
HAL Id: hal-00696546
https://hal.science/hal-00696546v2

Preprint submitted on 13 May 2012 (v2), last revised 18 Nov 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controllability of open quantum systems
Andreea Grigoriu, Herschel Rabitz, Gabriel Turinici

To cite this version:
Andreea Grigoriu, Herschel Rabitz, Gabriel Turinici. Controllability of open quantum systems. 2012.
�hal-00696546v2�

https://hal.science/hal-00696546v2
https://hal.archives-ouvertes.fr


CONTROLLABILITY OF OPEN QUANTUM SYSTEMS∗

A. GRIGORIU† , H. RABITZ‡ , AND G. TURINICI§

Abstract. The problem of controllability of open quantum systems (i.e., quantum systems interacting with an
environment), whose dynamics is described by a non-Markowian master equation is addressed. The manipulations
of the dynamics is realized with both a laser field and a tailored nonequilibrium, and generally time-dependent, state
of the surrounding environment. Lie algebra theory is used to characterize the structures of the reachable states
sets and to prove controllability. The theoretical results are supported by examples.

Key words. quantum control; controllability of the Lindblad equation; open system controllability; Lie group
controllability; controllability in a non-compact Lie group
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1. Introduction. Since the first successful laboratory experiments obtained in the 1990s [4,
12], the control of quantum systems using laser fields has been subject to significant developments
( [4, 7, 12, 14, 18] etc.). An important part of the associated theoretical work has been devoted
to the investigation of closed quantum systems having with unitary dynamics. However, realistic
physical situations include circumstances where the quantum system is not isolated, but interacting
with an environment (e.g., a molecule in a solvent). Research on control of open quantum systems is
motivated by many applications including quantum computing [8], laser cooling, quantum reservoir
engineering, management of decoherence, chemical reactions and energy transfer in molecules [17].

The complexity of phenomena that arise during the interaction between the laser, the environ-
ment with the quantum system requires the introduction of theoretical methods as an important
step to accompany experimental efforts. This type of analysis can reveal the set of objectives that
can be achieved. For quantum systems coupled with an environment one of the main characteristics
is that the the dynamics is non-unitary. Open systems are often described by the Markovian ap-
proximation, which usually leads to a master equation [6], a linear first order differential equation
for the reduced density matrix ρ of the open system with a generator M

d

dt
ρ =Mρ(t). (1.1)

We will suppose for all that follows that the quantum dynamics takes place in a finite dimen-
sional space (either because it intrinsically does so or because a suitable large basis set approxima-
tion has been chosen). Thus ρ(t) is a N ×N complex matrix for some integer N > 0. The most
general form of the generator M of the quantum dynamical semigroup is written in the following
way:

Mρ = −i[H, ρ] +

N2−1∑
k=1

γk

(
AkρA

∗
k −

1

2
A∗kAkρ−

1

2
ρA∗kAk

)
. (1.2)

For any matrix X we denote by X∗ its adjoint (the transpose conjugate); here H is a N ×N
Hermitian matrix (i.e., H∗ = H).

The first term represents the unitary part of the system dynamics, the second term is referred
to as the dissipator. The operators Ak are called Lindblad operators, and the corresponding density
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2matrix equation is called the Lindblad equation:

d

dt
ρ = −i[H, ρ] +

N2−1∑
k=1

γk

(
AkρA

∗
k −

1

2
A∗kAkρ−

1

2
ρA∗kAk

)
. (1.3)

The coefficients γk can usually be defined to represent coupling to the environment, functioning as
the relaxation rates for different decay modes of the open system.

The formulation (1.3) includes the requirements of the conservation of probability and of the
complete positivity of the dynamical map [11, 10], i.e. if ρ(0) is a positive semidefinite Hermitian
operator having tr(ρ) = 1 it will remain so for any t ≥ 0. We assume that the Hamiltonian H is
a sum of an Hermitian operator H0 describing the evolution of the open quantum system in the
absence of the interaction with a laser field ε(t) and another dipole moment operator H1 which
models the interaction with a laser field ε(t):

d

dt
ρ = −i[H0 + ε(t)H1, ρ] +

N2−1∑
k=1

γk

(
AkρA

∗
k −

1

2
A∗kAkρ−

1

2
ρA∗kAk

)
. (1.4)

A fundamental question involving the system above is whether for any couple of ρi and ρf
(both positive, semidefinite, Hermitian) a control ε(t) exists such that ρ(0) = ρi and ρ(T ) = ρf for
some T > 0. If the answer is positive the system is called controllable.

A first approach when controlling the system is to manipulate the control ε(t) when the non-
unitary part is absent, i.e., M is Hermitian and thus the system is isolated. Then ρi and ρf has
to satisfy an additional compatibility relation i.e. some unitary matrix U has to exist such that

ρf = UρiU
∗. (1.5)

If the controllability question is thus rephrased we know [9, 16, 1] that the system is controllable
if the Lie algebra generated by iH0 and iH1 is of dimension at least N2 − 1.

But, the system may either be not isolated or not controllable in the isolated setting; then
one can rely on using specially tailored environments, which affect the system via the non-unitary
evolution, with controls applied through the dissipative part of the dynamics, cf. [15]. In this
approach, a suitably optimized non-equilibrium distribution function of an environment is employed
as a control instrument to achieve the desired objective making the parameters γk time dependent
controls.

This type of incoherent control by the environment (i.e., control by γk(t)) may be combined
with optimally tailored coherent fields (i.e., control through ε(t)) to allow for simultaneous control
through both the Hamiltonian and dissipative parts of the system dynamics.

Unitary dynamics can achieve control only within sets of states satisfying the compatibility
relation (1.5). Control by the environment affects a system through dissipative dynamics and can
be used to steer the system from a pure or a mixed state into mixed and in somecases pure states
(a familiar example is the cooling of a thermalized quantum system, which requires coupling to a
reservoir). As a conclusion when the dissipative term is present then the controllability question
has to be rephrased only asking that ρi and ρf are both positive Hermitian matrices.

The important question of controllability of open quantum systems has not been fully ad-
dressed, although some aspects of this problem have been considered. The problem of kinematic
state controllability (KSC) of open quantum systems whose dynamics are represented by Kraus
maps has been considered in [19]. The existence of a Kraus map that can move a finite-dimensional
open quantum system from any initial state ρi to any final target state ρf has been proven. The
complete KSC of finite-dimensional open quantum systems with Kraus-map dynamics is in contrast
to restricted KSC of closed quantum systems where unitary dynamics can connect only states with
the same density-matrix spectrum.

Another result [2, 3] established that when only the laser field ε(t) is used as a control then
some states will always be unreachable. This is a negative result that invites a precise redefinition



3of the setting. Two formulations are possible: either we ask what subset of states ρf can be reached
or we introduce additional control to recover controllability for all ρf . We explore in this paper the
second choice and consider the manipulation of the dynamics with both a laser field ε(t) as well
as a tailored nonequilibrium, and generally time-dependent, state of the surrounding environment
γ(t):

d

dt
ρ = −i[H0 + ε(t)H1, ρ] +

N2−1∑
k=1

γk(t)
(
AkρA

∗
k −

1

2
A∗kAkρ−

1

2
ρA∗kAk

)
. (1.6)

We will study the controllability of equation (1.6).
Treating γ as time dependent has been considered before, but the sign of γ deserves attention.

The derivation of the Lindblad equation suggests choosing each γk to be non-negative (see [6] for
more details). Negative γ have however been considered in the literature, cf. [5].

2. The problem. For simplicity we consider throughout the paper the circumstance when
γ2 = ... = γN2−1 = 0, see Remark 3.2 for the general situation. Equation (1.6) becomes:

d

dt
ρ = −i[H0, ρ]− iε(t)[H1, ρ] + γ(t)(AρA∗ − 1

2
ρA∗A− 1

2
A∗Aρ), (2.1)

where H0 and H1 are real N−dimensional symmetric matrices (thus Hermitian) and γ a real time
dependent function.

2.1. Background on controllability on Lie groups. As will be seen in the sequel, con-
trollability results have to deal fundamentally with the loss of compactness that arrises from the
non-Hermitian nature of the generatorM. Let us consider a connected but not necessarily compact
Lie group G with Lie algebra L(G) and control system

dX

dt
(t) = X0(X(t)) +

m∑
i=1

ui(t)Xi(X(t)), (2.2)

where X0 and Xi are right-invariant vector fields on G. If necessary we will denote this solution
X(t;u;Y ) to indicate its dependence on time, controls and initial state Y . Consider the set of all
reachable states from Y at time t:

Rt(Y ) = {X(t;u;Y )|X(t;u;Y ) solution of (2.2), X(0;u;Y ) = Y }. (2.3)

It follows to see that

Rt(Y ) = Rt(e)Y. (2.4)

where we denote by e the identity of the Lie group G; thus, describing the set Rt(e)Y allows for
completely describing all the other reachable sets. When the final time is not specified, we will use

R(Y ) = ∪t>0Rt(Y ). (2.5)

We take the admissible controls ui(t) to be the set of all locally bounded and measurable
functions.

Consider L to be the Lie algebra generated by X0, X1, ..., Xm and S its corresponding Lie group
(Lie subgroup of G). We do not assume that S is compact.

The results proved below build on the following reformulation of a result in [13][Thm 6.6] (to
which we refer for further details):

Theorem 2.1 (Jurdjevic and Sussmann 1972). If there exists a constant control u = (u1, ..., um)
and a sequence of positive numbers {tn} with tn > 0 with the property that limn→∞X(tn, u, e) exists
and belongs to S̄ (the closure is relative to S ) then R(e) = S.



4 3. Controllability. We define the operators H0,H1 and L as follows:

H0 : ρ −→ −i[H0, ρ]

H1 : ρ −→ −i[H1, ρ]

L : ρ −→ AρA∗ − 1

2
ρA∗A− 1

2
A∗Aρ, (3.1)

and rewrite equation (2.1) as:

d

dt
ρ = H0ρ+ ε(t)H1ρ+ γ(t)Lρ. (3.2)

Introduce the sets of matrices:

HN = {Z ∈ CN×N |Z = Z∗}, H0
N = {Z ∈ CN×N |Z = Z∗, tr(Z) = 0}. (3.3)

Recall that HN (respectively H0
N ) has dimension N2 (respectively N2 − 1) when seen as a

vector space over R.
A simple computation indicates that for any Z ∈ HN : H0(Z),H1(Z),L(Z) ∈ HN . Moreover

all three operators are linear. Thus H0,H1,L ∈ Lin(HN ,HN ), the space of linear operators from
HN to HN . Also note that for any matrix Z:

tr(H0Z) = tr(−i[H0, Z]) = 0

tr(H1Z) = tr(−i[H1, Z]) = 0

tr(LZ) = tr(AZA∗ − 1

2
ZA∗A− 1

2
A∗AZ) = 0.

Thus we also have H0,H1,L ∈ Lin(H0
N ,H0

N ). In particular the trace of ρ will not change during
the evolution. This motivates the following definition:

Definition 3.1. The evolution (3.2) is density matrix controllable if for any positive semi-
definite Hermitian matrices ρi and ρf with tr(ρi) = tr(ρf ) there exists a time t ≥ 0 and locally
bounded measurable controls ε(·), γ(·) such that the solution of the evolution equation (2.1) starting
at 0 from ρi reaches ρf at time t.

We investigate controllability results in two distinct situations: when the matrix A is Hermitian
or not.

Remark 3.1. The particular case of A being Hermitian corresponds to unital operator L, i.e.
LI = 0, which is a situation frequently addressed in quantum information processing.

3.1. Situation I: Hermitian operator A. Let us now consider the connected Lie group
G1 of one-to-one linear transformations of H0

N that contains the identity operator. This group
is isomorphic to GL+(N2 − 1) (the set of invertible matrices of dimension N2 − 1 with positive
determinant). We know that G1 is connected but not compact. We will denote by Lie(G1) the Lie
algebra of G1 which is isomorphic to Lin(H0

N ,H0
N ).

Denote by HG1
0 the element of Lie(G1) that is constructed from H0 (and the same for H1 and

L). We associate to the evolution equation (3.2) the following evolution equation on the group G1:

d

dt
X(t) =

(
HG1

0 + ε(t)HG1
1 + γ(t)LG1

)
X(t),

X(t = 0) = X0. (3.4)

We will also write X(t; ε, γ;X0) when we will need to make explicit the dependence on the parame-
ters; of course X(t; ε, γ;X0) belongs to the Lie group G1. Then by definition ρ̄(t) = X(t; ε, γ; e)ρ̄(0).

Theorem 3.2. If the Lie algebra Lie{HG1
0 ,HG1

0 ,LG1} generated by {HG1
0 ,HG1

0 ,LG1} has
dimension (N2 − 1)2 (as a vector space over the real numbers), then the system (3.2) is density
matrix controllable.



5Proof. Without loss of generality we can suppose that tr(H0) = 0 and tr(H1) = 0.
As a side remark, note that since A is Hermitian we can show by computation that L is a

Hermitian operator from H0
N to itself i.e., L∗ = L. However H0 and H1 are skew-Hermitian as

operators from H0
N to itself.

We consider the following change of variables:

ρ̄ = ρ− tr(ρ(0))

N
I. (3.5)

Thus tr(ρ̄(0)) = 0 which implies ρ̄(0) ∈ H0
N . By computation we obtain:

˙̄ρ = ρ̇ = −i
[
H, ρ̄+

tr(ρ(0))

N
I
]

+ L
(
ρ̄+

tr(ρ(0))

N
I
)

= −i[H, ρ̄] + L(ρ̄) + L
( tr(ρ(0))

N
I
)
. (3.6)

Since we are in the case when A is a Hermitian matrix :

L
( tr(ρ(0))

N
I
)

=
AA∗ −A∗A

N
(tr(ρ(0))) = 0. (3.7)

Thus we obtain the equation for ρ̄ to be:

˙̄ρ = −i[H, ρ̄] + L(ρ̄), (3.8)

with ρ̄ Hermitian and tr(ρ̄)(0) = 0. But, since H0,H1,L ∈ Lin(H0
N ,H0

N ) we can see them as
vector fields on the manifold H0

N thus the evolution started on that manifold will remain there,
which means that ρ̄(t) ∈ H0

N for all t ≥ 0, in particular tr(ρ̄)(t) = 0 for all t ≥ 0. Thus we always

have ρ(t) = ρ̄(t) + tr(ρ(0))
N I.

From the above relations we conclude that H0(ρ), H1(ρ) and L(ρ) belong to Lin(H0
N ,H0

N ).
The central question is to characterize R(e) for the system (3.4). We will use the Thm. 2.1

with G = G1. Then L = Lie
{
iHG1

0 , iHG1
1 ,LG1

}
is the Lie algebra generated by HG1

0 , HG1
1 and

LG1 .
Since dimR(Lin(H0

N ,H0
N )) = (N2−1)2 (dimension as vector space over R) the higher possible

dimension for L is (N2 − 1)2 (again over the real numbers) because L ⊂ Lie(G1); by hypothesis
dimR(L) = (N2−1)2, thus both have the same dimension (N2−1)2 and L = Lie(G1) and S = G1.
Take now ε = 0,γ = 0, then equation (3.4) becomes:

d

dt
X(t) = HG1

0 X(t),

X(t = 0) = e, (3.9)

with solution X(t) = etH
G1
0 ; take a sequence of positive numbers {tn} with tn > 0; we need to

prove that

lim
n→∞

etnH
G1
0 ∈ S̄. (3.10)

But as HG1
0 is a skew-Hermitian map which means that etnH

G1
0 belongs to the group of the or-

thogonal transformations of H0
N (isomorphic to the unitary matrix group U(N2 − 1)) which is a

subgroup of G1. Since the orthogonal group is compact it implies that up to extracting a subse-

quence limn→∞ etnH
G1
0 exists and belongs to S̄. Therefore R(e) = S. In particular X can reach

any orthogonal transformation from H0
N to itself. For any ρi and ρf with tr(ρi) = tr(ρi) we can

find an orthogonal transformation to map ρi − tr(ρi)
N I ∈ H0

N to ρf − tr(ρf )
N I = ρf − tr(ρi)

N I ∈ H0
N

i.e. we have controllability for ρ̄ thus for ρ.



6 3.2. Situation II: arbitrary operator A. Let us now consider the connected Lie group G2

of one-to-one linear transformations of HN that contains the identity operator and preserves the
trace. This group is isomorphic with{

X ∈ GL(N2)
∣∣det(X) ≥ 0, tr(X(Z)) = tr(Z),∀Z ∈ RN×N

}
. (3.11)

We know that G2 is connected but not compact. We will denote by Lie(G2) the Lie algebra
of G2. Note that if d

dtρ(t) = M(ρ(t)) then ρ(t) = exp(Mt)ρ(0). If tr(ρ(t)) = const it implies
d
dt tr(ρ(t)) = 0. Since d

dt tr(ρ(t)) = tr( ddtρ(t)) it follows:

tr(M(ρ(t))) = 0, ∀ ρ(t) ∈ HN . (3.12)

Since tr(ρ) is a linear operation and if ρ is viewed as a vector in RN2

then tr(ρ) =< α, ρ >
with α a vector with ”1” on a position corresponding to ρii, i = 1, ..., N2 and zero elsewhere. In
this case the Lie algebra is thus isomorphic with the set (endowed with its canonical Lie algebra
structure):

{
M ∈ RN

2×N2
∣∣∣ MTα ≡ 0RN2 i.e.

N2∑
j=1

Mjiαj = 0, ∀ i = 1, ..., N2
}

(3.13)

We have thus N2 constraints on RN2×N2

, that means the dimension over R of the Lie algebra is
(N2 − 1)N2.

Denote by HG2
0 the element of Lie(G2) that is constructed from H0 (and the same for H1 and

L). We associate to the evolution equation (3.2) the following evolution equation on the group G2:

d

dt
X(t) =

(
HG2

0 + ε(t)HG2
1 + γ(t)LG2

)
X(t),

X(t = 0) = X0. (3.14)

We will also write X(t; ε, γ;X0) when we will need to make explicit the dependence on the parame-
ters; of course X(t; ε, γ;X0) belongs to the Lie group G2. Then by definition ρ̄(t) = X(t; ε, γ; e)ρ̄(0).

Theorem 3.3. If the Lie algebra Lie{HG2
0 ,HG2

0 ,LG2} generated by {HG2
0 ,HG2

0 ,LG2} has
dimension (N2 − 1)N2 (as a vector space over the real numbers) then the system (3.2) is density
matrix controllable.

Proof. Without loss of generality we can suppose that tr(H0) = 0 and tr(H1) = 0. We did not
yet prove that G2 is indeed a Lie group: this results from Cartan’s theorem that states that any
closed subgroup of a Lie group is a Lie subgroup (we include G2 in the group of one-to-one trans-
formations on HN ). We will use the same line of proof as in Theorem 3.2 and invoke Theorem 2.1

(this time without any change of variables) for G = G2. Then L = Lie
{
iHG2

0 , iHG2
1 ,LG2

}
is the

Lie algebra generated by HG2
0 , HG2

1 and LG2 .
Since dimR(Lie(G2)) = (N2 − 1)N2 (dimension as vector space over R) the higher possible

dimension for L is (N2 − 1)N2 (again over the real numbers) because L ⊂ Lie(G2); by hypothesis
dimR(L) = (N2 − 1)N2, thus both have the same dimension (N2 − 1)N2 and L = Lie(G2) and
S = G2. Take now ε = 0,γ = 0, then equation (3.14) becomes:

d

dt
X(t) = HG2

0 X(t),

X(t = 0) = e, (3.15)

with solution X(t) = etH
G2
0 ; take a sequence of positive numbers {tn} with tn > 0; we need to

prove that

lim
n→∞

etnH
G2
0 ∈ S̄. (3.16)



7But HG2
0 is a skew-Hermitian map which means that etnH

G2
0 belongs to the group of orthogo-

nal transformations of HN (isomorphic to the unitary matrix group U(N2)) which is a subgroup
of G2. Since the orthogonal group is compact it implies that up to extracting a subsequence

limn→∞ etnH
G2
0 exists and is orthogonal. All orthogonal transformations etnH

G2
0 preserve the trace

thus limn→∞ etnH
G2
0 exists, is orthogonal and trace preserving and hence an element of S̄. There-

fore R(e) = S. In particular X can reach any trace preserving orthogonal transformation from
HN to itself. For any ρi and ρf with tr(ρi) = tr(ρi) we can find a trace preserving orthogonal
transformation to map ρi ∈ HN to ρf ∈ HN i.e. we have controllability for ρ.

Remark 3.2. A straightforward extension is to consider the circumstance when several non-
null controls γ2,... are present; the theoretical results can be proved in the same manner.

Remark 3.3. In this paper two controllability results are proved for γ(t) ∈ R but not neces-
sarily positive [5]. However physical considerations may impose γ to be positive (see [6] for more
details). Previous controllability results cannot be used due to the loss of compactness. Therefore
the controllability analysis of the system defined by (2.1), for γ(t) ≥ 0, remains for now a conjecture
and leads to the question: are Theorems 3.2 and 3.3 true if γ(t) takes only positive values ?

4. Application. In the following we illustrate the theoretical results introduced in the above
section. For this purpose consider two finite-dimensional systems defined by

H0 =

 −4 0 0
0 1 0
0 0 3

 , H1 =

 0 −2 0
−2 0 0
0 0 0

 , A =

 2 1 3
1 −1 0
3 0 −1

 , (4.1)

and

H0 =

 −4 0 0
0 1 0
0 0 3

 , H1 =

 0 −2 0
−2 0 0
0 0 0

 , A =

 2 1 1
1 −1 0
3 0 −1

 . (4.2)

First note that the system defined by H0 and H1 alone (i.e., with A = 0) is not controllable as
the dimension of the Lie algebra generated by −iH0 and −iH1 is 4, short of 32 − 1 = 8 needed for
controllability. Also note that for the system defined by (4.1) A is a symmetric matrix. We want
to verify if systems (4.1) and (4.2) are controllable i.e., verify the hypotheses of Theorem 3.2 and
Theorem 3.3.

To do so we choose a parameterization such that we can write (3.2) as a linear system

d

dt
ρ̃ = −iH̃0ρ̃− iε(t)H̃1ρ̃+ γ(t)L̃ρ̃ (4.3)

Numerically H̃0, H̃1, L̃ are N2×N2 dimensional matrices and ρ̃ is a N2×1 vector. For the Hamil-
tonian part of the dynamics this is known as the Liouville equation in the adjoint representation.

In order to analyze the controllability we need to numerically compute the dimension of the
Lie algebra (as subalgebra of N2 ×N2 matrices) generated by {iH̃0, iH̃1, L̃}, which we denote by
Lie{iH̃0, iH̃1, L̃} and verify for A a Hermitian N -dimensional matrix if dimR(Lie{iH̃0, iH̃1, L̃}) =
(N2 − 1)2 or when A is an arbitrary if dimR(Lie{iH̃0, iH̃1, L̃}) = (N2 − 1)N2. For the system
in (4.1) numerical computations give the result

dimR(Lie{iH̃0, iH̃1, L̃}) = 64, (4.4)

and for the system (4.2)

dimR(Lie{iH̃0, iH̃1, L̃}) = 72. (4.5)

We conclude that both systems are controllable.
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