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A framework for the observer design for networked

control systems

Romain Postoyan and Dragan Nešić

Abstract

This paper proposes a framework for the observer design for networked control systems (NCS)

affected by disturbances, via an emulation-like approach.The proposed model formulation allows us to

consider various static and dynamic time-scheduling protocols, in-network processing implementations

and encompasses sampled-data systems as a particular case.Provided that the continuous-time observer is

robust to the measurement errors (in an appropriate sense) we derive bounds on the maximum allowable

transmission interval (MATI) that ensure the convergence of observation errors under network-induced

communication constraints. The stability analysis is trajectory-based and utilizes small-gain arguments.

A number of observers can be combined and used within our approach to obtain estimators for NCS.

I. INTRODUCTION

Networked control systems (NCS)are systems in which the sensors and the actuators are

spatially distributed and communicate with the control structure via a network. At each trans-

mission instant, only a subset of sensors and/or actuators,collocated into anode, is chosen

to transmit their data over the communication channel according to a scheduling rule called

protocol. The growing interest for NCSs is motivated by the fact that they have lower costs,

easier maintenance and installation, greater flexibility as well as lower weight and volume in

comparison to the classical control systems. On the other hand, the communication constraints

induced by the use of a serial channel cannot be ignored and require novel observation and

control design methods.
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In this paper, we focus on the design of a centralized observer that receives data from

sensors through a shared communication medium. Related available studies in the literature have

addressed this problem for particular classes of systems orprotocols. In [3], a methodology for

the mutual design of weighted dynamic protocols and observer gains is developed for linear

systems using matrix inequalities. The existence of a round-robin protocol that preserves the

observability of linear discrete-time NCS is ensured in [16] under mild conditions. Using linear

time-varying periodic systems analysis tools, a linear observer is then derived for such a protocol.

The observer design originally developed for sampled-datasystems in [7] has been extended

to NCS in [11]. Assuming a continuous-time observer is known and satisfies some robustness

properties with respect to output disturbances, the observation error convergence is ensured under

network-induced constraints by replacing the unavailablecontinuous-time output by an auxiliary

variable which flows along the same vector fields between transmission instants and is reset

when measurements are received.

In this study, we propose a framework for the observer designfor nonlinear NCS via an

emulation-like approach, for plants whose dynamics are affected by disturbances. Modeling the

problem like in [9], our approach allows to study various types of observers, time-scheduling

protocols and in-network processing implementations. We notably recover the designs in [7], [11]

as particular cases by showing that it corresponds to a specific choice of in-network processing

algorithm. The stability analysis is trajectory-based andcarried out using small-gain arguments

which allow us to derive easy computable bounds on themaximum allowable transmission

interval (MATI). We believe that this is the first time that this problem is addressed with such

generality and that our model formulation can be the starting point for other observer designs.

An important remark is that our results are also new for the observer design for sampled-

data systems. Thus, we provide an alternative to [2] where the emulation of observers for

sampled-data systems is investigated based on discrete-time approximate models, noting that we

ensure different stability properties here and provide explicit bounds on the maximum allowable

sampling period contrary to [2].

The paper is organized as follows. After having defined the notations and recalled some

stability definitions in SectionII , the problem is stated in SectionIII and the model formulation

is developed. The main results are given in SectionIV and applied to a class of globally Lipschitz

observers in SectionV.
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II. PRELIMINARIES

Let R = (−∞,∞), R≥0 = [0,∞), R>0 = (0,∞), Z≥0 = {0, 1, 2, . . .}, Z>0 = {1, 2, . . .}.

Let a ∈ R>0 ∪ {∞}, a functionγ : [0, a) → R≥0 is of classK if it is continuous, zero at

zero and strictly increasing. By extension, fora, b ∈ R>0 ∪ {∞}, γ : [0, a) × [0, b) → R≥0

is of classKK if, for any (s1, s2) ∈ [0, a) × [0, b), γ(s1, ·) and γ(·, s2) are of classK. A

continuous functionγ : [0, a) × R≥0 −→ R≥0 is of classKL if for each t ∈ R≥0, γ(·, t) is

of classK, and, for eachs ∈ [0, a), γ(s, ·) is decreasing to zero. The initial time is denoted

t0 ∈ R≥0 and the initial condition of a variablex is denotedx0 = x(t0). The Euclidean norm of

a vector or a matrix is denoted by| · | andλmin(·), λmax(·) respectively stands for the minimum,

maximum eigenvalue of a symmetric positive definite matrix.Let f : R → R
n, n ∈ Z>0, be a

(Lebesgue) measurable function and define, fort1 ≤ t2 ∈ R, ‖f‖[t1,t2) = ess.supτ∈[t1,t2) |f(τ)|
and‖f‖∞ = ess.supτ∈[t0,∞) |f(τ)|. The setLn

∞ denotes the set of functionsf : R≥0 → R
n such

that ‖f‖∞ < r, r ∈ R≥0. For (x, y) ∈ R
n+m, the notation(x, y) stands for[xT, yT]T.

Consider the system:

ẋ = f(x, u), y = h(x), (1)

where x ∈ R
nx, y ∈ R

ny , u ∈ R
nu are, respectively, the state, the output and the input,

nx, ny, nu ∈ Z>0.

Definition 1: System (1) is input-to-output stable (IOS) fromu to y with linear gainγ if there

exist β ∈ KL and γ ∈ R>0 such that, for anyx0 ∈ R
nx, u ∈ Lnu

∞ : |y(t)| ≤ β(|x0|, t − t0) +

γ ‖u‖[t0,t] for t ≥ t0 ≥ 0. If y = x, then system (1) is input-to-state stable (ISS) w.r.t.u.

Definition 2: System (1) is said to be bounded-input-bounded-state (BIBS) with input u if there

exist α, γ ∈ K, such that, for anyx0 ∈ R
nx, u ∈ Lnu

∞ : |x(t)| ≤ α(|x0|) + γ(‖u‖[t0,t]), for

t ≥ t0 ≥ 0. When no input acts on system (1) (i.e. u = 0), we say that the system is globally

stable (GS).

III. PROBLEM STATEMENT

The analysis follows the emulation approach adopted for thecontrol of NCS in [15], [9].

The approach consists in first designing the observer while ignoring communication constraints.

Thus, for the plant modeled by equations:

ẋ = fP (x, w), y = hP (x), (2)
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where x ∈ R
nx is the plant state,y ∈ R

ny is the plant output,w ∈ R
nw is an exogenous

disturbance input, an observer is synthesized:

ż = fO(z, y), x̄ = hO(z), (3)

wherez ∈ R
nz is the observer state and̄x ∈ R

nx is the system state estimate. Notice that we

allow for immersion-based observers since the dimension ofthe observer,nz, may be bigger

than the dimension of the plant,nx.

Remark 1:Although in practice, the system output is likely to be corrupted by noise, (2) is

disturbance-free here. This model can be justified by the useof a filter whose dynamics are

already embedded into (2).

Communication constraints are then taken into account. Thevariabley is no longer available

but ŷ, which is the generated variable from the most recent systemoutput sent through the

network. The problem can be modeled in the following form:

ẋ = fP (x, w) ∀t ∈ [ti−1, ti]

y = hP (x)

ż = fO(z, ŷ) ∀t ∈ [ti−1, ti]

x̄ = hO(z)

˙̂y = f̂P (ŷ, z) ∀t ∈ [ti−1, ti]

ŷ(t+i ) = y(ti) + h(i, e(ti), z(ti))



















































(4)

wheree = ŷ− y ∈ R
ne (ne = ny) is the network-induced error and the sequenceti, i ∈ Z>0, of

monotonically increasing transmission times satisfiesυ ≤ ti−ti−1 ≤ τ for some fixedτ ∈ [υ,∞),

t0 ∈ R≥0 being the initial time1. We refer toτ as the MATI. The network implementation

can be described as follows. Grouping sensors intol sensor nodes, where l ∈ {1, . . . , ny},

the system output is partitioned intol corresponding subvectors,y = (y1, . . . , yl). At each

transmission instant, exactly one sensor node is chosen to transmit its packet according to the

protocol defined by the functionh. For instance, if the nodek ∈ {1, . . . , l} is selected at time

ti, we haveŷk(t
+
i ) = yk(ti) and ŷj(t

+
i ) = ŷj(ti) for j 6= k, in other wordsek(t

+
i ) = 0 and

ej(t
+
i ) = ej(ti). The functionh can be used to model several common protocols in the literature

such as round-robin (RR) and try-once-discard protocols (TOD) (see [9] for more details) for

instance, or to describe sampled-data systems by settingh ≡ 0. The network may also contain

1Note thatυ is arbitrary and it is used to prevent Zeno solutions in (4).
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an arbitrary number ofpassive nodeswhich can only receive packets. They may be used for

hosting distant observers and/or actuators for plants withinputs. Without loss of generality, it is

assumed that there is only one passive node in the network where an observer is run.

Remark 2:Dynamical protocols such as TOD require the use of smart sensors that have

sufficient computational capacities to run a copy of the observer located in the passive node (see

Fig. 1 in [3]). At each nodej ∈ {1, . . . , l+1} (where the indexl+1 denotes the passive node),

the observer below is run:̇zj = fO(z
j , ŷ), x̄j = hO(z

j). They are synchronized (zj(t) = zk(t)

for all t and j, k ∈ {1, . . . , l + 1}) by assuming that they start with the same initial condition

and thank to the assignment procedure, which is modeled by a piecewise constant function

σ : R≥0 → {1, . . . , l} so that when nodek has been assigned at timeti−1, σ(t) = k for

t ∈ [ti−1, ti] andyσ(ti−1)(ti−1) = yk(ti−1). In that way, at timet ∈ [ti−1, ti], the following signals

are available at sensor nodej ∈ {1, . . . , l}: σ(ti−1), yσ(ti−1)(ti−1), yj(t), zj(t); at the passive

node:σ(ti−1), yσ(ti−1)(ti−1), zl+1(t). Since each observer receivesyσ(ti−1)(ti−1), they all have the

same input signal̂y(t) and are synchronised for all time (unless a computational glitch occurs)

and the stability analysis reduces to studying a single observer.

Between the transmission instants,ŷ is generated according to the in-network processing

implementation. Usually zero-order-hold (ZOH) devices are implemented:̂fP = 0 i.e. the output

ŷ is kept constant during the transmission intervals. Nevertheless, it has to be noted that more

general algorithms can be utilized like the predictive-type used in [7] for sampled-data systems:

f̂P (z) =
∂hP

∂x
(hO(z))fP (hO(z), 0), that may help ensuring stronger convergence properties aswe

will show it in SectionV.

Model (4) can be written in a more compact way that is appropriate to our study:

ξ̇ = fξ(ξ, e, z, w) ∀t ∈ [ti−1, ti] (5)

ż = fz(ξ, e, z) ∀t ∈ [ti−1, ti] (6)

ė = g(ξ, e, z, w) ∀t ∈ [ti−1, ti] (7)

ξ(t+i ) = ξ(ti) (8)

z(t+i ) = z(ti) (9)

e(t+i ) = h(i, e(tj), z(ti)), (10)
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whereξ = x−x̄ ∈ R
nξ (nξ = nx) is the observation error andfξ(ξ, e, z, w) = fP (ξ+hO(z), w)−

∂hO

∂z
(z)fO(z, e + hP (ξ + hO(z))), fz(ξ, e, z) = fO(z, e + hP (ξ + hO(z))), g(ξ, e, z, w) = f̂P (e+

hP (ξ + hO(z)), z)− ∂hP

∂x
(ξ + hO(z))fP (ξ + hO(z), w).

Remark 3:Variablesξ andz could have been embedded into one single vector to be consistent

with [9], however we will need to distinguish them in the sequel since we are not interested in

the same properties. Indeed, contrary toξ, no convergence property is desired forz but only

some well definition or bounded behaviour for all time.

The main problem of this study is to ensure the convergence ofthe observation error when

the plant outputs are transmitted through a serial communication channel.

IV. MAIN RESULTS

In this section, we propose guidelines for the design of observers for NCS. Assuming the

observer (3) ensures some global asymptotic stability properties in the absence of network, we

distinguish the cases where the convergence of the observeris maintained practically w.r.t. MATI

or asymptotically under communication constraints. We will see in SectionV that this difference

typically comes from the choice of the in-network processing algorithm.

A. Practical stability

First, design a continuous-time observer (3) robust to measurement errors in the following

sense.

Assumption 1:System (5)-(6) is IOS from (e, w) to ξ with linear gainsγe
1, γ

w
1 .

This type of condition was already used for the observer design for sampled-data systems and

NCS respectively in [7], [11] and is similar to the IOS assumption for the control of NCS in

[9] (condition 2 in Theorem 7).

Second, select a scheduling protocol that satisfies the following property.

Assumption 2:Protocol (10) is uniformly globally exponentially stable (UGES) (see Definition 7

in [9]) with Lyapunov functionW : Z≥0×R
ne → R≥0 that is locally Lipschitz ine and uniformly

in i, i.e. there existsρ ∈ [0, 1) and (a1, a2) ∈ R
2
>0 such that, for alli ∈ Z≥0, (e, z) ∈ R

ne+nz :

a1|e| ≤ W (i, e) ≤ a2|e| (11)

W (i+ 1, h(i, e, z)) ≤ ρW (i, e). (12)

It has been shown in [9] that the round-robin and the try-once-discard protocols are UGES with

locally Lipschitz Lyapunov functions, respectively in view of Propositions 4 and 5 in [9]. The
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sampled-data case also satisfies Assumption2 with W (e) = |e| for instance, thena1 = a2 = 1

andρ = 0.

Third, make sure thee-system (7) grows exponentially between two successive transmission

instants.

Assumption 3:There existL, γξ
2, γ

z
2 , γ

w
2 ∈ R≥0, such that, for all(i, ξ, z, w) ∈ Z≥0×R

nξ+nz+nw

and almost alle ∈ R
ne:

〈

∂W (i, e)

∂e
, g(ξ, e, z, w)

〉

≤ LW (i, e) + γ
ξ
2|ξ|+ γz

2 |z|+ γw
2 |w|. (13)

This condition is linked to the forward completeness of system (7) in view of [1] and is

reminiscent of condition (27) in [9] for the control of NCS.

Fourth, guarantee the boundedness of the states of system (5).

Assumption 4:There existα3 ∈ K and γe
3, γ

w
3 ∈ R≥0 such that, for allz0 ∈ R

nz , (ξ, e, w) ∈
Lnξ+ne+nw

∞ , the following holds along solutions to (6):

|z(t)| ≤ α3(|(ξ0, z0)|) + γe
3 ‖e‖[t0,t] + γw

3 ‖w‖[t0,t] ∀t ≥ t0 ≥ 0. (14)

This condition is typically used to guarantee the boundedness of the states of (5)-(10) when

using zero-order-hold devices. It is very related to the stability of system (2): we usually prove

it by assuming system (2) is BIBS with inputw and using Assumption1 as shown in Section

V.

We are now ready to state the main theorem. Its proof is provided in AppendixA. The main

idea is to consider system (5)-(10) as the interconnection of three subsystems inξ, z and e

and to apply small-gain arguments to conclude about the stability. Due to the fact that we are

dealing with three subsystems (and not two) and that one of them is not expected to converge

(z-subsystem (6),(9)), the analysis in [6] had to be modified.

Theorem 1:Under Assumptions1-4, if τ ∈ [υ, τ1) where τ1 = 1
L
ln
(

La1+γe
1
γ
ξ
2
+γz

2
γe
3

Lρa1+γe
1
γ
ξ
2
+γz

2
γe
3

)

(τ1 =

a1(1−ρ)

γe
1
γ
ξ
2
+γz

2
γe
3

if L = 0), then:

• there existβ ∈ KL, σ ∈ K, σ̄, ε ∈ KK such that, for any∆ ∈ R≥0, (ξ0, e0, z0) ∈ R
nξ+ne+nz

with |(ξ0, e0, z0)| < ∆, w ∈ Lnw
∞ , this holds for allt ≥ t0 ≥ 0

|(ξ(t), e(t))| ≤ β (|(ξ0, e0, z0)|, t− t0) + σ(‖w‖∞) + σ̄(τ, ‖w‖∞) + ε(τ,∆). (15)

• system (5)-(10) is BIBS with w as input. �

It has to be noticed that (15) is a global property in the sense that the MATI does not depend

on the bound on the initial condition∆. On the other hand, it can be seen that whenw = 0, the
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observation error does not asymptotically converge to the origin but to the ball centered in0 of

radiusε(τ,∆). This is mainly due to the fact thatγz
2 6= 0 in (13) which typically arises when

ZOH devices are implemented, as shown in SectionV. The use of other in-network processing

algorithms such as the predictive-type implementation mayovercome this issue as they may

satisfy slightly different conditions that will ensure theasymptotic convergence to the origin.

B. Asymptotic stability

We propose an alternative to SectionIV-B to guarantee the asymptotic convergence of(ξ, e)

to the origin in the absence of disturbances. We slightly strengthen Assumption1 as follows.

Assumption 5:There existβ1 ∈ KL, γe
1, γ

w
1 ∈ R≥0 such that, for anyξ0 ∈ R

nξ , (e, w) ∈ Lne+nw
∞ ,

solutions to (5) satisfy: |ξ(t)| ≤ β1(|ξ0|, t− t0) + γe
1 ‖e‖[t0,t] + γw

1 ‖w‖[t0,t] for t ≥ t0 ≥ 0.

Remark 4:Assumption5 implies that system (5) is ISS w.r.t.(z, e, w) with linear gains.

When Assumption5 holds and Assumption3 is satisfied withγz
2 = 0, the stability of ξ-

and e-dynamics can be investigated separately from the whole system (5)-(10). In that way,

Assumption4 can be relaxed as follows.

Assumption 6:System (6) is forward complete with input(ξ, e, w) ∈ Lnξ+ne+nw

∞ .

The following theorem can then be derived. Its proof followssimilar lines to the proof of

Theorem1, see AppendixB.

Theorem 2:Under Assumptions2,5,6 and suppose Assumption3 holds with γz
2 = 0. If τ ∈

[υ, τ2) whereτ2 = 1
L
ln
(

La1+γe
1
γ
ξ
2

Lρa1+γe
1
γ
ξ
2

)

(τ2 =
a1(1−ρ)

γe
1
γ
ξ
2

if L = 0), then:

• there existβ ∈ KL, σ ∈ K, σ̄ ∈ KK such that, for all(ξ0, z0, e0) ∈ R
nξ+nz+ne, w ∈ Lnw

∞ :

|(ξ(t), e(t))| ≤ β (|(ξ0, e0)|, t− t0) + σ(‖w‖∞) + σ̄(τ, ‖w‖∞) ∀t ≥ t0 ≥ 0. (16)

• system (5)-(10) is forward complete with inputw ∈ Lnw
∞ . �

V. APPLICATIONS

In this section, we illustrate the generality of our approach to the observer emulation for NCS.

We show that a general class of globally Lipschitz observerswhich covers the designs in [4],

[5], [14] to mention a few, can be implemented over networks ruled by the RR or the TOD

protocol, using ZOH devices or predictive-type implementations and we derive explicit MATI

bounds. The case where the system outputs are simply sampledis also considered.
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Consider the system:

ẋ = Ax+ ̺(x), y = Cx, (17)

wherex ∈ R
nx, y ∈ R

ny , A andC are real matrices of appropriate dimensions and̺ : Rnx → R
nx

is globally Lipschitz. The following observer is synthesized:

˙̄x = Ax̄+ ̺(x̄) + Λ(y − ȳ), ȳ = Cx̄, (18)

where x̄ ∈ R
nx, ȳ ∈ R

ny andΛ is a real matrix, which is of the form of (3) with z = x̄. The

convergence of the observation errorξ = x − x̄ is usually proved using a quadratic Lyapunov

function.

Assumption 7:There exists a Lyapunov functionV : ξ 7→ ξTPξ whereP is symmetric and

positive definite such that:∂V
∂ξ

(

Ax+ ̺(x)−Ax̄− ̺(x̄)− Λ(y − ȳ)
)

≤ −αV whereα ∈ R>0.

We now implement observer (18) over a network as described in SectionIII . Consider the

sequence of monotonically increasing transmission instants ti, i ∈ Z>0, that satisfiesυ ≤ ti −
ti−1 ≤ τ for all i ∈ Z>0 and some fixedυ, τ ∈ R>0. The problem is modeled as:

ξ̇ = (A− ΛC)ξ + ̺(ξ + z)− ̺(z)− Λe ∀t ∈ [ti−1, ti] (19)

ż = Az + ̺(z) + Λ(e+ Cξ) ∀t ∈ [ti−1, ti] (20)

ė = f̂P (z)− CA(ξ + z)− C̺(ξ + z) ∀t ∈ [ti−1, ti] (21)

ξ(t+i ) = ξ(ti) (22)

z(t+i ) = z(ti) (23)

e(t+i ) = h(i, e(ti), z(ti)), (24)

wherez = x̄, f̂P (z) = 0 or f̂P (z) = CAz + C̺(z) whether ZOH devices or the predictive-type

algorithm introduced in SectionIII are implemented. Functionh depends whether the protocol

is round-robin, try-once-discard (explicit definitions can be found in [9]) or plant outputs are

simply sampled (h ≡ 0). We now follow the guidelines of SectionIV.

First, we verify that observer (18) is robust to measurement errors as required by Assump-

tions 1 or 5. Under Assumption7, we have that along solutions to (19), using the fact that

λmin(P )|ξ|2 ≤ V (ξ) ≤ λmax(P )|ξ|2: V̇ ≤ −αV − 2ξTPΛe ≤ −αV + 2|ξ||PΛ||e| ≤ −αV +

2 1√
λmin(P )

√
V |PΛ||e|. Using the formula2ab ≤ α

2
a2 + 2

α
b2 for a, b ∈ R, we get:V̇ ≤ −α

2
V +

July 8, 2011 DRAFT
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2
α

1
λmin(P )

|PΛ|2|e|2. Invoking the comparison principle (see Lemma 3.4 in [8]), we have that:

V (t) ≤ e−
α
2
tV (0)+ 4

α2

1
λmin(P )

|PΛ|2 ‖e‖2[0,t], therefore|ξ(t)| ≤ β1(|ξ0|, t)+γe
1 ‖e‖[0,t] and Assump-

tion 5 (equivalently Assumption1) is satisfied withβ1(s, t) =
√

λmax(P )
λmin(P )

e−
α
4
ts for (t, s) ∈ R

2
≥0

andγe
1 =

2
α

1
λmin(P )

|PΛ|.
Remark 5: It has to be emphasized that we only provide here one possibleexpression forγe

1.

Others can be determined using different tools, see for instance in Section V in [12] for linear

systems or Chapter 5.3.2 in [10] for the observers in [4] (that belong to the studied class of

observers).

Second, we have seen in SectionIV-A that Assumption2 holds for RR and TOD protocols

and the sampled-data case.

Third, we prove that thee-system satisfies the exponential growth condition betweentrans-

mission instants stated in Assumption3. The idea is to combine the fact that globally Lipschitz

Lyapunov functions are available in [9] for the RR and the TOD protocol (and as a consequence

for the sampled-data case) and that the vector field of thee-system is globally Lipschitz. We

explicitly show it only for the RR protocol, the coefficientsfor the other network configurations

are given in TableI. We consider the following Lyapunov function as done in [9]. For i ∈ Z≥0 and

e ∈ R
ne, W (i, e) =

√

∑

j∈{1,...,l}
a2j (i)|ej|2 = |D(i)e|, whereD(i) = diag(a1(i)In1

, . . . , al(i)Inl
)

with aj(i) some time-varying coefficients which are such that for anyi ∈ Z≥0 andj ∈ {1, . . . , l}
there exists a uniquek ∈ {1, . . . , l} such thata2j(i) = k. It can then be deduced that|D(i)| =

√
l,

therefore, fori ∈ Z≥0 ande ∈ R
ne (with g(ξ, e, z) = f̂P (z)− CA(ξ + z)− C̺(ξ + z)),

〈

∂W (i, e)

∂e
, g(ξ, e, z)

〉

≤ |D(i)ė| =
∣

∣

∣
D(i)

(

f̂P (z)− CA(ξ + z)− C̺(ξ + z)
)
∣

∣

∣
,

this gives for the ZOH implementation:
〈

∂W (i,e)
∂e

, g(ξ, e, z)
〉

≤
√
l(|CA| +K)(|ξ| + |z|) where

K stands for the Lipschitz constant ofC̺. We see that Assumption3 holds with L = 0,

γ
ξ
2 = γz

2 =
√
l(|CA| +K). For the predictive-type implementation, i.e.f̂(z) = CAz + C̺(z),

we obtain:
〈

∂W (i,e)
∂e

, g(ξ, e, z)
〉

≤
√
l(|CA| + K)|ξ|, so Assumption3 is satisfied withL = 0,

γ
ξ
2 =

√
l(|CA|+K) whereγz

2 = 0.

Fourth, we identify an appropriate sufficient condition on system (17) that ensures that the

z-system is bounded according to Assumption4 when using ZOH devices. Using the fact that

ξ = x−z, system (20) can be written as:̇z = (A−ΛC)z+̺(z)+Λ(e+Cx). As a consequence,
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ZOH predictive-type

RR protocol L = 0, γξ
2
=

√
l(|CA|+K), γz

2 =
√
l(|CA|+K) L = 0, γξ

2
=

√
l(|CA|+K), γz

2 = 0

TOD protocol L = 0, γξ
2
= |CA|+K, γz

2 = |CA|+K L = 0, γξ
2
= |CA|+K, γz

2 = 0

Sampled-data L = 0, γξ
2
= |CA|+K, γz

2 = |CA|+K L = 0, γξ
2
= |CA|+K, γz

2 = 0

TABLE I

COEFFICIENTS OFASSUMPTION3 FOR SYSTEM(21)

by following the same arguments as for proving that (19) is ISS, we get:

|z(t)| ≤ β1(|z0|, t) + γe
1(‖e‖[0,t] + |C| ‖x‖[0,t]). (25)

Now suppose the plant (17) is GS, i.e. there existsα ∈ K such that|x(t)| ≤ α(|x0|) = α(|ξ0 +
z0|) ≤ α(2|(ξ0, z0)|). In view of (25), we deduce that:|z(t)| ≤ β1(|z0|, t)+ γe

1|C|α(2|(ξ0, z0)|)+
γe
1 ‖e‖[0,t] ≤ β1(|(ξ0, z0)|, 0) + γe

1|C|α(2|(ξ0, z0)|) + γe
1 ‖e‖[0,t]. Thus, Assumption4 is satisfied

with γe
3 = γe

1. Note that we do not need to knowα to computeγe
3. We are now ready to apply

the results of SectionIV. The first proposition is a direct consequence of Theorem1.

Proposition 1: Consider system (19)-(24) with ZOH in-network processing. Suppose Assump-

tion 7 holds and system (17) is GS. If MATI satisfiesτ ∈ [υ, τ ∗) whereτ ∗ is defined in Table

II depending on the protocol, then (15) holds and system (19)-(24) is GS. �

Since the nonlinearity of system (20) is globally Lipschitz, Assumption6 always applies (see

Theorem 3.2 in [8]). The following proposition follows from Theorem2.

Proposition 2: Consider system (19)-(24) with the predictive-type in-network processing and

suppose Assumption7 holds. If MATI satisfiesτ ∈ [υ, τ ∗) where τ ∗ is defined in TableII

depending on the protocol, then (16) holds and system (19)-(24) is forward complete. �

ZOH predictive-type

RR protocol τ ∗ =
√
l−

√
l−1

2lγe
1
(|CA|+K)

τ ∗ =
√
l−

√
l−1

lγe
1
(|CA|+K)

TOD protocol τ ∗ =
√
l−

√
l−1

2
√
lγe

1
(|CA|+K)

τ ∗ =
√
l−

√
l−1√

lγe
1
(|CA|+K)

Sampled-data τ ∗ = 1
2γe

1
(|CA|+K)

τ ∗ = 1
γe
1
(|CA|+K)

TABLE II

MATI BOUNDS FOR SYSTEM(19)-(24)
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VI. CONCLUSION

We have developed a framework for the observer design for NCSaffected by disturbances,

via an emulation-based approach. The proposed model allowsus to study various observers,

time-scheduling protocols and in-network processing implementations. Sufficient conditions on

the system are given and explicit MATI bounds are deduced which ensure the convergence

of the observation error under network-induced communication constraints. The extension of

this study to the case where the ISS / IOS assumptions hold with nonlinear gains and the

protocol is uniformly globally asymptotically stable is available in [13]. A consequence is that

the obtained stability properties are no longer global but semiglobal and practical in general and

the computation of the MATI bounds becomes more involved.
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APPENDIX A

PROOF OFTHEOREM 1

The proof follows the main lines of the proof of Theorem 2.1 in[6] under appropriate

modifications due to the fact that we consider the interconnection of three systems (and not two)

and that thez-system (6),(9) exhibits a boundedness property and not an ISS / IOS property.

Step 1: BIBS property.Let (ξ0, e0, z0) ∈ R
nξ+ne+nz , w ∈ Lnw

∞ and τ ∈ [υ, τ ∗). Let [t0, tmax)

denote the maximum existence interval for system (5)-(10), where tmax ∈ (t0,∞]. Let t ∈
[t0, tmax). Since Assumptions2-3 hold, according to Proposition 6 in [9] and using the fact that

a1|e| ≤ W (e) from (11), there existsβ2 ∈ KL such that:

|e(t)| ≤ β2(|e0|, t− t0) + ζ(τ)
(

γ
ξ
2 ‖ξ‖[t0,t] + γz

2 ‖z‖[t0,t] + γw
2 ‖w‖[t0,t]

)

, (26)

whereζ(τ) = exp(Lτ)−1
a1L(1−ρ exp(Lτ))

(if L = 0, ζ(τ) = τ
a1(1−ρ)

) that defines a class-K function on[0, τ ∗)

(it can be noted thatτ ∗ < 1
L
ln ρ−1 so thatζ is well defined). On the other hand, in view of

Assumption1, there existsβ1 ∈ KL such that:

|ξ(t)| ≤ β1(|(ξ0, z0)|, t− t0) + γe
1 ‖e‖[t0,t] + γw

1 ‖w‖[t0,t] . (27)

Thus, in view of (26), (27) and Assumption4, we have that:

‖e‖[t0,t]≤ β2(|e0|, 0)+ζ(τ)
(

γ
ξ
2 ‖ξ‖[t0,t]+γz

2 ‖z‖[t0,t]+γw
2 ‖w‖[t0,t]

)

≤ Me(τ, ξ0, e0, z0, ‖w‖[t0,t]),
(28)

where Me(τ, ξ0, e0, z0, ‖w‖[t0,t]) = 1
d(τ)

β2(|e0|, 0)+ ζ(τ)
d(τ)

(

γ
ξ
2β1(|(ξ0, z0)|, 0) + γz

2α3(|(ξ0, z0)|) +
(γξ

2γ
w
1 + γz

2γ
w
3 + γw

2 ) ‖w‖[0,t]
)

and d(τ) = 1 − ζ(τ)(γξ
2γ

e
1 + γz

2γ
e
3) that satisfiesd(τ) > 0 since

τ ∈ [υ, τ ∗). It can then be shown that:

|ξ(t)| ≤ Mξ(τ, ξ0, e0, z0, ‖w‖[t0,t]), |z(t)| ≤ Mz(τ, ξ0, e0, z0, ‖w‖[t0,t]), (29)

with (for the purpose of clarity, we omit the arguments of functions Mξ and Mz): Mξ =

β1(|(ξ0, z0)|, 0) + γe
1Me + γw

1 ‖w‖[t0,t], Mz = α3(|(ξ0, z0)|) + γe
3Me + γw

3 ‖w‖[t0,t]. It follows

that,

|(ξ(t), e(t), z(t))| ≤ Mξ +Me +Mz = α(|(ξ0, e0, z0)|) + ϑ ‖w‖[t0,t] , (30)
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whereα ∈ K and ϑ ∈ R≥0. Therefore, system (5)-(10) is BIBS in view of Definition2 and

tmax = ∞.

Step 2: Convergence property.For any t0 ≤ t10 ≤ t20 ≤ t11 ≤ t21, using time invariance and

causality of the inequalities (26) and (27):

|ξ(t11))| ≤ β1(|(ξ(t10), z(t10))|, t11 − t10) + γe
1 ‖e‖[t10,t11] + γw

1 ‖w‖∞

|e(t21)| ≤ β2(|e(t20)|, t21 − t20) + ζ(τ)
(

γ
ξ
2 ‖ξ‖[t20,t21] + γz

2 ‖z‖∞ + γw
2 ‖w‖∞

)

.

(31)

Let t ∈ [t0,∞), taking t10 = t−t0
4

+ t0, t20 = t−t0
2

+ t0, t21 = t, t11 ∈ [ t−t0
2

+ t0, t], in view of

(26), (28), (29), (29) and (31):

|e(t)| ≤ β2(Me,
t− t0

2
) + ζ(τ)

(

γ
ξ
2β1(Mξ +Mz,

t− t0

4
) + γ

ξ
2γ

e
1 ‖e‖[ t−t0

4
+t0,∞)

(32)

+γz
2 ‖z‖∞ + (γξ

2γ
w
1 + γw

2 ) ‖w‖∞
)

≤ β2(Me,
t− t0

2
) + ζ(τ ∗)γξ

2β1(Mξ +Mz,
t− t0

4
) (33)

+ζ(τ)
(

γ
ξ
2γ

e
1 ‖e‖[ t−t0

4
+t0,∞) + γz

2 ‖z‖∞ + (γξ
2γ

w
1 + γw

2 ) ‖w‖∞
)

. (34)

Considering (34) and noticing thatζ(τ)γξ
2γ

e
1 < 1 (sinceτ < τ ∗), Lemma A.1 in [6] is used to

show (with z(t) = |e(t)|, β(s, t) = β2

(

s, t
2

)

+ ζ(τ ∗)γξ
2β1(s,

t
4
), s = Me + Mξ + Mz, ρ(s) =

ζ(τ)γξ
2γ

e
1s, d = ζ(τ)

(

γz
2 ‖z‖∞ + (γξ

2γ
w
1 + γw

2 ) ‖w‖∞
)

andµ = 1
4
, (s, t) ∈ R

2
≥0) that there exist

λ2 ∈ (1,∞) and β̃2 ∈ KL such that:

|e(t)| ≤ β̃2 (Me +Mξ +Mz, t− t0) +
λ2ζ(τ)

1−ζ(τ)γξ
2
γe
1

(

γz
2 ‖z‖∞ + (γξ

2γ
w
1 + γw

2 ) ‖w‖∞
)

. (35)

Similarly, in view of (31), it can be shown that there existβ̃1 ∈ KL andλ1 ∈ (1,∞) such that,

|ξ(t)|≤ β̃1 (Me +Mξ +Mz, t− t0) +
λ1

1−ζ(τ)γξ
2
γe
1

(

ζ(τ)γe
1γ

z
2 ‖z‖∞ + (γw

1 + ζ(τ)γe
1γ

w
2 ) ‖w‖∞

)

.

(36)
By combining (35) and (36) and introducingβ̃ = β̃1 + β̃2, it follows that:

|(ξ(t), e(t))| ≤ β̃ (Me +Mξ +Mz, t− t0) +
ζ(τ)

1−ζ(τ)γξ
2
γe
1

(λ1γ
e
1γ

z
2 + λ2γ

z
2) ‖z‖∞

+ 1

1−ζ(τ)γξ
2
γe
1

(

λ1(γ
w
1 + ζ(τ)γe

1γ
w
2 ) + λ2ζ(τ)(γ

ξ
2γ

w
1 + γw

2 )
)

‖w‖∞ .

(37)

According to (30) and using the fact that̃β(a+b, t) ≤ β̃(2a, t)+β̃(2b, t) for anya, b, t ∈ R≥0 since

β̃(·, t) ∈ K, we have that:̃β (Me +Mξ +Mz, t− t0) = β̃(α(|(ξ0, e0, z0)|)+ϑ ‖w‖[t0,t] , t− t0) ≤
β̃(2α(|(ξ0, e0, z0)|), t − t0) + β̃(2ϑ ‖w‖[t0,t] , 0), consequently, in view of (30) and (37), taking

any∆ ∈ R≥0 and (ξ0, e0, z0) ∈ R
nξ+ne+nz with |(ξ0, e0, z0)| < ∆, t ∈ [t0,∞) we have that:
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|(ξ(t), e(t))| ≤ β (|(ξ0, e0, z0)|, t− t0) + σ(‖w‖∞) + ς(τ, ‖w‖∞) + ε(τ,∆), (38)

where, noting that 1

1−ζ(τ)γξ
2
γe
1

= 1 +
ζ(τ)γξ

2
γe
1

1−ζ(τ)γξ
2
γe
1

, for (s, t) ∈ R
2
≥0, β(s, t) = β̃(2α(s), t), σ(s) =

β̃(2ϑs, 0)+λ1γ
w
1 s, ς(τ, s) =

ζ(τ)

1−ζ(τ)γξ
2
γe
1

(λ1γ
e
1+λ2)γ

z
2ϑs+

ζ(τ)γξ
2
γe
1

1−ζ(τ)γξ
2
γe
1

λ1γ
w
1 s+

ζ(τ)

1−ζ(τ)γξ
2
γe
1

(

λ1γ
e
1γ

w
2 +

λ2(γ
ξ
2γ

w
1 + γw

2 )
)

s, ε(τ, s) = ζ(τ)

1−ζ(τ)γξ
2
γe
1

(λ1γ
e
1 + λ2)γ

z
2α(3s). We have thatβ ∈ KL andσ, ς(τ, ·),

ε(τ, ·) ∈ K. Now takes ∈ R>0, it can noticed thatς(·, s), ε(·, s) are continuous on[0, τ ∗) and

equal to0 at 0 (sinceζ is continuous on[0, τ ∗) and ζ(0) = 0). Furthermore, sinceζ is strictly

increasing on[0, τ ∗), so isτ 7→ ζ(τ)

1−ζ(τ)γξ
2
γe
1

, we have thatς(·, s), ε(·, s) ∈ K. The desired result

(15) is obtained.

APPENDIX B

SKETCH OF PROOF OFTHEOREM 2

Using the forward completeness characterization given in Corollary 2.3 in [1], we have that

Assumption6 is equivalent to the following. There existν1, ν2, ν3 ∈ K and c ∈ R≥0 such that,

for any z0 ∈ R
nz , (ξ, e, w) ∈ Lne+nξ+nw

∞ , along solutions to (6): |z(t)| ≤ ν1(t) + ν2(|z0|) +
ν3(‖(ξ, e, w)‖[t0,t]) + c for all t ≥ t0 ≥ 0. The proof then immediately follows from the proof of

Theorem1 by makingβ1 only depends on|ξ0| (and not|(ξ0, z0)|) and settingγz
2 = 0. We then

obtain thatε is equal to0 and appropriateσ and ς can be deduced.
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