj is of degree > 1 in θ̄j.

(iii) For some i one has Bi = ˙̄θi.

Proof - This proposition is obvious. Let us only prove that Bi = θ̄i − θi in the case (i). If each Bi is of
degree one in θ̄i, then it must be independant of the other θ̄j for (7) to be autoreduced (see appendices
B and C). Thus each Bi can be rewritten as Pi(θ)θ̄i − Qi(θ), where Pi and Qi are polynomials. .Then,
the assumption of the proposition implies (6) to have one and oonly one solution. On the other hand
theta = θ̄ is a solution of (6) and the polynomials Bi are primitive over K[θ] (see appendix C and [3]),
which leads to Bi = θ̄i − θi. 2

It leads to the following identifiability theorem.
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Theorem 2.1 Let us assume that all separants and initials of polynomials in C are non-zero and that
there exists a non-degenerate solution of Γ. If the characteristic presentation (7) has the form of
- case (i) above, then the model is rationally identifiable.
- case (ii) above, then the model is algebraically identifiable.
- case (iii) above, then the model is not algebraically identifiable.

Proof - As seen in Remark 2.1, the elements of the exhaustive summary can be rewritten as:

pik(θ) = gik(y, u) , k = 1 . . . ni, i = 1 . . .m .

Moreover gik(y, u) is a differential rational function in y and u which is constant for k = 1 . . . ni, i = 1 . . .m,
and will be only denoted by gik for k = 1 . . . ni, i = 1 . . .m. Thus the system (5) can be rewritten:

nik(θ̄) = dik(θ̄)gik, k = 1, . . . ni, i = 1 . . . , m,
˙̄θi = 0, i = 1, . . . , q,

ġik = 0, k = 1, . . . ni, i = 1, . . . , m,

(8)

where nik(θ̄) and dik(θ̄) are polynomials in θ̄. Then, it is easy to prove as previously that the differential
ideal generated by (8) with the ranking

[g] ≺ [θ̄], (g = {gik, k = 1 . . . ni, i = 1 . . .m}) (9)

admits a general characteristic presentation which contains the polynomials:

{S1(g, θ̄1), S2(g, θ̄1, θ̄2), . . . , Sq(g, θ̄1, . . . , θ̄q)}. (10)

The system (8) admits the same number of solutions as the system (6). Thus the polynomials Si will
be in the same situation as the polynomials Bi with regard to the order and the degree in θ̄i. Since the
(gik, k = 1 . . . ni, i = 1 . . .m) are differential rational functions in y and u the results of the theorem 2.1
are deduced.2

In the previous theorem, the most general results are obtained in taking the characteristic presentation
of the general component. But all particular components can be analyzed by the same way, which leads
to identifiability results of models corresponding to particular parameter values.

3 A simplified analysis with K(θ)

When the particular cases are not interesting for the user, the components of θ can be assumed transcen-
dent on K. The system Σθ can be rewritten:

Γθ

 p(ẋ, x, u, θ) = 0,
q(x, y, θ) = 0,
r(x, y, θ) 6= 0,

(11)

and the differential ideal generated by the equations of Γθ can be considered in the differential field
K(θ)< x,y,u>, where K(θ) corresponds to the field of constants IR(a, θ) or IR(θ). In this context, a
solution of Γθ is a triplet of functions (x, y, u) satisfying all the model equations. The advantage of the
choice of K(θ) is relative to the number and complexity of reductions which are consequently simplified,
even if some particular cases are lost.
In this case J denotes the radical of the differential ideal generated by the equations of Γθ with the
ranking [y, u] ≺ [x]. In the same way as in Proposition 1.1 if J admits a characteristic presentation, it
can be shown that this presentation has the following form:

{P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x), . . . , Qn(y, u, θ, x)} (12)

where the leader of the polynomial Pk is yk for k = 1, . . . ,m, and where the leader of the polynomial Qj
is xj for j = 1, . . . , n. In the following J , endowed with the above ranking, is assumed to be a regular
ideal presented by a characteristic presentation. In the opposite case, only the most general component
will be considered. The input-output ideal and its characteristic presentation are defined the way it is
done in the first section.
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Definition 3.1 A non-degenerate solution (x, y, u) of Γθ is a solution such that
(i) no separant or initial of Pi (i = 1 . . .m) and Qj (j = 1 . . . n) in (12) is equal to zero,
(ii) no Wronskian di (i = 1 . . .m) is zero.

Furthermore, the ideals I (defined in section 1) and J admit characteristic presentations which contain
the same polynomials

{P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x), . . . , Qn(y, u, θ, x)}. (13)

Therefore Proposition 2.1 is also true.

The analysis of the exhaustive summary can be also simplified because each component θi is assumed to
be transcendent on IR. The following differential polynomial system is considered:

Sθ

{
p(θ, θ̄) = 0,
˙̄θi = 0, i = 1, . . . , q.

(14)

The differential ideal generated by Sθ can be considered in the differential field K(θ)<θ̄> to reduce the
number and complexity of reductions. Let us denote St the radical of the differential ideal generated by
the equations of the system Sθ. With the ranking

[θ̄1] ≺ [θ̄2] ≺ [. . .] ≺ [θ̄q] (15)

a characteristic presentation of St is computed and it is easy to prove that this presentation has the
following form:

{B1(θ, θ̄1), B2(θ, θ̄1, θ̄2), . . . , Bq(θ, θ̄1, . . . , θ̄q)} (16)

where the leader of the polynomial Bj is θ̄j or ˙̄θj for j = 1, . . . , q.
Here the general components of S and St contain the same polynomials (16).
Finally by this way Proposition 2.3 and Theorem 2.1 are also true if K(θ) is considered instead of K.

4 Algorithm

Now let us present the algorithm. It will be referred to it as Algo. Let us remark steps 3 and 7 of Algo1
are based on Rosenfeld-Groebner algorithm which has been realized by F. Boulier in Maple VII [2]. The
algorithm is implemented in Maple VII and runs on any Pentium PC.

Data: f, g and h.

Step 1 The software rewrites the original system Σθ as the system Γθ defined by (2).

Step 2 The differential field K (or K(θ)) is given and a standard ranking is implicitly introduced. It is
possible to select a most suitable ranking by a careful analysis of the system.

Step 3 Rosenfeld-Grobner algorithm computes input-output characteristic presentations. If the differ-
ential field is K(θ) the general input-output characteristic presentation is only computed and the
algorithm goes to step 5, otherwise an input-output characteristic presentation is chosen by the
user.

Step 4 The values of θ for which the polynomials Pi are not primitive over K[N ] (i.e the assumptions
of proposition 1.2 are not satisfied) are computed.

Step 5 It verifies that the Wronskians di are not in the differential ideal generated by the equations of
Γ (or Γθ).

Step 6 It saves the coefficients pik(θ) in a list called the ”exhaustive summary”. This summary is sim-
plified in order to extract its smallest generator system in terms of degree, number of monomials,...
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Step 7 The exhaustive summary is analyzed by Rosenfeld-Grobner algorithm: it is a purely differential
and algebraic step. Then the results of identifiability are provided.
In this step the considered equations are symmetrical in θ and θ̄, which leads to a simplified reduction
procedure. A priori, the analysis of the exhaustive summary leads to equations of the following
type:

pik(θ) = gik for k = 1 . . . ni, i = 1 . . .m, (17)

which corresponds to q + n1 + ...+ nm indeterminates and K is the differential field necessarily.
Our strategy consists in rewriting the system such that it is symmetrical in θ and θ̄. In this case
there are 2q indeterminates (often 2q ≤ q + n1 + ... + nm). Moreover it is possible to chose K(θ)
as differential field as in (14), which gives q indeterminates only. Consequently the number of
indeterminates is significantly reduced.

Finally, let us note that if the algorithm does not successfully terminate because the computation of the
input-output characteristic presentation is too complex or the analysis of the exhaustive summary fails,
the algorithm can be reapplied by using a different ranking between the variables in steps 2 or (and) 7.

5 Examples

In this section, two examples are presented in order to illustrate the algorithm described above. The
second one is a pharmaco-kinetic model . In each case, the algorithm gives an exhaustive description of
all the possible cases.

5.1 An academic example

The following academic example was treated without control in [6]: ẋ1 = θ1x
2
1 + θ2x1x2 + u

ẋ2 = θ3x
2
1 + θ4x1x2

y = x1

(18)

Here are the different steps of Algo:

• Step 1: The software rewrites the system as :
ẋ1 = θ1x

2
1 + θ2x1x2 + u

ẋ2 = θ3x
2
1 + θ4x1x2

y = x1

θ̇ = 0

(19)

• Step 2: The field of constants IR is chosen and the standard ranking is implicitly given.

• Step 3: Algo returns three cases:

i) The general case (Ωq = {(θ1, θ2, θ3, θ4) ∈ IR4, θ2 6= 0}) is given by the following characteristic
presentation:

{x1 − y, x2θ2y
2 + y(−ẏ + y2θ1 + u), yÿ + uy − yu̇− ẏ2 + uy2θ4 − (θ1 + θ4)ẏy2 − (θ2θ3 − θ1θ4)y4, θ̇1, θ̇2, θ̇3, θ̇4}.

(20)

ii) θ2 = 0 (then Ωq = {(θ1, θ3, θ4) ∈ IR3}) is a particular case corresponding to the characteristic
presentation: {

ẋ2 − θ3y
2 − θ4yx2, x1 − y,−u+ ẏ − y2θ1, θ̇1, θ̇3, θ̇4, θ2

}
. (21)

iii) y = 0 .
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The characteristic presentation 20 corresponding to the case i) is chosen.

• Step 4: It verifies that the hypothesis of Proposition 1.2 is valid for all θ ∈ Ωq.

• Step 5: It verifies that the Wronskian of {y2ẏ, y4,−uy2} is not equal to zero.

• Step 6: The exhaustive summary given by the software is {θ1, θ4, θ1θ4 − θ2θ3}.

• Step 7: The analysis of this exhaustive summary leads to{
θ̄1 − θ1, θ̄2θ̄3 − θ2θ3,

˙̄θ3, θ̄4 − θ4

}
. (22)

Thus θ1, θ4 and θ2θ3 are in the field K<u,y>. But the analysis of this exhaustive summary proves
that the model is not algebraically identifiable.

Now the characteristic presentation 21 corresponding to the case ii) is chosen.

• Step 4: It verifies that the hypothesis of Proposition 1.2 is valid for all θ ∈ Ωq.

• Step 5: It gives y2 for the Wronskian which is not equal to zero.

• Step 6-7: The exhaustive summary is {θ1}. Its analysis leads to{
θ̄1 − θ1,

˙̄θ4,
˙̄θ3,

˙̄θ4

}
. (23)

and the model is not algebraically identifiable.

Finally the characteristic presentation iii) corresponds to a degenerate and unrealistic solution.
The computation time of all these steps on a Pentium 4 with 2.2MHz is 1s.

5.2 A real pharmacokinetic model

Now a real pharmacokinetic model [5] is considered. It is an uncontrolled model and it was solved by pen
and paper in [11]: 

ẋ1 = α1(x2 − x1)− Vmx1

kc + x1
ẋ2 = α2(x1 − x2)
y = x1

(24)

The unknown vector parameter is θ = {α1, α2, kc, Vm}.

Here are the different steps of Algo:

• Step 1: The software rewrites the system as the following polynomial differential system:
ẋ1(kc + x1) = α1(x2 − x1)(kc + x1)− (Vmx1)
ẋ2 = α2(x1 − x2)
y = x1

kc + x1 6= 0

(25)

• Step 2: The field of constants IR is chosen and the standard ranking is implicitly introduced.

• Step 3: Algo returns two cases:

i) The general case Ωq = {θ ∈ IR4, α1 6= 0} is given by the following characteristic presentation:
x1 − y,
−α1kcx2 − α1x2y + ykc + α1y + Vmy,
2kcÿy + k2

c ÿ + (α1 + α2)ẏy2 + 2kc(α1 + α2)ẏy + ((α1 + α2)kc + Vm)kcẏ
+α2Vmy

2 + α2Vmkcy − ÿy2,

α̇1, α̇2, V̇m, k̇c.

(26)
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ii) α1 = 0 is a particular case (Ωq = {θ ∈ IR4, α1 = 0}) given by the following characteristic
presentation:

{ẋ2 − α2y + α2x2, x1 − y, ẏ(kc + y) + Vmy, α1, α̇2, V̇m, k̇c}. (27)

The characteristic presentation (26) corresponding to the case i) is chosen.

• Step 4: The hypothesis of Proposition 1.2 is not valid if Vmkc = 0. Indeed, with notations of
Appendix C, the set L is reduced to L = {ÿ} and the input-output characteristic presentation can
be rewritten as

{(y + kc)
2ÿ + T, α̇1, α̇2, V̇m, k̇c}

where (y + kc)
2 and T belong to IR[θ, y, ẏ]. If Vm = 0, (y + kc)

2 is a divisor of T and if kc=0, y2 is
a divisor of T . Consequently, the set Ωq becomes Ωq = {θ ∈ IR4, α1 = 0, Vmkc 6= 0}.

• Step 5: It verifies that the Wronskian of{
ÿy, ÿ, ẏy2, ẏy, ẏ, y2, y

}
(28)

is not in the differential ideal generated by (25).

• Step 6: The exhaustive summary, given by the software, is:{
kcα2Vm, k

2
c , kc, kc(α1 + α2), α2Vm, α1 + α2, −kc(kcα2 + kcα1 + Vm)

}
(29)

• Step 7: The analysis of this exhaustive summary leads to:{
Vm − V̄m, kc − k̄c, α1 − ᾱ1, α2 − ᾱ2

}
(30)

which proves that the model is rationally identifiable.

Now the characteristic presentation 27 corresponding to the case ii) is chosen.

• Step 4: The hypothesis of Proposition 1.2 is also not valid if Vmkc = 0.

• Step 5: It verifies that the Wronskian of {ẏ, y} is not in the differential ideal generated by (25).

• Step 6-7: The exhaustive summary is {Vm, kc} and its analysis leads to{
V̄m − Vm, k̄c − kc, ˙̄α1, ˙̄α2

}
. (31)

The model is not algebraically identifiable.

The computation time of all these steps (except step 5) on a Pentium 4 with 2.2MHz is 1.1s.

5.3 Comparison

The following example discussed in [20] and [1] is considered in order to compare the efficiency of Algo
with another similar algorithm proposed in [1]. The model equations are:

ẋ1 = −(k01 + k21)x1 + k12x2 + k13x1x3

ẋ2 = k21x1 − (k02 + k12 + k32 + k42)x2 − k23x3x2 + k24x4

ẋ3 = k32x2 − [k03 + k13x1 + k23x2 − k43x4]x3 + k34x4 + u
ẋ4 = k42x2 + k43x3x4 − (k24 + k34)x4

y1 = x1

y2 = x2

(32)

The unknown parameters are:

θ = {k01, k21, k12, k13, k02, k32, k42, k23, k24, k03, k43, k34}.

Algo returns the characteristic presentation corresponding to the general case and an exhaustive sum-
mary of 39 equations. The analysis of this summary is purely differential and algebraic. The set IR(θ) is
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chosen as field of constants in [1] as in Algo in order to compute the characteristic set and presentation.
In [1] the existence of a non degenerate solution is assumed (which corresponds to the non-running of
step 5 of Algo).
Algo leads to rational identifiability of the model and in [1] a similar result is obtained.
But in [1] a numerical random point θ = {4, 6, 7, 3, 4, 6, 1, 13, 8, 12, 18, 4} is chosen for constructing and
analyzing the exhaustive summary, and the Groebner basis is calculated by using the Buchberger algo-
rithm ([4]).
Algo has been implemented on a Pentium 3 with 1Mhz and on a Pentium 4 with 2.2Mhz. The compu-
tation time for this model is 25.1s (Pentium 3) and 3s (Pentium 4).
In [1] the algorithm has been implemented on a Pentium 3 with 0.55Mhz and the computation time was
509.48s.
The discrimination between computation times on Pentium 3 is specially due to the analysis of the
exhaustive summary which is more efficient with Algo (see step7).

6 Conclusion

In this paper, we have shown how to analyze algorithmically the algebraic and rational identifiability of
nonlinear controlled or uncontrolled dynamical models from an approach based on differential algebra.
The input-output approach does not make use of initial conditions but can be applied also to systems
given in implicit form systems. The recent notion of characteristic presentation of a differential polynomial
model is used. It summarizes all the information contained in the differential ideal into a finite number of
polynomials and it supplies an effective way for testing the equality of some differential ideals. In order
to apply this notion we have proved some interesting and necessary theoretical results. Characteristic
presentations of input-output and exhaustive summary ideals allow the elaboration of Algo such that all
the steps of the identifiability analysis are computed by software. Moreover, Algo may do an exhaustive
analysis of particular cases and has been compared to an another algorithm.
Lastly, the authors put the software at the disposal of anyone concerned by this kind of problem.
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(2000).
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Appendix A. Commutative algebra

Let K be a field, X be an ordered alphabet and K[X] be a polynomial ring. Let p be a non constant
polynomial in K[X]. The leader of p is the greatest indeterminate x of X which occurs in p. We denote
by d the highest power of this variable in p. The separant sp of p is the partial derivative of p with respect
to the leader x while the initial ip is the coefficient of xd.

Given A ⊂ K[X]\K, HA denotes the set of initials and separants of its elements. A is said to be
triangular if its elements have distinct leaders. A polynomial p is said to be strongly normalized with
respect to (w.r.t) A if no leader of A occurs in the initial of p. The set A is said to be strongly normalized
if every p in A is strongly normalized w.r.t A\{p}.

Let p and q be two polynomials over k[X]\K. p is lower than q or that p is lower ranked than q:

• if the leader of p is lower than the leader of q,

• or if, p and q have the same leader u and the degree d of u in p is lower than the degree of u in q.

The notation p ' q means that two polynomials have the same leader and the same degree in this variable.
If R is a unique factorization domain and p ∈ R[X] then p can be rewritten as p = a0t0 + . . .+ aktk,

where each ti is a power product of elements of X and each ai is in R. The content of p over R is the
highest common factor of its coefficients, i.e. cont(p) = gcd(a0, . . . , ak). The primitive part of p over R is

the polynomial pp(p) =
p

cont(p)
. A polynomial is said to be primitive if it is equal to its primitive part.

Let I be an ideal over K[X]. If S = {s1, . . . , st} is a finite family of elements of K[X] then the
saturation of I by S, noted I :S∞, is the ideal:

I :S∞ = {p ∈ K[X] | ∃ (n1, . . . , nt) ∈ INt , sn1
1 . . . snt

t p ∈ I}. (33)
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Appendix B. Differential algebra: reduction

With the notations of the introduction, a ranking R is a well-ordering over the indeterminates and their
derivatives with the following properties for every u, v ∈ ΘV and δ ∈ ∆:

1. u ≺ δu,

2. u ≺ v ⇒ δu ≺ δv.

Rankings such as {u ≺ v ⇒ δu ≺ φv} (for every δ ∈ ∆ and φ ∈ ∆, and every v, u ∈ ΘV ) are said to be
elimination rankings and are written [u] ≺ [v].

With a given ranking, the alphabet ΘV is ordered and the leader, the separant, the initial... well
defined.

Let v be the leader of p and d be the degree of p in this variable. A differential polynomial q is said
to be partially reduced w.r.t p if no proper derivative of v occurs in q. It is said to be reduced w.r.t p if it
is partially reduced w.r.t p and deg(q, v) ≤ d.

Let a set A ⊂ K{V }\K. A is said differentially triangular if it is a triangular set and if its elements
are pairwise partially reduced. Moreover, A is said to be autoreduced if its elements are pairwise reduced.
Let us notice that every autoreduced set is differentially triangular.

Let A = A1, A2, . . . , Ar et B = B1, B2, . . . , Bs be two autoreduced sets, A is lower than B if one of
the two following properties is true:

1. Aj ' Bj et Ai < Bi, 1 ≤ j < i ≤ min(r, s),

2. Aj ' Bj et r > s, 1 ≤ j ≤ s.

Appendix C. Differential algebra: characteristic presentation

A differential ideal of K{V } is an ideal of K{V } which is stable under derivation. Let J be a differential
ideal of K{V } and R be a ranking.
A set D ⊂ J is a characteristic set if D is autoreduced and J contains no nonzero polynomial reduced
w.r.t D.

Given a set C ⊂ J , we now introduce the following notations:

• L denotes the set of the leaders of the elements of C,

• N denotes the other derivatives occuring in C,

• [C] is the differential ideal generated by the elements of C.

A set C ⊂ J is a characteristic presentation of [C] :H∞C (see (33)) if and only if C is a characteristic set
of [C] :H∞C and C is a strongly normalized autoreduced set of K[L,N ] such that the elements of C are
primitive over K[N ] (see [3]).

This notion supplies an effective way for testing the equality of two regular ideals: such ideals are
equal if and only if, once endowed with the same ranking, their characteristic presentation contains the
same polynomials (the characteristic presentations are said equal).

Appendix D. Symbolic Computation: Rosenfeld-Groebner algorithm [2]

Differential algebra gives some algorithmic methods to solve questions appearing in the analysis of
partial or ordinary differential equations: how can some variables be eliminated? do some solutions exist?

Given a differential system Σ written as polynomial equations (pk = 0, k = 1, . . . , N) in the differential
indeterminates V , these differential polynomials generate a differential ideal (denoted by I), i.e. a set
closed under sum, product and derivation. Moreover, the radical (denoted by

√
I) of I is the ideal of all

the differential polynomials, one power of which lies in I. The existence of system Σ solutions is given
by the following theorem:
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Theorem 6.1 [2] Let Σ be a system of differential polynomials over K{V } where K is a differential field
of characteristic zero and I the differential ideal generated by Σ. A differential polynomial q vanishes on
every solution of Σ, in every differential field extension of K, if and only if q lies in

√
I.

This gives an easy way to test if a differential polynomial q lies in a differential ideal. Indeed, if
√
I

admits a characteristic presentation denoted by C, q ∈
√
I if and only if q is reduced w.r.t C.

Moreover, an algorithm implemented within a package in symbolic computation permits the treatment
of this question [2]. Technically, from a finite set of differential polynomials and a given ranking, Rosenfeld-
Groebner algorithm computes a list (understand ”intersection”) of characteristic presentations C1, . . . , Cj
of regular differential ideals I1, . . . , Ij (Ik = [Ck] :H∞Ck , k = 1, . . . , j) so that

√
I = I1 ∩ I2 ∩ . . . ∩ Ij . (34)

Informally, the different ideals Ik correspond to different classes of solutions. In particular, the
algorithm separates the solutions of Σ which do not depend on the same number of arbitrary constants.
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