

Molecular identification of bacteria associated with canine periodontal disease

Marcello P. Riggio, Alan Lennon, David J. Taylor, David Bennett

▶ To cite this version:

Marcello P. Riggio, Alan Lennon, David J. Taylor, David Bennett. Molecular identification of bacteria associated with canine periodontal disease. Veterinary Microbiology, 2011, 150 (3-4), pp.394. 10.1016/j.vetmic.2011.03.001. hal-00696631

HAL Id: hal-00696631

https://hal.science/hal-00696631

Submitted on 13 May 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Molecular identification of bacteria associated with canine periodontal disease

Authors: Marcello P. Riggio, Alan Lennon, David J. Taylor,

David Bennett

PII: S0378-1135(11)00139-8

DOI: doi:10.1016/j.vetmic.2011.03.001

Reference: VETMIC 5224

To appear in: *VETMIC*

Received date: 3-11-2010 Revised date: 28-2-2011 Accepted date: 2-3-2011

Please cite this article as: Riggio, M.P., Lennon, A., Taylor, D.J., Bennett, D., Molecular identification of bacteria associated with canine periodontal disease, *Veterinary Microbiology* (2010), doi:10.1016/j.vetmic.2011.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

*Manuscript

1	Molecular identification of bacteria associated with canine periodontal disease
2	
3	Marcello P. Riggio ^{1*} , Alan Lennon ¹ , David J. Taylor ¹ , David Bennett ¹
4	
5	¹ Infection & Immunity Research Group, Dental School, University of Glasgow, Glasgow, UK
6	² School of Veterinary Medicine, University of Glasgow, Glasgow, UK
7	
8	* Corresponding author: Marcello P. Riggio, Infection & Immunity Research Group, Level 9,
9	Glasgow Dental Hospital & School, 378 Sauchiehall Street, Glasgow G2 3JZ, UK. Phone: +44
10	141 2119742; Fax: +44 141 3531593; E-mail: Marcello.Riggio@glasgow.ac.uk
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Abstract

Periodontal disease is one of the most common diseases of adult dogs, with up to 80% of
animals affected. The aetiology of the disease is poorly studied, although bacteria are known to
play a major role. The purpose of this study was to identify the bacteria associated with canine
gingivitis and periodontitis and to compare this with the normal oral flora. Swabs were obtained
from the gingival margin of three dogs with gingivitis and three orally healthy controls, and
subgingival plaque was collected from three dogs with periodontitis. Samples were subjected to
routine bacterial culture. The prevalent species identified in the normal, gingivitis and
periodontitis groups were uncultured bacterium (12.5% of isolates), Bacteroides heparinolyticus /
Pasteurella dagmatis (10.0%) and Actinomyces canis (19.4%), respectively. Bacteria were also
identified using culture-independent methods (16S rRNA gene sequencing) and the predominant
species identified were <i>Pseudomonas</i> sp. (30.9% of clones analysed), <i>Porphyromonas</i>
cangingivalis (16.1%) and Desulfomicrobium orale (12.0%) in the normal, gingivitis and
periodontitis groups, respectively. Uncultured species accounted for 13.2%, 2.0% and 10.5%, and
potentially novel species for 38.2%, 38.3% and 35.3%, of clones in the normal, gingivitis and
periodontitis groups, respectively. This is the first study to use utilise culture-independent
methods for the identification of bacteria associated with this disease. It is concluded that the
canine oral flora in health and disease is highly diverse and also contains a high proportion of
uncultured and, in particular, potentially novel species.

Keywords: canine periodontal disease / bacteria / microbiological culture / 16S rRNA / polymerase chain reaction

1. Introduction

Periodontal disease (gingivitis and periodontitis) is one of the most common infectious diseases affecting adult dogs, with up to 80% of animals of all breeds affected (Golden et al., 1982; Harvey & Emily, 1993; Harvey, 1998). The incidence of the disease increases markedly with advancing years and causes significant oral pain and suffering. Periodontal disease has been described as a multi-factorial infection (Lindhe et al., 1973), and plaque bacteria are known to be an important causative factor. Gingivitis is completely reversible and is recognised by the classic signs of halitosis, bleeding, inflammation, redness and swelling of the gingivae. Periodontitis is irreversible and attacks the deeper structures that support the teeth, permanently damaging the surrounding bone and periodontal ligament and resulting in increased periodontal pocket depth and tooth loss. The aetiology of canine periodontal disease remains unknown, although gramnegative anaerobic bacteria have been implicated in the disease (Hennet & Harvey, 1991a, b; Boyce et al., 1995).

In recent years, the use of culture-independent (bacterial 16S rRNA gene sequencing) methods has supplemented traditional culture-dependent methods to detect bacteria in clinical

methods has supplemented traditional culture-dependent methods to detect bacteria in clinical specimens. 16S rRNA gene sequencing has permitted the identification of bacteria which are uncultivable, fastidious in their growth requirements and even novel, in addition to detecting known cultivable species (Clarridge, 2004; Spratt, 2004). In the current study, the bacteria associated with canine periodontal disease, and with the normal canine oral cavity, were

identified using both culture-dependent and culture-independent methods.

2. Materials and methods

2.1. Sample collection and processing

Ethical approval for the study was obtained from the Local Research Ethics Committee. Samples were classified into normal and diseased groups as follows: no gingival inflammation, no periodontal pockets (normal); gingival inflammation and/or periodontal pockets less than 3 mm in depth (gingivitis); periodontal pockets at least 4 mm in depth (periodontitis). Dental plaque was collected using sterile swabs from the gingivae of periodontally healthy dogs (three samples) and animals with gingivitis (three samples). For the periodontally healthy dogs (three samples) are subgingival plaque was collected using a sterile curette from the periodontal pocket. Swabs were placed into sterile reduced transport medium and subgingival plaque was immersed into 1 mL of fastidious anaerobe broth (FAB) and immediately sent for laboratory analysis. Each swab was then immersed into 1 mL of FAB. All samples were mixed for 30 s to remove bacteria.

2.2. Bacterial culture

Ten-fold serial dilutions (to 10^{-6}) were prepared for each sample and spiral plated onto both Columbia agar containing 7.5% (v/v) defibrinated horse blood (for aerobic culture) and fastidious anaerobe agar (FAA) (BioConnections, Wetherby, UK) containing 7.5% (v/v) defibrinated horse blood (for anaerobic culture). Columbia blood agar plates were incubated in 5% CO₂ at 37°C, and FAA plates were incubated at 37°C in an anaerobic chamber with an atmosphere of 85% N_2 / 10% CO₂ / 5% H₂ at 37°C. Plates were incubated for up to seven days, and up to eight morphologically distinct colonies (visually representing the most abundant colony types) were

97	then subcultured in order to obtain pure cultures. Bacterial isolates were identified by 16S rRNA
98	gene sequencing as described below.
99 100 101	2.3. Extraction of DNA from samples
102	A bacterial DNA extract was prepared from each sample by digestion with 1% SDS and
103	proteinase K (100 ug/mL) at 60°C for 1 h, followed by boiling for 10 min. Extraction of DNA
104	from bacterial isolates was carried out using the same method.
105	
106	2.4. PCR amplification of bacterial 16S rRNA genes
107	
108	Bacterial 16S rRNA genes were amplified by PCR using the universal primers 5'-
109	CAGGCCTAACACATGCAAGTC-3' (63f) and 5'-GGGCGGWGTGTACAAGGC-3' (1387r)
110	(Marchesi et al., 1998). PCR reactions were carried out in a total volume of 50 μL containing 5
111	μL of the extracted DNA and 45 μL of reaction mixture comprising 1 x GoTaq $^{\text{\tiny \$}}$ PCR buffer
112	(Promega, Southampton, UK) 1.25 units of GoTaq® polymerase (Promega), 1.5 mM MgCl ₂ , 0.2
113	mM dNTPs (New England Biolabs, Hitchin, UK), and each primer at a concentration of 0.2 μ M.
114	The PCR cycling conditions comprised an initial denaturation phase of 5 min at 95°C, followed
115	by 35 cycles of denaturation at 95°C for 1 min, annealing at 58°C for 1 min and primer extension
116	at 72°C for 1.5 min, and finally a primer extension step at 72°C for 10 min.
117	
118	
119	
120	

121	2.5. PCR quality control
122	
123	Stringent procedures were adhered to in order to prevent contamination during the PCR
124	process (Riggio et al., 2000). Negative and positive control reactions were included with every
125	batch of samples being analysed. The positive control comprised a standard PCR reaction
126	mixture containing 10 ng of Escherichia coli genomic DNA instead of sample, whereas the
127	negative control contained sterile water instead of sample. PCR products (10 μ L) were
128	electrophoresed on 2% (w/v) agarose gels, stained with ethidium bromide (0.5 $\mu g/mL$) and
129	visualised under ultraviolet light.
130	
131	2.6. Cloning of 16S rRNA PCR products
132	
133	PCR products were cloned into the pSC-A-amp/kan plasmid vector using the StrataClone™
134	PCR Cloning Kit (Stratagene) in accordance with the manufacturer's instructions.
135	
136	2.7. PCR amplification of 16S rRNA gene inserts
137	
138	Following cloning of the 16S rRNA gene products amplified by PCR for each sample,
139	approximately 50 clones from each library were selected at random. The 16S rRNA gene insert
140	from each clone was amplified by PCR with the primer pair 5'-
141	CCCTCGAGGTCGACGGTATC-3' (M13SIF) and 5'-CTCTAGAACTAGTGGATCCC- 3'
142	(M13SIR). The M13SIF binding site is located 61 base pairs downstream of the M13 reverse
143	primer-binding site, and the M13SIR binding site is located 57 base pairs upstream of the M13
144	-20 primer-binding site, in the pSC-A-amp/kan plasmid vector.

145	2.8. Restriction enzyme analysis
146	
147	16S rRNA gene inserts amplified by PCR were subjected to restriction enzyme analysis.
148	Approximately 0.5 μg of each PCR product was digested in a total volume of 20 μL with 2.0
149	units of each of the restriction enzymes RsaI and MnlI (Fermentas Life Sciences, York, UK) at
150	37°C for 2 h and the generated restriction fragments visualised by agarose gel electrophoresis.
151	For each library, clones were initially sorted into groups based upon the RsaI restriction digestion
152	profiles and further discrimination was achieved by digestion of clones with MnlI. Clones with
153	identical 16S rRNA gene restriction profiles for both enzymes were assigned to distinct
154	restriction fragment length polymorphism (RFLP) groups.
155	
156	2.9. Sequencing of bacterial 16S rRNA genes
157	
158	The 16S rRNA gene insert of a single representative clone from each RFLP group was
159	sequenced. Sequencing was performed with the SequiTherm EXCEL™ II DNA Sequencing Kit
160	(Cambio, Cambridge, UK) and IRD800-labelled 357f sequencing primer (5'-
161	CTCCTACGGGAGCAGCAG-3') using the following cycling conditions: (i) initial
162	denaturation at 95°C for 30 s; (ii) 10 s at 95°C, 30 s at 57°C and 30 s at 70°C, for 20 cycles and
163	(iii) 10 s at 95°C and 30 s at 70°C for 15 cycles. Formamide loading dye (6 μ L) was added to
164	each reaction mixture after thermal cycling and 1.5 μL of each reaction mixture was run on a LI-
165	COR Gene ReadIR 4200S automated DNA sequencing system
166	
167	
168	

169	2.10. Sequence analysis
170	
171	Sequence data were compiled using LI-COR Base ImagIR 4.0 software, converted to FASTA
172	format and compared with bacterial 16S rRNA gene sequences from the EMBL and GenBank
173	sequence databases using the advanced gapped BLAST program, version 2.1 (Altschul et al.,
174	1997). The program was run through the National Centre for Biotechnology Information website
175	(http://www.ncbi.nlm.nih.gow/BLAST). Clone sequences with at least 98% identity with a
176	known sequence from the database were designated the same species as the matching sequence
177	with the highest score. Clone sequences with less than 98% identity were tentatively classified as
178	putative novel phylotypes.
179	
180	2.11. Statistical analysis
181	To determine whether the observed differences in the microflora between each of the three
182	groups were of statistical significance, a cross-tabulation using Fisher's exact test was performed.
183	A level of statistical significance was indicated by p<0.0167 (Bonferroni correction).
184	
185	3. Results
186	
187	3.1. Culture-dependent identification of bacteria
188	
189	Bacterial isolates obtained following microbiological culture of samples were identified by
190	16S rRNA gene sequencing, and the results are shown in Table 1. All isolates had identities of at
191	least 98% with a known database sequence. Of the 32 isolates obtained from the normal samples,
192	the predominant bacteria identified were uncultured bacterium (4 isolates, 12.5%) and Neisseria

weaveri (three isolates, 9.4%). Thirty isolates were obtained from the gingivitis samples, of
which three (10%) were identified as Bacteroides heparinolyticus and three (10%) as Pasteurella
dagmatis. For the periodontitis samples, 36 isolates were identified and the predominant species
was Actinomyces canis (seven isolates, 19.4%).
3.2. Culture-independent identification of bacteria
Following 16S rRNA PCR analysis, all nine samples were shown to be positive for the
presence of bacteria. For the three normal samples, 152 clones were analysed and 83 clones were
sequenced. Bacteria with identities of at least 98% with a known database sequence are grouped
according to species in Table 2, with a total of 19 phylotypes being identified. The predominant
species was <i>Pseudomonas</i> sp. (30.9% of clones analysed). Uncultured species (three phylotypes)
accounted for 20 (13.2%) of clones analysed. Fifty-eight (38.2%) of clones analysed (17
phylotypes) represented potentially novel species (Table 3).
In total, 149 clones were analysed and 96 clones were sequenced across the three gingivitis
samples. The bacteria identified (24 phylotypes) are grouped according to species in Table 2. The
predominant species was <i>Porphyromonas cangingivalis</i> (16.1% of clones analysed). Uncultured
species (two phylotypes) accounted for 3 (2.0%) of clones analysed. Fifty-seven (38.3%) of
clones analysed (15 phylotypes) represented potentially novel species (Table 3).
Analysis of the three periodontitis samples resulted in 133 clones being analysed and 109
clones being sequenced. The bacteria identified (20 phylotypes) are grouped according to species
in Table 2. The predominant species was <i>Desulfomicrobium orale</i> (12.0% of clones analysed).
Uncultured species (four phylotypes) accounted for 14 (10.5%) of clones analysed. Forty-seven
(35.3%) of clones analysed (17 phylotypes) represented potentially novel species (Table 3).

217	3.3. Statistical analysis
218	In order to determine if the differences in the microflora observed in each of the three groups
219	was statistically significant, a three-way comparison between groups using cross-tabulation with
220	a Fisher's exact test was performed for the data presented in Tables 1-3.
221	For bacteria identified by culture-dependent methods (Table 1) statistically significant
222	differences were observed between the gingivitis and periodontitis groups (p=0.0090) and the
223	normal and periodontitis groups (p=0.0043). However, no statistical difference was observed
224	between the normal and gingivitis groups (p=0.181).
225	For known bacteria identified by culture-independent methods (Table 2) statistically
226	significant differences were observed between all three groups (p<0.000001).
227	For potentially novel bacteria identified by culture-independent methods (Table 3),
228	statistically significant differences were observed between all three groups (p<0.00020).
229	
230	4. Discussion
231	
232	Canine periodontal disease is one of the most common infectious diseases of companion
233	animals and is characterised by gingival inflammation and tooth loss (Hennet & Harvey, 1992;
234	Harvey, 1998). Black pigmenting anaerobic bacteria, in particular <i>Porphyromonas</i> and <i>Prevotella</i>
235	species, have been isolated from the periodontal pockets of dogs with periodontal disease
236	(Watson, 1994; Gorrel and Rawlings, 1996). Isogai et al. (1999) isolated several pigmented
237	Porphyromonas species from cases of canine periodontal disease. Several new Porphyromonas
238	species (Porphyromonas cangingivalis, Porphyromonas cansulci, Porphyromonas gulae,

Porphyromonas

239

Porphyromonas creviocanis,

gingivacanis,

Porphyromonas

canoris,

240	Porphyromonas denticanis) associated with the disease have also been described (Collins et al.,
241	1994; Hirasawa and Takada, 1994; Love et al., 1994; Fournier et al., 2001; Hardham et al., 2005).
242	Our current study is the first to use molecular cloning and sequencing of bacterial 16S rRNA
243	genes, in addition to conventional microbiological culture methods, to identify the bacteria
244	associated with canine gingivitis, periodontitis and oral health. Given the relatively small number
245	of samples analysed, it was not possible to age- and sex- match the animals used in the study,
246	although this would be desirable in future large-scale studies. Despite the relatively small number
247	of samples analysed in each group in our current study, clear correlations were seen to emerge
248	between disease status and the prevalence of specific bacterial species, and differences in the
249	microflora between the three groups was statistically significant. The most prevalent species
250	found in the normal, gingivitis and periodontitis groups were Pseudomonas sp. (30.9%),
251	Porphyromonas cangingivalis (16.1%) and Desulfomicrobium orale (12.0%), respectively.
252	Porphyromonas cangingivalis was first isolated from cases of canine periodontitis (Collins et al.,
253	1994) and Desulfomicrobium orale has been isolated from cases of human periodontitis
254	(Langendijk et al., 2001). Other prevalent species identified included Porphyromonas canoris,
255	Tannerella forsythensis and Capnocytophaga cynodegmi (gingivitis), and Actinomyces sp. and
256	Capnocytophaga cynodegmi (periodontitis). The association of Tannerella forsythensis with
257	human periodontal disease is well documented, Capnocytophaga cynodegmi is found in the oral
258	cavity of the vast majority of dogs (van Dam et al., 2009) and Porphyromonas canoris has been
259	isolated from canine dental plaque samples (Allaker et al., 1997). Culture-independent methods
260	showed that microbial diversity was similar in all three groups (19 to 24 phylotypes). Uncultured
261	bacteria were found at a higher proportion in the normal samples (13.2%) compared to the
262	gingivitis (2.0%) and periodontitis (10.5%) samples. Potentially novel species were found at high
263	proportions in all three groups (35.3% to 38.3%), a finding that is unsurprising when one

considers that this is the first study to use culture-independent methods to identify bacteria in the canine oral cavity. However, sequencing of the entire 16S rRNA gene would be required to confirm these species as being novel.

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

The finding that Pseudomonas sp., Porphyromonas cangingivalis and Desulfomicrobium orale were the predominant species identified by culture-independent methods in the normal, gingivitis and periodontitis samples, respectively, is not corroborated by the culture data obtained. However, some concordance does exist between the data since some species were detected by both identification methods (three, nine and five species in the normal, gingivitis and periodontitis samples, respectively). In addition, previously uncultured bacteria were identified by both methods in all three groups. However, many bacteria were identified by cultureindependent methods but not by culture methods. A possible explanation for this anomaly is the use of standard culture media and incubation conditions, which were adopted to ensure that as many different types of bacteria as possible were cultured. However, this approach may not have been suitable for the culture of many species, particularly those with fastidious growth requirements. Consequently, we advocate that culture-independent methods should be used in conjunction with conventional culture methods in order to identify the total microflora in clinical samples. Conversely, some bacteria isolated by culture methods were not identified by cultureindependent methods. The most likely explanation for this additional anomaly is PCR primer bias, which is caused by self-annealing of the most abundant templates in the late stages of amplification (Suzuki and Giovannoni, 1996) or as a result of differences in the amplification efficiency of different templates (Polz and Cavanaugh, 1998). This results in the differential amplification of PCR products, leading to an inaccurate reflection of the true numbers of species present within the sample.

287	In conclusion, a wide range of bacteria is present in the oral cavity of healthy dogs and those
288	with gingivitis and periodontitis and a distinct microbial flora appears to be associated with each
289	of the three groups. Potentially novel bacterial species may play a significant role in gingivitis
290	and periodontitis.
291	
292	Conflict of interest statement
293	
294	The authors have no conflicts of interest.
295	
296	Acknowledgements
297	
298	We thank the Royal College of Veterinary Surgeons Trust for their financial support and Dr
299	David Lappin for carrying out the statistical analysis.
300	XV
301	References
302	
303	Allaker, R.P., de Rosayro, R., Young, K.A., Hardie, J.M., 1997. Prevalence of <i>Porphyromonas</i>
304	and <i>Prevotella</i> species in the dental plaque of dogs. Veterinary Record 140, 147–148.
305	Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.,
306	1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search
307	programs. Nucleic Acids Research 25, 3389-3402.
308	Boyce, E.N., Ching, R.J.W., Logan, E.I., Hunt, J.H., Maseman, D.C., Gaeddert, K.L., King, C.T.,
309	Reid, E.E., Hefferren, J.J., 1995. Occurrence of gram-negative black-pigmented anaerobes in

310 subgingival plaque during the development of canine periodontal disease. Clinical Infectious 311 Diseases 20 (Suppl 2), S317–S319. 312 Clarridge, J.E. III, 2004. Impact of 16S rRNA gene sequence analysis for identification of 313 bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17, 314 840-862. 315 Collins, M.D., Love, D.N., Karjalainen, J., Kanervo, A., Forsblom, B., Willems, A., Stubbs, S., 316 Sarkiala, E., Bailey, G.D., Wigney, D.I., Jousimies-Somer, H., 1994. Phylogenetic analysis of 317 members of the genus Porphyromonas and description of Porphyromonas cangingivalis sp. 318 nov. and *Porphyromonas cansulci* sp. nov. International Journal of Systematic Bacteriology 319 44, 674–679. 320 Fournier, D., Mouton, C., Lapierre, P., Kato, T., Okuda, K., Ménard, C., 2001. Porphyromonas gulae sp. nov., an anaerobic, Gram-negative coccobacillus from the gingival sulcus of various 321 322 animal hosts. International Journal of Systematic and Evolutionary Microbiology 51, 1179-323 1189. 324 Golden, A.L., Stoller, N., Harvey, C.E., 1982. A survey of oral and dental diseases in dogs 325 anesthesized at a veterinary hospital. Journal of the American Animal Hospital Association 326 18, 891–899. 327 Gorrel, C., Rawlings, J.M., 1996. The role of a 'dental hygiene chew' in maintaining periodontal 328 health in dogs. Journal of Veterinary Dentistry 13(1), 31–34. 329 Hardham, J., Dreier, K., Wong, J., Sfintescu, C., Evans, R.T., 2005. Pigmented-anaerobic 330 bacteria associated with canine periodontitis. Veterinary Microbiology 106, 119–128. 331 Harvey, C. E., Emily, P.P., 1993. Periodontal disease. In: Harvey, C.E., Emily, P.P. (Eds.), Small 332 Animal Dentistry. Mosby, St. Louis, USA, pp. 89–144.

- Harvey, C.E., 1998. Periodontal disease in dogs. Etiopathogenesis, prevalence, and significance.
- Veterinary Clinics of North America: Small Animal Practice 28, 1111–1128.
- Hennet, P.R., Harvey, C.E., 1991a. Anaerobes in periodontal disease in the dog: a review.
- Journal of Veterinary Dentistry 8(2), 18–21.
- Hennet, P.R., Harvey, C.E., 1991b. Spirochetes in periodontal disease in the dog: a review.
- Journal of Veterinary Dentistry 8(3), 16–17.
- Hennet, P.R., Harvey, C.E., 1992. Natural development of periodontal disease in the dog: a
- review of clinical, anatomical and histological features. Journal of Veterinary Dentistry 9(3),
- 341 13–19.
- 342 Hirasawa, M., Takada, K., 1994. Porphyromonas gingivicanis sp. nov. and Porphyromonas
- 343 *crevioricanis* sp. nov., isolated from beagles. International Journal of Systematic Bacteriology
- 344 44, 637–640.
- Isogai, H., Kosako, Y., Benno, Y., Isogai, E., 1999. Ecology of genus *Porphyromonas* in canine
- periodontal disease. Journal of Veterinary Medicine. Series B 46, 467–473.
- Langendijk, P.S., Kulik, E.M., Sandmeier, H., Meyer, J., van der Hoeven, J.S., 2001. Isolation of
- 348 Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing
- bacteria involved in human periodontal disease. International Journal of Systematic and
- Evolutionary Microbiology 51, 1035–1044.
- Lindhe, J., Hamp, S.-E., Löe, H., 1973. Experimental periodontitis in the Beagle dog. Journal of
- 352 Periodontal Research 8, 1–10.
- Love, D.N., Karjalainen, J., Kanervo, A., Forsblom, B., Sarkiala, E., Bailey, G.D., Wigney, D.I.,
- Jousimies-Somer, H., 1994. Porphyromonas canoris sp. nov., an asaccharolytic, black-
- pigmented species from the gingival sulcus of dogs. International Journal of Systematic
- 356 Bacteriology 44, 204–208.

357	Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Wade, W.G., 1998.
358	Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding
359	for bacterial 16S rRNA. Applied and Environmental Microbiology 64, 795–799.
360	Polz, M.F., Cavanaugh, C.M., 1998. Bias in template-to-product ratios in multitemplate PCR.
361	Applied and Environmental Microbiology 64, 3724–3730.
362	Riggio, M.P., Lennon, A., Wray, D., 2000. Detection of Helicobacter pylori DNA in recurrent
363	aphthous stomatitis tissue by PCR. Journal of Oral Pathology and Medicine 29, 507-513.
364	Spratt, D.A., 2004. Significance of bacterial identification by molecular biology methods.
365	Endodontic Topics 9, 5–14.
366	Suzuki, M.T., Giovannoni S.J., 1996. Bias caused by template annealing in the amplification of
367	mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62,
368	625–630.
369	van Dam, A.P., van Weert, A., Harmanus, C., Hovius, K.E, Claas, E.C.J., Reubsaet, F.A.G.,
370	2009. Molecular characterization of Capnocytophaga canimorsus and other canine
371	Capnocytophaga spp. and assessment by PCR of their frequencies in dogs. Journal of Clinical
372	Microbiology 47, 3218–3225.
373	Watson, A.D.J., 1994. Diet and periodontal disease in dogs and cats. Australian Veterinary
374	Journal 71, 313–318.
375	
376	
377	
378	
379	

Table 1 Bacterial species identified by 16S rRNA gene sequencing of isolates obtained from three normal, three gingivitis and three periodontitis samples (all at least 98% identity).

	Normal	Gingivitis	Periodontitis
Species	No. of isolates	No. of isolates	No. of isolates
	(% of total)	(% of total)	(% of total)
	n=32	n=30	n=36
Actinomyces bowdenii	1 (3.1)		
Actinomyces canis	1 (3.1)		7 (19.4)
Actinomyces coleocanis		1 (3.3)	
Actinomyces hordeovulneris	1 (3.1)		2 (5.6)
Bacteroides heparinolyticus		3 (10.0)	
Bergeyella sp.		1 (3.3)	
Brachybacterium zhongshanense		1 (3.3)	
Brevundimonas sp.	1 (3.1)		
Buttiaxella agrestis	2 (6.3)	77	
Capnocytophaga canimorsus		1 (3.3)	
Capnocytophaga cynodegmi			3 (8.3)
Capnocytophaga cynodegmi /			2 (5.6)
canimorsus*			, , ,
Corynebacterium lipophiloflavum		1 (3.3)	
Corynebacterium sp.		1 (3.3)	2 (5.6)
Cytophaga sp.			2 (5.6)
Filifactor vilosus		1 (3.3)	1 (2.8)
Fusobacterium alosis			1 (2.8)
Fusobacterium canifelinum	1 (3.1)		
Fusobacterium russii	,	1 (3.3)	
Gemella palaticanis	1 (3.1)		
Lactobacillus casei / lactis*	1 (3.1)		
Leucobacter chromireducens /	1 (3.1)		
solipictus*			
Moraxella bovoculi			2 (5.6)
Moraxella canis		1 (3.3)	
Moraxella sp.	1 (3.1)		
Neisseria canis		2 (6.7)	2 (5.6)
Neisseria weaveri	3 (9.4)	1 (3.3)	1 (2.8)
Neisseria zoodegmatis	1 (3.1)		
Pasteurella canis		1 (3.3)	1 (2.8)
Pasteurella dagmatis	1 (3.1)	3 (10.0)	1 (2.8)
Pasteurella multocida subsp. septica	1 (3.1)		
Pasteurella multocida subsp. septica	2 (6.3)		
/multocida*			

	T		1
Pasteurella stomatis	1 (3.1)		
Pasteurella trehalosi	1 (3.1)		
Porphyromonas canoris	1 (3.1)	2 (6.7)	
Propionibacteriaceae bacterium ¹		1 (3.3)	
Pseudoclavibacter sp.		2 (6.7)	
Pseudomonas aeruginosa	1 (3.1)		
Pseudomonas brenneri			2 (5.6)
Pseudomonas sp.			3 (8.3)
Pseudomonas stutzeri	1 (3.1)		
Serratia grimesii	1 (3.1)		
Serratia sp.	1 (3.1)		
Streptococcus minor	1 (3.1)		
Uncultured bacterium	4 (12.5)	2 (6.7)	3 (8.3)
Uncultured Bacteroidetes bacterium ²			1 (2.8)
Virgibacillus halophilus	1 (3.1)		
Xanthomonadaceae bacterium ¹		2 (6.7)	
Xanthomonas sp.		1 (3.3)	
Xenophilus sp.		1 (3.3)	

*Unable to distinguish between species: ¹Family; ²Phylum.

00)

Table 2 Bacterial species identified by 16S rRNA sequencing of clones from three normal, three

gingivitis and three periodontitis samples: at least 98% identity.

397

	Normal	Gingivitis	Periodontitis
Species	No. of clones	No. of clones	No. of clones
	analysed	analysed	analysed
	(% of total)	(% of total)	(% of total)
	n=152	n=149	n=133
Acinetobacter junii			1 (0.8)
Acinetobacter sp.	1 (0.7)		
Actinomyces hordeovulneris		1 (0.7))
Actinomyces sp.	1 (0.7)	1 (0.7)	11 (8.3)
Bergeyella sp.	5 (3.3)	6 (4.0)	
Capnocytophaga canimorsus		1 (0.7)	2 (1.5)
Capnocytophaga cynodegmi		6 (4.0)	10 (7.5)
CDC Group NO-1		1 (0.7)	
Clostridiales bacterium (oral) ³			6 (4.5)
Clostridium sporogenes / botulinum*	1 (0.7)		
Desulfomicrobium orale			16 (12.0)
Filifactor villosus		4 (2.7)	
Fusobacterium russii		2 (1.3)	
Gemella palaticanis	1 (0.7)		
Klebsiella pneumoniae	1 (0.7)		
Methylobacterium radiotolerans	1 (0.7)		
Moraxella bovoculi		3 (2.0)	3 (2.3)
Moraxella canis			1 (0.8)
Moraxella nonliquefaciens	1 (0.7)		
Neisseria canis		1 (0.7)	
Orodibacter denticanis		2 (1.3)	
Pasteurella canis		5 (3.4)	4 (3.0)
Pasteurella dagmatis			5 (3.8)
Peptococcus sp. (oral)		3 (2.0)	
Peptoniphilus sp. 'Oral Taxon 386'			2 (1.5)
Peptostreptococcus sp. (oral)			5 (3.8)
Porphyromonas cangingivalis		24 (16.1)	2 (1.5)
Porphyromonas canis		1 (0.7)	
Porphyromonas canoris		8 (5.4)	1 (0.8)
Pseudomonas sp.	47 (30.9)		
Psychrobacter pulmonis	2 (1.3)		
Salibacillus sp.	1 (0.7)		
Serratia grimesii	3 (2.0)		
Serratia proteomaculans	2 (1.3)		
Serratia proteomaculans quinovora	1 (0.7)		
Simonsiella steedae	2 (1.3)		

Tannerella forsythensis		7 (4.7)	
Treponema genomosp.		2 (1.3)	
Treponema sp.		4 (2.7)	1 (0.8)
Uncultured Acinetobacter sp.	5 (3.3)		
Uncultured bacterium	12 (7.9)	1 (0.7)	7 (5.3)
Uncultured Capnocytophaga sp.			1 (0.8)
Uncultured Peptostreptococcaceae			4 (3.0)
bacterium ¹			
Uncultured Prevotellaceae bacterium ¹		2 (1.3)	
Uncultured Pseudomonas sp.	3 (2.0)		
Uncultured rumen bacterium			2 (1.5)
Virgibacillus halophilus	4 (2.6)		
Wernerella denticanis		1 (0.7)	
Xanthomonadaceae bacterium ¹		3 (2.0)	2 (1.5)
Xenophilus sp.		3 (2.0)	

*Unable to distinguish between species; ¹Family; ³Order.

417 Table 3 Potentially novel bacterial species identified by 16S rRNA sequencing of clones from

418 three normal, three gingivitis and three periodontitis samples: less than 98% identity.

	Normal	Gingivitis	Periodontitis
Species [% identity range]	No. of clones	No. of clones	No. of clones
	analysed	analysed	analysed
	(% of total)	(% of total)	(% of total)
	n=152	n=149	n=133
<i>Actinomyces</i> sp. [95.5-97.4]	1 (0.7)		2 (1.5)
Actinomyces hordeovulneris [96.9]	1 (0.7)		
Arthrobacter sp. [93.8]	2 (1.3)		
Bacteroides sp. [89.9]			2 (1.5)
Brachymonas sp. [96.9]		2 (1.3)	
Capnocytophaga canimorsus [96.7-97.0]		3 (2.0)	
Capnocytophaga cynodegmi [97.1]			1 (0.8)
Clostridiales bacterium (oral) ³ [85.4-97.2]		13 (8.7)	6 (4.5)
Corynebacterium pseudotuberculosis [94.6]		1 (0.7)	
Desulfomicrobium orale [96.2-97.2]			3 (2.3)
Desulfovibrio sp. [89.9]			1 (0.8)
Flexistipe-like sp. (oral) [95.7]		1 (0.7)	
Haemophilus haemoglobinophilus [96.2]	1 (0.7)		
Klebsiella sp. [97.1]	1 (0.7)		
Marine bacterium [96.6]	1 (0.7)		
Moraxella bovoculi [96.2]			1 (0.8)
Moraxella canis [97.1]			1 (0.8)
Mycobacterium sp. [95.7]	1 (0.7)		
Mycoplasma canis [91.5]		1 (0.7)	
Pasteurella sp. [97.2]			1 (0.8)
Porphyromonas cangingivalis [85.5-97.4]		4 (2.7)	1 (0.8)
Porphyromonas canoris [95.6-97.1]		2 (1.3)	2 (1.5)
Prevotella genomosp. P9 (oral) [90.2]			2 (1.5)
Pseudomonas fluorescens [93.2]	1 (0.7)		
<i>Pseudomonas</i> sp. [96.4-97.3]	20 (13.2)		
Psychrobacter pulmonis [94.7]	1 (0.7)		
Salibacillus sp. [96.2-96.9]	2 (1.3)		
Serratia proteomaculans quinovora [97.2]	1 (0.7)		
Simonsiella steedae [92.3-97.1]	2 (1.3)		
Tannerella forsythensis [97.3]		1 (0.7)	
Uncultured bacterium [87.7-96.8]	5 (3.3)	16 (10.7)	18 (13.5)
Uncultured beta-proteobacterium [94.0]	2 (1.3)		
Uncultured Lachnospiraceae (oral) ¹ [94.6]		1 (0.7)	
Uncultured Lautropia sp. (oral) [97.2-97.4]		5 (3.4)	
Uncultured Moraxellaceae bacterium			1 (0.8)
(oral) ¹ [96.4]			

Uncultured <i>Peptococcus</i> sp. (oral) [96.9]		1 (0.7)	
Uncultured <i>Porphyromonas</i> sp. (oral)			3 (2.3)
[93.2-93.6]			
Uncultured <i>Prevotella</i> sp. (oral) [80.6]			1 (0.8)
Uncultured rumen bacterium [88.5]			1 (0.8)
Uncultured γ-proteobacterium [94.1]		1 (0.7)	
Virgibacillus marismortui [95.7-97.0]	13 (8.6)		
Virgibacillus sp. [96.0]	3 (2.0)		
Xanthomonadaceae bacterium1 [96.0-96.8]		5 (3.4)	

¹Family; ³Order.

The % identity range indicates the % identities of analysed clones from each phylotype with best matching sequences in the database.