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Abstract

This paper considers two different methods in the analysis of nonlinear controlled dynamical
system identifiability. The corresponding identifiability definitions are not equivalent. Moreover one
is based on the construction of an input-output ideal and the other on the similarity transformation
theorem. Our aim is to develop algorithms which give identifiability results from both approaches.
Differential algebra theory allows realization of such a project. In order to state these algorithms,
new results of differential algebra must be proved. Then the implementation of these algorithms is
done in a symbolic computation language.
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Introduction

In this paper, two types of models are introduced in order to analyze nonlinear controlled dynamical
system identifiability.
Firstly, the initial conditions are ignored:

Σθ
{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

(1)

Secondly, the initial conditions are known:

Σθx0(θ)

{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ), x(0, θ) = x0(θ),
y(t, θ) = h(x(t, θ), θ).

(2)

In both cases, x(t, θ) ∈ IRn, y(t, θ) ∈ IRm, u(t) ∈ IR denote the state variables, the measured outputs
and the input respectively. The parameter vector θ is in Ωq, an open subset of IRq. The single-input case
is taken into account for notational simplicity; all the results can be generalized readily.

The functions f(x, θ), g(x, θ) and h(x, θ) are real and rational and may depend on a real constant
vector denoted by a. In this case the set K corresponds to IR(a) (i.e. the field generated by IR and a),
otherwise K corresponds to IR.

In the 90’s Diop and Fliess [6], Fliess and Glad [8], Ljung and Glad [13] and Ollivier [15] proposed a
new approach of identifiability, based on differential algebra. The initial conditions are ignored as they
are in the model Σθ. Thus, the solutions of model equations may be non-unique and some solutions might
be of a degenerate character. Therefore, the concept of non-degenerate solutions x̄(θ, u) and ȳ(θ, u) has
to be considered and the definition introduced in [13] is adopted here:

Definition 0.1 The model Σθ is globally identifiable at θ ∈ Ωq if for any θ̃ ∈ Ωq, θ̃ 6= θ, there exists a

control u such that ȳ(θ, u) 6= ∅ and ȳ(θ, u) ∩ ȳ(θ̃, u) = ∅. It is locally identifiable at θ ∈ Ωq if there exists
an open neighborhood W of θ such that Σθ is globally identifiable at θ with Ωq restricted to W .

Now, let us introduce some useful notations.

1



• A differential ring (respectively field) is a ring (respectively field) endowed with a set of derivations
which commute pairwise.

• Let V be a set of differential indeterminates and ∆ be a set of derivations which commute pairwise.
We denote by Θ the commutative monoid generated by ∆ and by ΘV the set of all the derivatives
φv, φ ∈ Θ, v ∈ V . Given a field K, K{V } is the differential ring of the differential polynomials built
over the alphabet ΘV with coefficients in K.

• The differential field generated by K and Ṽ is denoted by K<Ṽ>, Ṽ ⊂ V and, by definition, it is
equal to K(ΘṼ ) (i.e. the smallest field which contains K and ΘṼ ).

Since the functions f, g and h are rational functions, the identifiability techniques based on differential
algebra are well appropriate. Indeed, the controlled system is considered as a set of variables (indeter-
minates) {u, x, y, θ} linked by a differential ideal. Ljung and Glad [13] and Ollivier [15] exploited the
concept of characteristic set. The characteristic set of the differential ideal, defined by dynamical system
equations, is a finite set of polynomials which summarizes the whole information contained in the differ-
ential ideal. Ljung and Glad perform a characteristic set which leads to the expression of each parameter
as a rational function of u, y and their derivatives. Thus, they have shown the following results:

• A system is locally identifiable if and only if any parameter θi is differentially algebraic over K<
u, y>. It is the definition of the algebraic identifiability of Diop and Fliess [6], which is strongly
connected to the nonlinear observability.

• A system is globally identifiable if any parameter θi belongs to the field K<u, y>. It is the definition
of the rational identifiability of Diop and Fliess [6].

Ljung and Glad’s approach often leads to cumbersome computation.
Ollivier derives the identifiability from the computation of the characteristic set corresponding to the

input-output ideal of differential algebraic relations between u, y and θ. The identifiability is obtained
after analyzing this characteristic set.

In the first proposed method of this paper, the notion of characteristic presentation is considered
instead of characteristic set because it supplies an effective way for testing the equality of some ideals.
The resulting algorithm is implemented in Maple, a symbolic computation language, and uses the
package Diffalg especially.

On the other hand, it is noticeable that Definition 0.1 is well in line with the usual analytic definition
of global (local) identifiability valid only for the system Σθx0(θ) (i.e. the initial conditions are known after

selecting θ ∈ Ωq):

Definition 0.2 The model Σθx0(θ) is globally identifiable at θ ∈ Ωq if for any θ̃ ∈ Ωq, θ̃ 6= θ there exists

a control u, such that Σθx0(θ) and Σθ̃
x0(θ̃)

yield different outputs. It is locally identifiable at θ ∈ Ωq if there

exists an open neighborhood W of θ such that Σθx0(θ) is globally identifiable at θ with Ωq restricted to W .

In most models there exist atypical points in Ωq where the model is unidentifiable. Definitions 0.1 and
0.2 should be generically extended so that Σθx0(θ) (or Σθ) is said to be globally structurally identifiable if
it is globally identifiable at all θ ∈ Ωq except at the points of a subset of zero measure in Ωq.

Now, we introduce a second identifiability approach which is a nonlinear counterpart of the similarity
transformation approach [19] and is based on the local state isomorphism theorem [7], [16]. It leads to
the solution of a system of partial differential equations (PDE). This is an efficient method for controlled
models.

In theory, one has to solve this partial differential system but an alternative is proposed here. Indeed
the originality of our process is to solve the identifiability problem without solving (in the analytic sense)
this partial differential system. To do that, a link between the integrability constraints of the partial
differential system and the identifiability properties of the original system is established. It leads to an
algorithm which is implemented in Maple VII.
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The paper is organized as follows. First, Section 1 mentions some results necessary for the development
of the first identifiability algorithm. Then Section 2 shows a necessary and sufficient identifiability
condition which justifies the second algorithm. Lastly, two examples compare the performances of both
algorithms.

1 Input-output ideal approach

1.1 Description

The system Σθ can be rewritten as a differential polynomial system that will be completed with θ̇i =
0, i = 1, . . . , q. The resulting system Γ can be described by the following polynomial equations and
inequations:

Γ


p(ẋ, x, u, θ) = 0,
q(x, y, θ) = 0,
r(x, y, θ) 6= 0,

θ̇i = 0, i = 1, . . . , q.

(3)

Thus, the functions xj , j = 1 . . . n are to be differentially algebraic over K< u, θ>, and so are the
functions yi, i = 1 . . .m. The input u is assumed to be differentially transcendent. In this context, a
solution of Γ is a quadruplet of functions (x, y, u, θ) satisfying all the model equations.
I is the radical of the differential ideal generated by the polynomials of Γ. From the ranking

[θ] ≺ [y, u] ≺ [x] (4)

that eliminates state variables and from the equations of Γ, characteristic presentations corresponding to
I are computed.

The proofs of the two following propositions, given in [14] are very technical and not constructive
relatively to algorithm elaboration.

Proposition 1.1 If I,endowed with the ranking (4), admits a characteristic presentation, this presenta-
tion has the following form:

θ̇1, . . . , θ̇q, P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x), . . . , Qn(y, u, θ, x), (5)

where the leader of the polynomial Pk is yk for k = 1, . . . ,m , and where the leader of the polynomial
Qj is xj for j = 1, . . . , n.

In general, I should be written as the intersection of regular differential ideals, each one admitting
a characteristic presentation. However in the following, I, endowed with the ranking (4), is assumed to
be a regular ideal presented by a characteristic presentation C. This assumption is not so restrictive.
Indeed in the opposite case, the next proposition must be applied to each system corresponding to each
component of the decomposition of the ideal.

Now let us introduce a few notations:

• L is the set of the leaders of the elements of C, N denotes the other derivatives occurring in C and
K[N ] is the polynomial ring built over N with coefficients in K.

• C(θ) is the characteristic presentation C evaluated in the particular value of parameter θ.

• Iθ is the radical of the differential ideal generated by Γ for the particular value of parameter θ and
Cθ is the characteristic presentation associated with the ranking [y, u] ≺ [x].

To avoid the evaluation of C(θ) at each value of parameters, the following result gives a sufficient
condition for the equality Cθ = C(θ).

Proposition 1.2 Let C = {c1, . . . , cm+n, θ̇1, . . . , θ̇q} be the characteristic presentation of the differential
ideal I endowed with the ranking (4).

If, for every θ ∈ Ωq and for every i = 1, . . . ,m+n, the initial of ci(θ) ∈ C(θ) is not equal to zero and
none of its factors ( 6= 1) is a divisor of all the other coefficients of ci(θ) ∈ K[N ], then Cθ = C(θ) for all
θ ∈ Ωq.
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Now let us introduce Iioθ , the ideal obtained after eliminating state variables. Thus the set Cioθ =
Cθ ∩ K(θ){u, y} is a characteristic presentation of the ideal Iioθ , called the input-output characteristic
presentation. As a consequence of Proposition 1.1, Iioθ contains the polynomials Pi, i = 1 . . .m.

The next proposition is valid under the assumption that there exists some generic solution of Σθ.
A solution is called generic if it does not verify any equation out of the ideal’s equations [15] (as a
consequence it is also a non-degenerate solution). The genericity assumption is difficult to test but strong
accessibility from every initial condition in a dense open subset of IRn implies this property. Moreover,
strong accessibility is obtained by the strong accessibility rank criterion (SARC) [18] at every initial
condition of this dense open subset.

Proposition 1.3 Let us assume that there exists some generic solution of Σθ. Then Σθ is globally iden-
tifiable at θ, in the sense of Definition 0.1, if and only if for every θ̄ ∈ Ωq (θ̄ 6= θ), the two corresponding
input-output characteristic presentations (Cioθ and Cio

θ̄
) are distinct.

Remark 1.1 The previous proposition can be formulated in the equivalent form: if there exists a generic
solution of Σθ, then Σθ is globally identifiable at θ, if and only if

∀θ̄ ∈ Ωq Cioθ = Cioθ̄ ⇒ θ = θ̄.

The proof of the previous proposition is like the proof of Theorem 6 in Ollivier [15]. The only difference
concerns the characteristic set or presentation.

1.2 Algorithm

The polynomials Pi, i = 1 . . .m, of Cioθ can be seen as polynomials in y and their derivatives with coeffi-
cients in K(θ). In the following, those polynomials will be written as

Pi(y, u) = m0(y, u) +

ni∑
k=1

pik(θ)mi
k(y, u).

Now let us present the algorithm that we have implemented in Maple VII. It will be referred to it as
Algo1. Let us remark Steps 4 and 7 of Algo1 are based on Rosenfeld-Groebner algorithm which has
been realized by F. Boulier in Maple VII [2]..

Data: f, g and h.

Step 1 The software rewrites the original system Σθ as the differential polynomial system Γ defined by
(3).

Step 2 The existence of a generic solution is validated by checking the SARC.

Step 3 The field of constants K is given and a standard ranking is implicitly introduced. It is possible
to select a most suitable ranking by a careful analysis of the system.

Step 4 Rosenfeld-Grobner algorithm computes all the input-output characteristic presentations (it is
possible to compute only the general input-output characteristic presentation). Then an input-
output characteristic presentation is chosen by the user.

Step 5 The values of θ for which the polynomials Pi are not primitive over K[N ] (i.e the assumptions
of proposition 1.2 are not satisfied) are computed.

Step 6 This step saves the coefficients pik(θ) in a list called the ”exhaustive summary”. It is simplified
in order to extract its smallest generator system in terms of degree, number of monomials,...

Step 7 The exhaustive summary is analyzed by Rosenfeld-Grobner algorithm; the following system:{
pik(θ) = pik(θ̄), k = 1, . . . ni, i = 1 . . . , m
˙̄θi = 0, i = 1, . . . , q

(6)
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is solved in the differential field K(θ)< θ̄>with the standard ranking (or a most suitable ranking
given by the user):

[θ̄1] ≺ [θ̄2] ≺ [. . .] ≺ [θ̄q] (7)

In order to simplify the computation, the pure transcendental field extension K(θ) is considered as
a field of coefficients; it leads to a structural identifiability.
At the end of this step results of identifiability are provided.

Finally, note that if Algo1 does not successfully terminate because the computation of the input-
output characteristic presentation is too complex or the analysis of the exhaustive summary fails, it can
be reapplied by using a different ranking in steps 4 or (and) 7.
Algo1 has been implemented in MAPLE VII and runs on any Pentium PC.

2 Similarity transformation approach

In this section, the following assumptions are assumed: The functions f(., θ) and h(., θ) are real, rational
and analytic for every θ ∈ Up on M (a connected open subset of IRn such that x(t, θ) ∈ M for every
θ ∈ Up and every t ∈ [0, T ]); f(x0(θ), θ) 6= 0 for every θ ∈ Up; the input vector u is in U [0, T ], the set
of bounded and measurable functions defined on the time interval [0, T ]; the initial state x0(θ) is well
defined after selecting θ.
Finally, the system Σθx0(θ) is assumed to be locally reduced at x0(θ) for all θ ∈ Ωq.

2.1 Description

The parameter identifiability can be obtained by using the local state isomorphism theorem which leads
to the following result [17]:

Theorem 2.1 The model Σθx0(θ) is assumed to be locally reduced at x0(θ) for all θ ∈ Ωq. Consider the

parameter values θ and θ̄ in Ωq, an open neighborhood V of x0(θ) in M and any analytical mapping
λ : V → IRn defined in V ⊂ IRn such that

(i) Rank
∂λ

∂x
(x) = n, ∀x ∈ V (ii) λ(x0(θ)) = x0(θ̄)

(iii) (PDE)



(1) f(λ(x), θ̄) =
∂λ

∂x
(x) f(x, θ)

(2) g(λ(x), θ̄) =
∂λ

∂x
(x) g(x, θ)

(3) h(λ(x), θ̄) = h(x, θ)

for all x ∈ V .

Then there exists t1, 0 < t1 < T , such that Σθx0(θ) is globally identifiable at θ, in the sense of Definition

0.2 and with u ∈ U [0, t1] , if and only if (i),(ii),(iii) ⇒ θ = θ̄.

Vajda et al. [17] treated some examples but did not give a systematic procedure to apply this theorem,
which is stated in analytic terms. A new algorithm for analyzing identifiability, based on this theorem
and the differential algebra theory, is presented here.

On the other hand, this approach is not valid for uncontrolled nonlinear dynamical systems as it has
been proved in [11]. In this case, an efficient approach [5] gives identifiability results of some particular
systems.

2.2 Symbolic computation procedure

Considering the derivation
∂

∂x
the system (PDE) can be rewritten as a differential polynomial system

that will be completed with
∂θ̄i
∂xj

= 0, i = 1, . . . , q, j = 1, . . . , n. (8)
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The resulting system can be described by the following polynomial equations and inequations:

(pde)



p(x, x̄, ∂x̄∂x1
, . . . , ∂x̄∂xn

, θ, θ̄) = 0

q(x, x̄, θ, θ̄) = 0,

r(x, x̄, ∂x̄∂x1
, . . . , ∂x̄∂xn

, θ, θ̄) 6= 0

∂θ̄i
∂xj

= 0, i = 1, . . . , q, j = 1, . . . , n.

(9)

In this sub-section, I will denote the radical of the ideal, generated by the equations of the system (9).
It can be considered in the differential ring K(θ){x, x̄, θ̄}. Once again, the pure transcendental field
extension K(θ) is considered as a field of coefficients, which leads to a structural identifiability.

From the ranking [θ̄] ≺ [x̄], a characteristic presentation of I is computed.
Rosenfeld-Groebner algorithm cannot solve, in the analytic sense, system (PDE) stated in theorem

(2.1). It computes integrability constraints by giving all the classes of solutions of the system. The
relations between integrability constraints and parameter (un)identifiability are given in the propositions
below.

Proposition 2.1 If the radical of I, endowed with the ranking [θ̄] ≺ [x̄], admits a characteristic presen-
tation, this characteristic presentation has the following form:

P1,1(θ̄1), . . . , P1,q1(θ̄1), P2,1(θ̄1, θ̄2), . . . , P2,q2(θ̄1, θ̄2), . . . , Pq,1(θ̄1, . . . , θ̄q),

Pq,2(θ̄1, . . . , θ̄q), . . . , Pq,qq (θ̄1, . . . , θ̄q), Q1,1(θ̄, x̄1), . . . , Q1,n1
(θ̄, x̄1),

Q2,1(θ̄, x̄1, x̄2) . . . , Q2,n2
(θ̄, x̄1, x̄2), . . . , Qn,1(θ̄, x̄) . . . , Qn,nn

(θ̄, x̄), (10)

where qj ≤ n for j = 1, . . . , q, nk ≤ n for k = 1, . . . , n, the leader of the polynomial Pi,j is a derivative of
θ̄i and the leader of the polynomial Qk,l is a derivative of x̄k.

Proof - In the characteristic presentation C, the polynomials
∂θ̄i
∂xj

(1 ≤ i ≤ q, 1 ≤ j ≤ n) or lower ranked

polynomials are found. Such polynomials admit
∂θ̄i
∂xj

or θ̄i as leader. As C is a differentially triangular

set, the leaders of C are different and its elements are reduced pairewise. As a consequence, in the
characteristic presentation C, there exists a maximum number of n polynomials whose leading variable is
θ̄i for all i = 1, . . . , q.
In the same way, the existence of Qj,nj

for j = 1, . . . , n can be shown. 2

Admittedly it is impossible to know a priori the number of polynomials of the characteristic presentation.

Proposition 2.2 The system Σθx0(θ) is assumed to be locally reduced at x0(θ) for all θ ∈ Ωq. The model

is globally structurally identifiable in the sense of Definition 0.2 if I endowed with the ranking [θ̄] ≺ [x̄],
admits a unique characteristic presentation which, moreover, has the following form{

x̄1 − x1, . . . , x̄n − xn, θ̄1 − θ1, . . . , θ̄q − θq
}
. (11)

Proof - The assumption about the local reduction of Σθx0(θ) and the solution of the system (PDE) allow
the application of Theorem 2.1. 2

Theorem 2.1 considers the analytic definition of identifiability, given in Definition 0.2. Thus, when
the identifiability is not obtained directly (i.e. by ignoring initial conditions), a last calculation remains
to be done: the evaluation of the equations of the characteristic presentation in x0(θ̄). It selects the
characteristic presentation valid for the particular initial conditions x0(θ) and it examines if those initial
conditions imply the unicity of the characteristic presentation.
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Proposition 2.3 The system Σθx0(θ) is assumed to be locally reduced at x0(θ) for all θ ∈ Ωq. The model is
globally structurally identifiable in the sense of the definition 0.2 if and only if I endowed with the ranking
[θ̄] ≺ [x̄], admits a unique characteristic presentation C such that C = 0, complete with λ(x0(θ)) = x0(θ̄),
implies {x = x̄, θ = θ̄}.

Proof - Rosenfeld-Groebner algorithm returns k characteristic presentations C1, . . . , Ck of regular differ-
ential ideals I1, . . . , Ik. These ideals correspond to different solution classes of the system (9). Now,
since the model is globally identifiable, system (9) complete with λ(x0(θ)) = x0(θ̄) (θ ∈ Ωq, θ̄ ∈ Ωq)
has a unique solution {x = x̄, θ = θ̄}. Therefore, one and only one characteristic presentation C among
{C1, . . . , Ck} is compatible with λ(x0(θ)) = x0(θ̄) (θ ∈ Ωq, θ̄ ∈ Ωq). Thus, the system C = 0 complete
with λ(x0(θ)) = x0(θ̄) will give the same solution as system (PDE) complete with λ(x0(θ)) = x0(θ̄), i.e.
{x = x̄, θ = θ̄}.
The reciprocal is obvious. 2

2.3 Algorithm

The ensuing algorithm (denoted by Algo2) requires only the data of the functions f , g, h and x0(θ). It
is implemented in Maple VII. It is decomposed in three steps.

Step 1 This step tests the local reduction of the model Σθx0(θ) at x0(θ) for all θ ∈ Ωq by using the

observability rank criterion (ORC) and the controllability rank criterion (CRC) [16][9].

Step 2 This step corresponds to the differential algebraic treatment of system (PDE).
Firstly, it rewrites the system (PDE) as the system (9).
Secondly, the field of constants K(θ) and the ranking: [θ̄] ≺ [x̄] are implicitly introduced.
Thirdly, integrability constraints are computed: Rosenfeld-Grobner algorithm computes the input-
output characteristic presentations. If the software returns a unique characteristic presentation
which, has the following form: {x̄ − x, θ̄ − θ}, then the model is structurally globally identifiable
and the algorithm stops. Else the step 3 is considered.

Step 3 The equations of each characteristic presentation are evaluated in x0(θ̄) . It selects character-
istic presentations valid for the particular initial conditions x0(θ) and it examines if those initial
conditions imply θ̄ = θ . Consequently identifiability results are given.

3 Examples

In this section, two examples are presented in order to illustrate both algorithms described above. The
first one is academic and shows the importance of initial conditions in some controlled systems. The
second one is a pharmacokinetic model for which identifiability does not require the knowledge of initial
conditions. In this case, the first algorithm gives an exhaustive description of all the possible cases.

3.1 An academic example

The following academic example was treated without control in [5]: ẋ1 = θ1x
2
1 + θ2x1x2 + u

ẋ2 = θ3x
2
1 + θ4x1x2

y = x1

(12)

Here are the different steps of Algo1:

• Step 1: The software rewrites the system as :
ẋ1 = θ1x

2
1 + θ2x1x2 + u

ẋ2 = θ3x
2
1 + θ4x1x2

y = x1

θ̇ = 0

(13)
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• Step 2: The SARC is satisfied if θ3θ4 6= 0

• Step 3: The field of constants IR is chosen and the standard ranking is implicitly introduced.

• Step 4: Algo1 returns three cases:

i) The general case Ωq = {(θ1, θ2, θ3, θ4) ∈ IR4, θ1θ2θ4 6= 0} is given by the input-output charac-
teristic presentation:{

yÿ − yu̇+ y2θ1ẏ + y4θ2θ3 − uẏ − uy2θ4 + ÿy2 − y4θ1θ4, θ̇1, θ̇2, θ̇3, θ̇4

}
. (14)

ii) θ2 = 0 is a particular case (Ωq = {(θ1, θ2, θ3, θ4) ∈ IR4, θ2 = 0, θ1θ4 6= 0}) corresponding to
the input-output characteristic presentation:

{−u+ ẏ − y2θ1, θ̇1, θ̇3, θ̇4, θ2}. (15)

iii) y = 0 .

The general characteristic presentation i) is chosen.

• Step 5: the hypothesis of Proposition 1.2 is checked to be valid for all θ ∈ Ωq.

• Step 6: The exhaustive summary given by the software is ( θ1, θ4, θ1θ4 − θ2θ3).

• Step 7: The analysis of this exhaustive summary leads to{
θ̄1 − θ1, θ̄2θ̄3 − θ2θ3,

˙̄θ3, θ̄4 − θ4

}
. (16)

which proves that the model is not globally identifiable at θ ∈ Ωq.

Now the particular characteristic presentation ii) is chosen.

• Step 5: the hypothesis of Proposition 1.2 is checked to be valid for all θ ∈ Ωq.

• Step 6-7: The exhaustive summary is: (θ1) and its analysis leads to{
θ̄1 − θ1,

˙̄θ4,
˙̄θ3,

˙̄θ4

}
. (17)

The model is not globally identifiable at θ ∈ Ωq.

Finally the characteristic presentation iii) corresponds to a non generic solution

Algo2 is applied to the same example with the initial conditions x1(0) = x2(0) = 0.

• Step 1: the model is locally reduced at (0, 0) for every θ ∈ {θ ∈ IR4, θ2θ3 6= 0}.

• Step 2: It sets up the (PDE) system in the following form:
θ̄1x̄1

2 + θ̄2x̄1x̄2 = λ1
1(θ1x

2
1 + θ2x1x2) + λ1

2(θ3x
2
1 + θ4x1x2)

θ̄3x̄1
2 + θ̄4x̄1x̄2 = λ2

1(θ1x
2
1 + θ2x1x2) + λ2

2(θ3x
2
1 + θ4x1x2)

1 = λ1
1

0 = λ2
1

x̄1 = x1

(18)

where x̄ = λ(x) and λij =
∂λi
∂xj

.

• Step 3: It returns only one characteristic presentation:

C =

{
x̄1 − x1, θ3x̄2 − x2θ̄3,

∂θ̄3

∂x1
,
∂θ̄3

∂x2
, θ1 − θ̄1, θ2θ3 − θ̄2θ̄3, θ4 − θ̄4

}
. (19)
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The characteristic presentation is not enough to decide on the identifiability. The initial conditions
have to be taken into account. Thus, according to Proposition 2.3, the equality λ(0, 0) = (0, 0) is added to
C = 0. No extra information is deduced; consequently the model is not structurally globally identifiable.

Then Algo2 is applied to the same example with the initial conditions x1(0) = 0, x2(0) = 1.

• Step 1: the model is locally reduced at (0, 1) for every θ ∈ {θ ∈ IR4, θ2θ4 6= 0}.

• Step 2: It is unchanged.

• Step 3: Equations C = 0 complete with λ(0, 1) = (0, 1), lead to

θ3 = θ̄3, θ2 = θ̄2, θ4 = θ̄4, θ1 = θ̄1.

Therefore the model is structurally globally identifiable.

In this case, the structural global identifiability of the model is due to the initial conditions. This is a
particular interest of Algo2: it takes the initial conditions into account easily while Algo1 does not do
it. Moreover it is possible to complete Algo1 if initial conditions are known by evaluating the equations
of the characteristic presentation at t = 0 and examining if they imply the unicity of parameters. It
is the method chosen in [1] with characteristic presentation replaced by characteristic set. In the case
x0 = (0, 1) the evaluation of the characteristic presentation, given by Algo1 in x0, does not give any
answers. Therefore Algo2 is more efficient for this particular case.

3.2 A real pharmacokinetic model

Now a real pharmacokinetic model [4] is considered. It was solved by pen and paper in [10]:
ẋ1 = α1(x2 − x1)− Vmx1

kc + x1
+ u(t)

ẋ2 = α2(x1 − x2)
y = x1

(20)

The unknown vector parameter is θ = {α1, α2, kc, Vm}. Here are the different steps of Algo1:

• Step 1: The software rewrites the system as the following polynomial differential system:
ẋ1(kc + x1) = α1(x2 − x1)(kc + x1)− (Vmx1) + u(t)(kc + x1)
ẋ2 = α2(x1 − x2)
y = x1

kc + x1 6= 0

(21)

• Step 2: The SARC is satisfied if α2 6= 0.

• Step 3: The field of constants IR is chosen and the standard ranking is implicitly introduced.

• Step 4: Algo1 returns two cases:

i) The general case Ωq = {θ ∈ IR4, α1 6= 0} is given by the input-output characteristic presenta-
tion:

{2kcÿy + k2
c ÿ + (α1 + α2)ẏy2 + 2kc(α1 + α2)ẏy + ((α1 + α2)kc + Vm)kcẏ + α2Vmy

2 + α2Vmkcy

−uα2k
2
c − α2uy

2 − 2kcyu̇− u̇y2 − k2
c u̇− 2α2kcuy − ÿy2, α̇1, α̇2, ˙Vm, k̇c}.

(22)

ii) α1 = 0 is a particular case (Ωq = {θ ∈ IR4, α1 = 0}) presented by the input-output character-
istic presentation: {

ẏ(kc + y) + Vmy − ukc − uy, α1, α̇2, ˙Vm, k̇c}. (23)

The general characteristic presentation is chosen.
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• Step 5: The hypothesis of Proposition 1.2 is not valid if Vmkc = 0. Indeed, the set L is reduced to
L = {ÿ} and the input-output characteristic presentation can be rewritten as

{(y + kc)
2ÿ + T, α̇1, α̇2, ˙Vm, k̇c}

where (y + kc)
2 and T belong to IR[N ]. If Vm = 0, (y + kc)

2 is a divisor of T and if kc=0, y2 is a
divisor of T . Consequently, the set Ωq becomes Ωq = {θ ∈ IR4, α1 = 0, Vmkc 6= 0}.

• Step 6: The exhaustive summary, given by the software, is :(
−k2

cα2, kcα2Vm, −k2
c , kcα2, kc,−α2, −kc, kc(α1 + α2), α1 + α2, −kc(kcα2 + kcα1 + Vm)

)
(24)

• Step 7: The analysis of this exhaustive summary leads to :{
Vm − V̄m, kc − k̄c, α1 − ᾱ1, α2 − ᾱ2

}
(25)

which proves that the model is structurally globally identifiable.

Now the particular characteristic presentation ii) is chosen.

• Step 5: The hypothesis of Proposition 1.2 is not valid if Vmkc = 0. Therefore Ωq = {θ ∈ IR4, α1 =
0, Vmkc 6= 0}.

• Step 6-7: The exhaustive summary is: (Vm, kc,−kc) and its analysis leads to{
V̄m − Vm, k̄c − kc, ˙̄α1, ˙̄α2

}
. (26)

The model is not globally identifiable at θ ∈ Ωq .

Algo2 is applied to the same example with initial conditions x1(0) = 0, x2(0) = 0.

• Step 1: The algorithm shows that the model is not locally reduced at (0, 0) if α1α2 = 0.

• Step 2: After writing the (PDE) system, the algorithm gives a unique characteristic presentation
containing:

{x̄1 − x1, x̄1 − x1, Vm − V̄m, kc − k̄c, α1 − ᾱ1, α2 − ᾱ2}.

Therefore the model is structurally globally identifiable. The algoritm stops: step 3 is useless.
The cases Vm = 0 and kc = 0 do not appear explicitly since the pure transcendental field extension
K(θ) is considered as the field of coefficients in all the algorithm.

Therefore, results of Algo2 agree with results of Algo1 but the analysis is less exhaustive.

3.3 Comparison of algorithms

Algo1 is well adapted for an exhaustive analysis of the global identifiability of a model independently on
initial conditions. On the other hand, as shown in the case of the academic example, Algo2 is efficient if
initial conditions are a significant part of the model.
It is possible to compare algorithm efficiency relatively to the computation time on a pentium 4 with 2.2
MHz.

• example (12) - 1s (Algo1), 1.2s (Algo2),

• example (20) - 1.1s (Algo1), 1.3s (Algo2)

Then Algo1 is slightly faster than Algo2. Moreover some examples, not given here, show that Algo2 may
fail more easily when the dimension of the model is too large.
The authors put the software at the disposal of anyone concerned by this kind of problem.
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4 Conclusion

In this paper, we have shown how to analyze algorithmically the identifiability of nonlinear controlled
dynamical models from two different approaches.

The input-output approach does not make use of initial conditions but can be applied also to sys-
tems given in implicit form or to uncontrolled models. The concept of characteristic presentations of
the input-output ideal permits the elaboration of an algorithm such that all the steps are computed
by software.Moreover, the computation of characteristic presentations point out particular cases whose
exhaustive analysis is done by the algorithm.

The similarity transformation approach considers initial conditions which are well defined after select-
ing parameter values. It requires the local reduction at initial conditions; it is tested easily by the first
step of the algorithm. This approach leads to the solution of a PDE system. Some results concerning
the characteristic presentation of the ideal, generated by this PDE system, permit the elaboration of the
steps concerning identifiability analysis. However, it is not possible to obtain identifiability properties for
the parameter values corresponding to loss of reduction.

In conclusion, both of them have been applied successfully to different models. But, although tested
efficiently on some significant models, there is still much room for algorithmic improvements.
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