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A UNIFIED APPROACH TO THE THEORY OF NORMED STRUCTURES -

PART I: THE SINGLE-SORTED CASE

SALVATORE TRINGALI

Abstract. We introduce the concept of a prenormed model of a particular kind of single-
sorted finitary first-order theories, that we refer to as prealgebraic theories. These are char-
acterized by a signature comprising, together with arbitrary function symbols, only relation
symbols whose interpretation, in any possible model, is a preorder. The result is an abstract
approach to the notion of norm and, consequently, to the theory of normed structures.

1. Introduction

There is no doubt that norms, along with diverse analog concepts such as valuations and semi-
norms, occupy a central place in mathematics, not only in relation to the notion of distance and
metric spaces, but also in their own right, as for instance in the theory of Banach spaces [9],
valuated rings [3] and normed groups [2] [7]. In fact, the present article is intended as one-half
of a two-part work in a series of papers devoted to norms and normed structures. Since the
“many-sorted case” is an essentially technical complication of the “one-sorted case” and adds no
significant insights to the theory (at least in its basic aspects), we will concentrate here on the
latter and consider the former only in the second part of this work. The long-term goal, as well
as our original motivation, is the development of a framework suitable to carry out computations
relevant to the a priori convergence theory of approximation schemes in numerical analysis, with
a special focus on reduced basis methods [4] (a standard technique used by several authors in
applied mathematics to provide effective solutions of numerical problems depending on a large
number of parameters). The link is the spectral theory of linear operators and Banach algebras
[13], but we are not really going to dig into this in the sequel.

One of the main achievements here is, instead, the introduction of an abstract notion of norm
for models of a special kind of finitary first-order theories interpreted over a category C with
finite products, which are preserved by a functor F to the category of sets. Such theories will be
called subalgebraic, due to the fact that their signature includes, together with arbitrary function
symbols, only relation symbols whose interpretation, in any possible model “generated” by F ,
is a partial order (algebraic structures are covered as a special case). The corresponding models
will be referred to as F -models, to stress the role of F in the picture. In particular, it will be
proved that all the F -models of a given collection of prealgebraic theories form a category whose
morphisms can be eventually understood as “norms”. This will be used, in turn, to build up
another category (over a fixed F -model), whose objects are ultimately an abstraction of normed
spaces and whose morphisms are, in a generalized sense, “short maps” between them.
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Starting from this, we show by a number of examples how to recover down-to-earth construc-
tions of common use in the everyday practice, for a large variety of applications ranging from
functional analysis to linear algebra and number theory, such as normed groups and valuated
rings (Part I), normed spaces and normed algebras (Part II), and variants, generalizations or spe-
cializations thereof including seminormed semigroups, non-Archimedean pseudo-semivaluated
fields, normed modules over valuated rings, etc.

For this purpose, we will face, in the next pages, the following (somewhat vague) questions:
What is really a norm? And what are the essential features that one should retain in order to give
a purely algebraic definition of a norm, to the degree that normed structures can be ultimately
identified with the objects of an appropriate category and norms with the arrows between these
objects? The answers provided in the sequel are certainly far from being exhaustive and definite,
but we are confident that the subject may be worth the effort and our hope is that it can attract
the interest of other researchers in the field. The benefits are potentially great: push on the use
of categorical methods in analysis and analytical methods in category theory.

In this line, the only previous contribution that we are aware of dates back to the 2008
Ph.D. thesis of G.S.H. Cruttwell [6, Ch. 3]. There, partially based on work by M. Grandis [8],
the author gives a categorical abstraction of normed groups by regarding a group norm as a
(lax) monoidal functor from a compact closed category V to a monoidal category M. Then,
he considers the category AbNorm with objects given by Abelian normed groups and arrows
by group homomorphisms which are also weakly contractive maps. Lastly, he defines a normed
(unital) ring R as a one-object category enriched over AbNorm and a normed module over R
as an AbNorm-functor R → AbNorm (having once recognized that AbNorm is a category
enriched over itself). Our approach is substantially different (despite of a few points in common).
We do not focus our attention on a restricted class of familiar normed structures to describe
them from the general perspectives of categories. Rather, we combine the language of categories
with that of model theory to invent a general notion of “norm”, which applies especially to any
arbitrary model of any algebraic theory, to the degree that normed groups, normed rings and
normed modules result as an instance of a general concept of normed structure.

Many ideas in this paper have been influenced by the prominent work of R. Lowen on approach
spaces [12] and F.W. Lawvere on algebraic theories [11] and generalized metric spaces [10]. From
a categorical point of view, extended pseudometric spaces and extended pseudoquasimetric
spaces, along with their corresponding Lipschitz maps, have the best properties that one can
actually expect from a category of metric spaces: It is possible, within them, to form quotients
and take arbitrary products and coproducts. Dropping the attribute “extended” implies that,
in general, only finite products and coproducts will exist, while curtailing the prefix “pseudo”
affects the existence of quotients. Moving from these considerations, it seems quite reasonable,
in search of a “good” answer to questions concerning the “real nature” of norms, to focus first
on the weaker notions of seminorm and pseudoseminorm. This leads to one more basic insight,
which has been central in this research and can be roughly outlined as follows.

Loosely speaking, a homomorphism of two algebraic structures of the same type, as described
in the language of model theory, is a function between the underlying sets with the property
of “preserving the operations”. Then, one observes that, with a little effort of imagination, a
seminorm, say, on a real vector space exhibits almost the same behaviour:

(i) Its codomain is a special “reference structure”. In the toy case that we are considering,
this is the set of non-negative real numbers, herein denoted by R+

0 , together with its
standard structure of totally ordered semifield.
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(ii) It preserves the additive identity (a nullary operation). This has always been something
subtle (and, hence, interesting) to our eyes: In the final analysis, one is basically re-
quiring a seminorm to map a distinguished element a in the domain to a distinguished
element b in the codomain, in a context where a and b play the same (algebraic) role,
but still in a match lining up essentially different teams (both of them are identities,
but in structures marked by significant differences).

(iii) It transforms a sum (of vectors) to a sum (of scalars) and relates the one to the other
by means of an inequality.

(iv) It equals the product of a scalar by a vector to a product of two scalars, which is
informally the same as saying that it preserves the products, except that the one product
and the other have very little in common, at least at a first glance.

That said, the next step is to give emphasis to something absolutely obvious, i.e., that equalities
and inequalities, appearing in such a fundamental way in the (classical) definition of seminorms,
have in common the property of being orders. Some of them are partial, as for the equality
relation, while others are total, like in the case of the standard order on the set of real numbers,
but they all are orders, i.e., reflexive, antisymmetric and transitive binary relations. And it
is just by using orders and relaxing equalities to inequalities that we can manage to relate
structures of different types and “let them play a good game.”

This intuition is strengthened by the inspection of other similar constructions encountered
in various fields of the mathematical landscape. E.g., a group seminorm can be abstractly
defined, based on common terminology and notation from model theory (cf. Remarks 2 and 4),
as a function ‖ · ‖ from a group (G; +,−, 0G) to an ordered monoid (M ; +, 0M ;≤M ) such that
‖a+b‖ ≤M ‖a‖+‖b‖ for all a, b ∈ G and ‖0G‖ = 0M , and this is, indeed, called a group norm if it
is symmetric (with respect to the unary operation of negation) and ‖a‖ = 0M for some a ∈ G if
and only if a = 0G. Likewise, an absolute value is defined, in the context of ring and field theory,
as a function | · | from a domain (D; +, · ,−, 0D) to an ordered ring (R; +, · ,−, 0R;≤R) such that
| · | is a group seminorm from the [Abelian] group (D; +,−, 0D) to the [Abelian] ordered monoid
(R+

0 ; +, 0R;≤R) such that |a · b| = |a| · |b| for all a, b ∈ D, where R+
0 := {a ∈ R : 0R ≤R a}.

Thus, it is naively apparent the existence of a common pattern among these definitions, and the
primary goal of the paper is, indeed, to give an explicit formal description of such a pattern.

Basic notation and terminology. We set our foundations in the Neumann-Bernays-Gödel
axiomatic class theory (NBG), as presented in [14, Ch. IV]. We use N for the non-negative
integers and Z, Q and R according to their standard meaning. Unless differently stated, each of
these sets will be endowed with its ordinary order and operations.

If X,Y are sets, D ⊆ X and f ⊆ D × Y is such that, for every x ∈ D, there exists only one
y ∈ Y such that (x, y) ∈ f , we say that f is a (total) function (or map, mapping, or similia)
D → Y , but also that f is a partial function from X to Y . In this case, D, X and Y are called,
each in turn, the domain, the source and the target of f . In particular, we write dom(f) for D
and use the notation f : X 7→ Y (an arrow with a vertical stroke) for a partial function f from
X to Y . Note that, formally, a partial map from X to Y is an ordered triple (X,Y, f) for which
f is a function D → Y for some D ⊆ X . Yet, we will often identify (X,Y, f) with f when it
is convenient to do that and it is clear from the context which sets must be used as source and
target. Lastly, if S ⊆ X and g is a function X → Y , then we denote by g|S , as is customary,
the mapping S → Y : x 7→ f(x) and refer to g|S as the restriction of g to S.
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Organization. Section 2 is an essentially preparatory section in which we recall facts from
model and category theory and introduce concepts useful to adapt them to our specific needs,
while fixing up, once and for all, more notation and terminology used throughout and in future
work. In Section 3, we define prealgebraic [resp. subalgebraic] theories and prenorms [resp.
subnorms], prove the main (and unique) results of the paper (i.e. Proposition 3.1) and, subse-
quently, present the category of prealgebraic [resp. subalgebraic] F -models relative to a given
family of prealgebraic [resp. subalgebraic] theories, for F a functor from a categoryC with finite
products to Set. Then, Section 4 discusses prenormed [resp. subnormed] models and Section
5 shows how these are ultimately an abstraction of familiar normed structures, such as normed
groups and valuated rings, by a number of worked examples.

2. Preliminaries on model and category theory

In the traditional language of model theory and first-order logic [5], a (finitary single-sorted)
signature σ is a triple (Σf ,Σr, ar), where Σf and Σr are disjoint sets (not containing basic logical
symbols of the underlying formal language) and ar is a function Σf ∪ Σr → N. The elements of
Σf are called function symbols, those of Σr relation symbols. For each symbol ς ∈ Σf ∪Σr, ar(ς)
is referred to as the ariety of ς . A subsignature of σ is any signature σ0 = (Σf,0,Σr,0, ar0) such
that Σf,0 ⊆ Σf , Σr,0 ⊆ Σr and ar0 is the restriction of ar to Σf,0 ∪ Σr,0. In addition to this, we
say that σ is algebraic if Σr = ∅ and balanced if there exists a bijection φ : Σf → Σr.

Remark 1. A balanced signature σ = (Σf ,Σr, ar) will be systematically represented, without
loss of generality, as ({(ςr, ̺r)}r∈Σf

; ar), where {ςr : r ∈ Σf} = Σf and {̺r : r ∈ Σf} = Σr.

Provided that σi = (Σf,i,Σr,i, ari) is a signature (i = 1, 2), we define a signature homomorphism
from σ1 to σ2 to be a function α : Σf,1∪Σr,1 → Σf,2∪Σr,2 such that α(Σf,1) ⊆ Σf,2, α(Σr,1) ⊆ Σr,2

and ar2(α(ς)) = ar1(ς) for every ς ∈ Σf,1 ∪ Σr,1. If so, we write that α : σ1 → σ2 is a signature
homomorphism. In addition to this, for σ0 = (Σf,0,Σr,0, ar0) a subsignature of σ1, we say that
a signature homomorphism α0 : σ0 → σ2 is the restriction of α to σ0 if, regarded as a function,
it is the restriction of α to Σf,0 ∪Σr,0.

Remark 2. Pick σ = (Σf ,Σr, ar) to be a signature. For k, ℓ ∈ N, suppose that Σf and Σr can
be respectively partitioned into k families of function symbols {ς1,r}r∈R1

, . . . , {ςk,r}r∈Rk
and ℓ

families of relation symbols {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

. Then, σ is possibly denoted by

({ς1,r}r∈R1
, . . . , {ςk,r}r∈Rk

; {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

; ar). (1)

On another hand, assume that σ is balanced and let σ = ({(ςr, ̺r)}r∈Σf
; ar) (see Remark 1).

Admit that there exists k ∈ N such that {(ςr, ̺r)}r∈Σf
can be partitioned into k collections of

the form {(ς1,r, ̺1,r)}r∈R1
, . . . , {(ςk,r, ̺k,r)}r∈Rk

. Then, we possibly write σ as

({(ς1,r, ̺1,r)}r∈R1
; . . . ; {(ςk,r, ̺k,r)}r∈Rk

; ar). (2)

These notations are further simplified, in the most obvious way, whenever a family of symbols
consists of one element (i.e. is a singleton), to the extent of writing, for instance, (+, ⋆, 1;≤,∼; ar)
in place of σ = ({+, ⋆, 1}, {≤,∼}, ar) or (−,�; ⋆,≃; ar) instead of ({−, ⋆}, {�,≃}, ar).

We will use extensively the language of categories. Following [15], these are henceforth defined
as 6-uples of type (Co, Ch, s, t, id, ◦), where Co and Ch are classes, the former referred to as the
collection of objects, the latter as the collection of morphisms (or arrows); s and t are functions
Ch → Co which assign, to every arrow, its source and target; id is a further function Co → Ch

which sends each object X to a distinguished morphism X → X , called the identity on X ; ◦
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is a partial operation Ch × Ch 7→ Ch; and all is accompanied by the usual axioms that s, t,
id and ◦ are required to satisfy (cf. [1, p. 21, Definition 3.1]). If C is a category, we denote
by obj(C) the class of its objects and by hom(C) the one of its arrows. We write srcC and
trgC for the functions mapping a morphism to its source and target, respectively, and idC for
that sending an object X to the identity on X . Subsequently, for X,Y ∈ obj(C), we adopt
the notation f : X → Y to mean that f is a morphism of hom(C) with srcC(f) = X and
trgC(f) = Y . Lastly, we use ◦C for the composition law of C, or simply ◦ when there is no
danger of ambiguity, and homC(X,Y ) for the collection of arrows f : X → Y in C, or simply
homC(X) when X = Y , and we write g ◦C f in place of ◦C(f, g) for (f, g) ∈ dom(◦C) (cf. [1,
p. 21, Remarks 3.2]). As is customary, we refer to g ◦C f as the composition of g with f . In
particular, we will consider the following basic categories (cf. [1, p. 22, Example 3.3]):

(i) Rel, the category having the class of sets as objects and all triples R of type (X,Y,R)
as morphisms, where X and Y are sets and R is a subset of the Cartesian product
X × Y , i.e., a binary relation between X and Y . When this does not lead to confusion,
we identify R with R. The composition of two relations R : X → Y1 and S : Y2 → Z
is defined if and only if Y1 = Y2, and then it is equal to the triple (X,Z, T ), where
T ⊆ X × Z and (x, z) ∈ T for x ∈ X and z ∈ Z if and only if (x, y) ∈ R and (y, z) ∈ S
for some y ∈ Yi. The identities and the maps of source and target are the obvious ones.

(ii) Set, the subcategory of Rel whose morphisms are functions.
(iii) Pre, the category having the class of presets as objects and all triples f of type (P ,Q, f)

as morphisms, where P = (P,≤P ) and Q = (Q,≤Q) are presets, i.e., ordered pairs
consisting of a set and a preorder on it, and f is a function P → Q such that f(x) ≤Q

f(y) if x, y ∈ P and x ≤P y (also referred to as a monotonic function P → Q). When
there is no danger of confusion, we will use f as a shorthand of f. The composition of
two morphisms (P1,P2, f) and (Q1,Q2, g) in Pos is defined if and only if P2 = Q1, and
then it is set equal to the triple (P1,Q2, g ◦Set f). The identities and the maps of source
and target are defined in the most straightforward way.

(iv) Pos, the full subcategory of Pre whose objects are posets, i.e., partially ordered sets.
(v) Sgn, the category having the class of (one-sorted finitary) signatures as objects and

all triples of the form (σ, τ, α) as morphisms, where σ and τ are (one-sorted finitary)
signatures and α : σ → τ is a signature homomorphism. As in other cases, when there
is no likelihood of ambiguity, we will use α as a shorthand of (σ, τ, α). The composition
of two morphisms (σ1, σ2, α) and (τ1, τ2, β) is defined if and only if σ2 = τ1, and then it
is given by the triple (σ1, τ2, β ◦Set α). The identities and the maps of source and target
are once more specified in the obvious way.

If C is a category, n ∈ N and fi : Xi → Yi is a morphism of C (i = 1, 2, . . . , n), we write
prodC(X1, X2, . . . , Xn) for the product of (X1, X2, . . . , Xn) in C (unique up to isomorphism,
if it exists), or simply

∏n
i=1Xi when C is clear from the context, and f1 ×C f2 ×C · · · ×C fn

for the universal map in the C-product of (f1 ◦C π1, f2 ◦C π2, . . . , fn ◦C πn), where πi is the
canonical projection prodC(X1, X2, . . . , Xn) → Xi. In particular, we use pwrC(X,n) instead of
prodC(X1, X2, . . . , Xn) if X1 = X2 = · · · = Xn =: X (this is called the n-th power of X in C)
and pwrC(f, n) in place of f1 ×C f2 ×C · · · ×C fn if f1 = f2 = · · · = fn =: f . Indeed, we will
write Xn for pwrC(X,n) and f

n for pwrC(f, n) if there exists no danger of ambiguity.
That said, assume henceforth that C is a category with all finite products and F a functor

C → Set preserving these products. In our understanding, a (finitary single-sorted) F -structure
is then any 4-uple A = (A,χ, σ, I) consisting of
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(i) an object A of C, referred to as the carrier of the structure and denoted by |A|;
(ii) a choice function χ : N → obj(C) sending each n ∈ N to a distinguished element χ(n)

in the isomorphism class of An, where A0 is, in particular, the terminal object of C;
(iii) a signature σ = (Σf ,Σr, ar);
(iv) an interpretation function I : Σf ∪Σr → obj(C) ∪ obj(Set).

Given n ∈ N, the interpretation of an n-ary (function) symbol f ∈ Σf in A is a morphism
I(f) ∈ homC(χ(n), A), and the interpretation of an n-ary (relation) symbol R ∈ Σr is a relation
I(R) ⊆ F(χ(n)). As is customary, a nullary function symbol ς is called a constant symbol,
because its interpretation I(ς) can be identified with a distinguished element of F(A).

Remark 3. In the sequel, dealing with a (finitary single-sorted) F -structure A = (A,χ, σ, I),
we will systematically forget about χ and write simply An in place of χ(n), with the implicit
understanding that this is only a shorthand for a chosen representative of the isomorphism class
of An in C. As a result, we will use a 3-uple, instead of a 4-uple, to describe an F -structure
and omit any further explicit reference to any choice function. On the other hand, in the cases
explicitly considered below to work out the basics of the abstract theory of normed structures,
we will restrict ourselves to F -structures of type (A, σ, I), where each relation symbol ̺ of σ, if
any is present, is a binary symbol whose interpretation is a preorder [resp. a partial order] on
F(A), in such a way that (F(A), I(̺)) is an object of Pre [resp. Pos]. When this occurs, A
will be referred to as a prealgebraic [resp. subalgebraic] F -structure, and indeed as an algebraic
F -structure if I(̺) is the equality relation on F(A) for every ̺ ∈ Σr. Algebraic 1Set-structures
are precisely the (finitary single-sorted) structures traditionally studied by universal algebra
(here and later, 1Set denotes the identity functor Set → Set).

Remark 4. As far as there is no likelihood of confusion, given an F -structure A = (A, σ, I),
with σ = (Σf ,Σr, ar), we do not make any notational distinction between a symbol ς of σ and
its interpretation under I, i.e., we use ς for I(ς). This will be especially the case when F = 1Set
and ς is the function symbol of a binary operation, such as +, · or ⋆, or the relation symbol of a
preorder, such as ≤ or �: In these circumstances, for a, b ∈ A, we will write, e.g., a+ b in place
of I(+)(a, b) and a ≤ b instead of (a, b) ∈ I(≤), without additional explanation.

Upon these premises, assume that, for some k, ℓ ∈ N, it is possible to partition Σf and Σr, each
in turn, into k families of function symbols {ς1,r}r∈R1

, . . . , {ςk,r}r∈Rk
and ℓ families of relation

symbols {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

(see Remark 2). In this case, A is possibly represented by

(A; {ς1,r}r∈R1
, . . . , {ςk,r}r∈Rk

; {̺1,s}s∈S1
, . . . , {̺ℓ,s}s∈Sℓ

). (3)

On another hand, admit that σ is balanced and let σ = ({(ςr, ̺r)}r∈Σf
; ar) (see Remark 1).

Suppose that there exists k ∈ N such that {(ςr, ̺r)}r∈Σf
can be partitioned into k collections of

the form {(ς1,r, ̺1,r)}r∈R1
, . . . , {(ςk,r, ̺k,r)}r∈Rm

. Then, we possibly denote A by

(A; {(ς1,r, ̺1,r)}r∈R1
; . . . ; {(ςk,r, ̺k,r)}r∈Rk

). (4)

Moreover, these notations are further simplified, in the most obvious way, if a family of symbols
is a singleton, to the degree of writing, e.g., (A; +, ⋆, 1;≤,∼) in place of (A, σ, I) provided
σ = ({+, ⋆, 1}, {≤,∼}, ar) or (A;−,�; ⋆,≃) instead of (A, σ, I) for σ = ({−, ⋆}, {�,≃}, ar).

3. Prealgebraic theories and prenorms

Assume henceforth that C is a category with finite products and F a functor C → Set. Let
σ be a signature and V an infinite set of variables. We denote by 〈V ;σ〉 the collection of all
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well-formed formulas in the variables V generated by σ. An F -structure A = (A, σ, I) is said
to satisfy a formula φ ∈ 〈V ;σ〉 of n arguments if the interpretation φ(A) of φ in A is a true
statement, where φ(A) is obtained by replacing each variables with an element of F(A), each
function symbol ς ∈ Σf with F(I(ς)), and each relation symbol ̺ ∈ Σr with I(̺). In that case,
one writes F(A) |= φ. A σ-theory, or a theory of type σ, in the variables V is then any triple
T = (V, σ,Ξ) such that Ξ is a (possibly empty) subset of 〈V ;σ〉, while a model A of T under F ,
or equivalently an F -model of T , is an F -structure (A, σ, I) that satisfies every axiom φ ∈ Ξ.
Such a condition is equivalently expressed by writing F(A) |= T and saying that A satisfies T
under F : in this respect, σ will be also referred to as the signature of (T,A). If T = (V, σ,Ξ) is
a σ-theory, a subtheory of T is any theory TS = (V, σS ,ΞS) such that σS is a subsignature of σ
and ΞS = Ξ ∩ 〈V ;σS〉, while an F -submodel of T is an F -model of a subtheory of T . If TS is a
subtheory of T , we can as well say that T is an extension, or a supertheory, of TS.

Remark 5. Let σ be a signature including two binary symbols ∨ and ∧, a unary symbol u and
a nullary symbol e. Then, consider the following well-formed formulas from 〈V ;σ〉:

(a.1) ∀x, y, z ∈ V : (x ∨ y) ∨ z = x ∨ (y ∨ z).
(a.2) ∀x ∈ V : x ∨ e = e ∨ x = x.
(a.3) ∀x ∈ V : x ∨ u(x) = u(x) ∨ x = e.
(a.4) ∀x, y, z ∈ V : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
(a.5) ∀x, y, z ∈ V : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

We refer, as is usual, to (a.1) as the axiom of associativity for the symbol ∨; to (a.2) as the
axiom of neutrality for the pair (∨, e); to (a.3) as the axiom of inverses for the triple (∨, u, e);
to (a.4) and (a.5), respectively, as the axioms of left and right distributiveness of ∧ over ∨. We
list them here for future reference: They will be used later to deal with examples in Section 5.

Definition 1. We say that a theory T = (V, σ,Ξ) is prealgebraic if σ is a balanced signature of
type (Σf ,Σr, ar), where all relation symbols are binary and, for each ̺ ∈ Σr, the axioms of T
include at least the axiom of reflexivity: ∀x ∈ V : (x, x) ∈ ̺, and the axiom of transitivity:

∀x, y, z ∈ V : (((x, y) ∈ ̺) AND ((y, z) ∈ ̺))) =⇒ ((x, z) ∈ ̺).

In addition to this, T will be called subalgebraic if it is prealgebraic and, for every ̺ ∈ Σr, Ξ
contains also the axiom of antisymmetry:

∀x, y ∈ V : (((x, y) ∈ ̺) AND ((y, x) ∈ ̺))) =⇒ (x = y).

Lastly, we convey that T is algebraic if Σr = ∅ and algebraic under F if, for each F -model
A = (A, σ, I) of T , there exists one more F -model Aa = (A, σ, Ia) of T such that Ia(ς) = I(ς)
for each ς ∈ Σf and Ia(̺) is the equality relation on F(A) for each ̺ ∈ Σr, so that Aa is an
algebraic F -structure (see Remark 3), referred to as an algebraization of A.

Definition 2. An F -model A = (A, σ, I) of a theory T = (V, σ,Ξ), with σ = (Σf ,Σr, ar), will
be said pivotal if the symbols of Σr have all the same ariety and there exists ̺0 ∈ Σr such that
I(̺) ⊆ I(̺0) for every ̺ ∈ Σr, in which case we refer to I(̺0) as the pivot of A.

These definitions stem from the fact that, if T is prealgebraic [resp. subalgebraic], any relation
symbol of its signature will be interpreted, in any possible F -model of T , as a preorder [resp. a
partial order]. In particular, pivotal models will be crucial, later in this section, for the definition
of the categories of prenormed and subnormed structures over a fixed “target” (see Section 4).

Remark 6. A subalgebraic theory is always a prealgebraic theory. More interestingly, there
is a canonical way to identify an F -model A = (A, σ, I) of an algebraic theory T = (V, σ,Ξ)
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with an F -model of a subalgebraic theory (in the same variables), so that any algebraic theory
can be definitely identified with an algebraic theory under F . To see how, let σ = (Σf , ∅, ar).
For each ς ∈ Σf , consider a binary relation symbol ̺ς /∈ Σf , not already comprised among the
basic symbols of the underlying logic, and set Σr := {̺ς}ς∈Σf

. Then, extend ar to the function
are : Σf ∪ Σr → N by taking are(̺) := 2 for every ̺ ∈ Σr and define σe := (Σf ,Σr, are). Lastly,
expand Ξ to a larger set of axioms, namely Ξe, in such a way as to include all and only the
axioms of reflexivity, symmetry and transitivity relative to every relation symbol ̺ ∈ Σr. Then,
Te = (V, σe,Ξe) is a subalgebraic (and hence prealgebraic) theory and A can be identified with
the model Ae = (A, σe, Ie) of Te defined by assuming that Ie = I on Σf and Ie(̺) is the equality
relation on A for each ̺ ∈ Σr. On another hand, say that T is an arbitrary theory. Then, there
is always a smallest prealgebriac [resp. subalgebraic] theory in the same variables and with the
same signature as T , where “smallest” means “with the fewest possible axioms”. This will be
denoted by ♯pT [resp. ♯sT ] and called the prealgebraic [resp. subalgebraic] embodiment of T .

Remark 7. When the set of variables V is well understood from the context, we will use simply
(σ,Ξ) in place of (V, σ,Ξ) to indicate a theory in the variables V .

If P is a set and Q = (Q,≤Q) a preset, we agree to denote by ℘(P,Q) the preorder induced on
homSet(P,Q) by ≤Q as follows: if f and g are functions P → Q, we let (f, g) ∈ ℘(P,Q) if and
only if f(x) ≤Q g(x) for all x ∈ P . Observe that, up to an isomorphism, ℘(P,Q) is, indeed, the
preorder of the exponential object QP of (P ,Q) in Pre when P is the trivial poset on P . Note
also that ℘(P,Q) is, in fact, a partial order when Q is a poset.

Lemma 3.1. Given that P is a set and Q = (Q,≤Q) and R = (R,≤R) are presets, let f, f1, f2 ∈
homSet(P,Q) and g, g1, g2 ∈ homSet(Q,R). Then the following holds:

(i) If (g1, g2) ∈ ℘(Q,R), then (g1 ◦Set f, g2 ◦Set f) ∈ ℘(P,R).
(ii) If (f1, f2) ∈ ℘(P,Q) and g ∈ homPre(Q,R), then (g ◦Set f1, g ◦Set f2) ∈ ℘(P,R).

Proof. The first claim is obvious. As for the second, pick x ∈ P . Since (f1, f2) ∈ ℘(P,Q), it is
f1(x) ≤Q f2(x), from which g(f1(x)) ≤R g(f2(x)), for g is a monotonic function Q → R. By
the arbitrariness of x ∈ P , this completes the proof. �

Now, in what follows, let Ti = (V, σi,Ξi) be a prealgebraic [resp. subalgebraic] theory and
Ai = (Ai, σi, Ii) an F -model of Ti (i = 1, 2), with σi = ({ςr,i, ̺r,i}r∈Ri

; ari). It is then possible
to regard a signature homomorphism α : σ1 → σ2 as a pair (α1, α2) of maps α1, α2 : R1 → R2 by
imposing that ςα1(r),2 = α(ςr,1) and ̺α2(r),2 = α(̺r,1) for each r ∈ R1. In similar circumstances,
we will systematically abuse notation and identify α with its “components” α1 and α2, to the
extent of writing ςα(r),2 in place of ςα1(r),2 and ̺α(s),2 for ̺α2(s),2.

Definition 3. We say that A1 is prehomomorphic [resp. subhomomorphic] to A2 if there exist
α ∈ homSgn(σ1, σ2) and ϕ ∈ homC(A1, A2) such that, for each r ∈ R1,

(i) (F(ϕ ◦C ςr,1),F(ςα(r),2 ◦C ϕn)) ∈ ℘(F(An
1 ),Aα(r),2);

(ii) F(ϕ) ∈ homPre(Ar,1,Aα(r),2), i.e., F(ϕ) is a monotonic function Ar,1 → Aα(r),2,

where n := ar1(ςr,1) and As,i := (F(Ai), ̺s,i) for every s ∈ Ri (take in mind Remark 4). In that
case, we refer to Φ := (α, ϕ) as an F -prenorm [resp. -subnorm] or write that Φ : A1 → A2 is a
prenorm [resp. subnorm] of F -models. In particular, an F -prenorm A1 → A2 will be said an
F -homomorphism if I2(̺α(r),2) is the equality on F(A2) for each r ∈ R1.
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Remark 8. Definition 3 returns exactly the standard notion of a homomorphism of algebraic
structures, as given in the framework of universal algebra, in the special case when Ti is an
algebraic theory under 1Set (and thus C = Set), 1Set(Ai) |= Ti, and T1 = T2.

Remark 9. Except for the axioms required to turn T1 and T2 into prealgebraic [resp. sub-
algebraic] theories, the definition of a prenorm [resp. subnorm] A1 → A2 does not depend at
all on the axioms that A1 and A2 are required to satisfy as models of T1 and T2, respectively.
This ultimately means that other axioms, if any is present, do not play an active role in the
foundations of the abstract theory so far developed. Rather, they (can) contribute to deter-
mining “extrinsic” properties of prenorms (and, later, prenormed structures), i.e., properties
complementary to the inherent ones stemming directly from their very definition.

Remark 10. Clearly enough, for an F -prenorm A1 → A2 to exist, it is necessary that any
n-ary function symbol of σ1 has a corresponding n-ary function symbol in σ2, though it is not
necessary that σ1 is smaller than σ2 (in the sense that the former contains less symbols than the
latter). Also, if R1 = ∅, the pair (α, ϕ) is an F - prenorm A1 → A2 if and only if α = (σ1, σ2, ∅)
and ϕ ∈ homC(A1, A2) is monotonic in the sense of condition (ii) of Definition 3. Lastly, for A1

an algebraic F -model of T1, (α, ϕ) is an F -prenorm A1 → A2 if and only if it satisfies condition
(i) in the aforementioned definition (since the other, in this case, is automatically fulfilled).

Remark 11. Suppose that (α, ϕ) is an F -prenorm A1 → A2 and pick an index r ∈ R1, if any
exists, such that ςr,1 is (interpreted as) a nullary operation of A1. It then follows from Definition
3 that (F(ϕ)(cr,1), cα(r),2) ∈ ̺α(r),2, where cr,1 := F(ςr,1)(F(A0

1)) is a distinguished element of

F(A1) and cr,2 := F(ςα(r),2)(F(A0
2)) a distinguished element of F(A2). In particular, if ̺α(r),2 is

antisymmetric, thus a partial order on F(A2), and cα(r),2 is the least element of (F(A2), ̺α(r),2),
in the sense that (cα(r),2, a) ∈ ̺α(r),2 for every a ∈ F(A2), this implies F(ϕ)(cr,1) = cα(r),2. On
account of the worked examples examined in Section 5, such a result represents a minor but
attractive byproduct of the framework set up in this work. In the ultimate analysis, it shows
that there is no need to assume, say, that a group norm or a ring seminorm, as defined in
the traditional setting by taking them to be valued in R+

0 (cf. Section 5, Examples E.3 and
E.5), preserve the additive identities. Actually, this is a consequence of the inherent properties
of subnorms, which can help to better understand the intimate nature of the concept itself of
norm.

Definition 4. Assume that A2 is pivotal and denote its pivot by ≤. Take ς2 to be a nullary
function symbol in σ2 (if any exists) and Φ = (α, ϕ) an F -prenorm A1 → A2. We say that Φ is

(i) upward [resp. downward] semidefinite with respect to ς2 if F(ς2 ◦C ϕ0)(a) ≤ F(ϕ)(a)
[resp. F(ϕ)(a) ≤ F(ς2 ◦C ϕ0)] for every a ∈ F(A1);

(ii) upward [resp. downward] definite (with respect to ς2) if it is upward [resp. downward]
semidefinite and F(ς2◦Cϕ0)(a) 6= F(ϕ)(a) for all a ∈ F(A1)\

⋃
ς1∈α−1(ς2)

F(ϕ◦Cς1)(A0
1),

which will be equivalently expressed by writing that F(ς2 ◦C ϕ0)(a) � F(ϕ)(a) [resp.
F(ϕ)(a) � F(ς2 ◦C ϕ0)] for every a ∈ F(A1) \

⋃
ς1∈α−1(ς2)

F(ϕ ◦C ς1)(A
0
1).

(iii) indefinite (with respect to ς2) if it is neither upward nor downward semidefinite.

Upward (semi)definitess abstracts and generalizes one of the most basic properties of standard
norms, to wit, positive (semi)definiteness. More than this, Definition 4 suggests that, at least in
principle, (semi)definitiness of norms has nothing really special to do with the additive identities
in group-like, ring-like or module-like structures, as one might naively conclude from the classical

9



perspective. Rather, it is an issue related to constants, all constants: Which one of these is more
significant than the others strongly depends on the case at hand.

Proposition 3.1. Let Ti = (V, σi,Ξi) be a prealgebraic [resp. subalgebraic] theory and Ai =
(Ai, σi, Ii) an F-model of Ti (i = 1, 2, 3). Suppose Φ = (α, ϕ) is an F-prenorm [resp. -subnorm]
A1 → A2 and Ψ = (β, ψ) a prenorm [resp. subnorm] A2 → A3. Then, Θ = (γ, ϑ), where
γ := β ◦Sgn α and ϑ := ψ ◦C ϕ, is an F-prenorm [resp. -subnorm] A1 → A3.

Proof. Assume σi = ({(ςr,i, ̺r,i)}r∈Ri
; ari) and, for every r ∈ Ri, take Ar,i to be the preset [resp.

poset] (F(Ai), ̺r,i). Since Sgn and Pre [resp. Pos] are categories, γ is obviously a signature
homomorphism σ1 → σ2 and F(ϑ), i.e., F(ψ) ◦Set F(ϕ), a monotonic function Ar,1 → Aγ(r),3

for every r ∈ R1. Thus, it is left to prove that (F(ϑ◦C ςr,1),F(ςγ(r),3◦Cϑ
n)) ∈ ℘(F(An

1 ),Aγ(r),3)
for each n-ary function symbol ςr,1 ∈ σ1. To this end, pick r ∈ R1 and set n := ar1(ςr,1). Since,
by hypothesis, (F(ϕ ◦C ςr,1),F(ςα(r),2 ◦C ϕn)) ∈ ℘(F(An

1 ),Aα(r),2) and F(ψ) is a monotonic
function Aα(r),2 → Aγ(r),3, it follows from the second point of Lemma 3.1 that

(F(ψ) ◦Set F(ϕ ◦C ςr,1),F(ψ) ◦Set F(ςα(r),2 ◦C ϕn)) ∈ ℘(F(An
1 ),Aγ(r),3). (5)

By the functoriality of F (and the associativity of ◦C), this in turn is equivalent to

(F(ϑ ◦C ςr,1),F(ψ ◦C ςα(r),2) ◦Set F(ϕn)) ∈ ℘(F(An
1 ),Aγ(r),3). (6)

On the other hand, again by hypothesis, (F(ψ ◦C ςα(r),2),F(ςγ(r),3 ◦Cψ
n)) ∈ ℘(F(An

2 ),Aγ(r),3).
Also, ϑn = ψn ◦C ϕn. Hence, the first point of Lemma 3.1 implies that

(F(ψ ◦C ςα(r),2) ◦Set F(ϕn),F(ςγ(r),3 ◦C ψn) ◦Set F(ϕn)) ∈ ℘(F(An
1 ),Aγ(r),3). (7)

Using once more the functoriality of F (and the associativity of ◦C), along with the fact that
ψn ◦C ϕn = (ψ ◦C ϕ)n = ϑn, this equation can be rearranged in the form:

(F(ψ ◦C ςα(r),2) ◦Set F(ϕn),F(ςγ(r),3 ◦C ϑn)) ∈ ℘(F(An
1 ),Aγ(r),3). (8)

In the light of Equation (6), it then follows that

(F(ϑ ◦C ςr,1),F(ςγ(r),3 ◦C ϑn)) ∈ ℘(F(An
1 ),Aγ(r),3), (9)

since ℘(F(An
1 ),Aγ(r),3) is a preorder on homSet(F(An

1 ),F(A3)). And this ultimately proves, by
the arbitrariness of r ∈ R1, that (γ, ϑ) is an F -prenorm [resp. -subnorm] A1 → A3. �

With this in hand, take J to be a set and T = {(σj ,Ξj)}j∈J a collection of prealgebraic [resp.
subalgebraic] theories in the variables V . We define Co, on the one hand, as the class of all
pairs (T,A) such that T ∈ T and F(A) |= T , and Ch, on the other, as the class of all triples
(M1,M2,Φ) such that Mi = (Ti,Ai), with Ti ∈ T and F(Ai) |= Ti, and Φ is a prenorm
[resp. subnorm] of F -models A1 → A2. We let s and t be, each in turn, the maps Ch → Co :
(M1,M2,Φ) 7→ M1 and Ch → Co : (M1,M2,Φ) 7→ M2, while denoting by id the mapping
Co → Ch that sends a pair M = (T,A) of Co, with T = (σ,Ξ) and A = (A, σ, I), to the triple
(M,M, ε) of Ch with ε := (idSgn(σ), idC(A)). Last but not least, we specify a partial function
◦ : Ch × Ch 7→ Ch as follows: Pick m = (M1,M2,Φ) and n = (N1,N2,Ψ) in Ch. If M2 6= N1,
then ◦(m, n) is not defined. Otherwise, in the light of Proposition 3.1, assume Φ = (α, ϕ) and
Ψ = (β, ψ) and set ◦(m, n) := (M1,N2,Θ), where Θ := (β ◦Sgn α, ψ ◦C ϕ).

It is then routine to check that (Co, Ch, s, t, id, ◦) is a category. We call it the category of
prealgebraic [resp. subalgebraic]F -models of T. It will be denoted, in general, byPnrF (T) [resp.
SnrF (T)], and especially written as PnrF (T ) [resp. SnrF (T )] in the case where T consists of a
unique prealgebraic [resp. subalgebraic] theory T (in the variables V ). In the latter occurrence,
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whenever T is implied by the context, we use use A in place of (T,A) to mean an object of
PnrF (T ) [resp. SnrF (T )]. A thorough investigation of the properties of these categories is
behind the scope of the present paper: it will, in fact, be the subject of a subsequent article.
For the moment, we restrict ourselves to a few trivial remarks and observations.

The first one is the existence, substantially by construction, of an obvious “forgetful” functor
D : PnrF(T) → Set, defined by sending an object (T,A) of PnrF (T) to F(|A|) and a morphism
(M1,M2,Φ), with Mi = (T,Ai) and Φ = (α, ϕ), to the function F(ϕ) : F(|A1|) → F(|A2|). In
fact, D is full if F is full, and [essentially] surjective on objects whenever F is such. On another
hand, SnrF (T) is obviously contained in PnrF(T) as a full subcategory, so that we can partially
reduce the study of the former to the study of the latter. Moreover, suppose T = (V, σ,Ξ) is a
prealgebraic [resp. subalgebraic] theory and T0 = (V, σ0,Ξ0) a prealgebraic [resp. subalgebraic]
subtheory of T . Then, there exists one more “forgetful” functor CT0

: PnrF(T ) → PnrF (T0)
[resp. CT0

: SnrF (T ) → SnrF(T0)]. This is defined by mapping

(i) a prealgebraic [resp. subalgebraic] F -model M = (T,A) of T , with A = (A, σ, I), to the
pair (T0,A0), where A0 := (A, σ0, I|σ0

);
(ii) a morphism (α, ϕ) : M1 → M2 of PnrF (T ) [resp. SnrF (T )] to the F -prenorm [resp.

-subnorm] (α0, ϕ) : CT0
(M1) → CT0

(M2), where α0 is the restriction of α to σ0.

In particular, CT0
returns a “forgetful” functor to C in the extreme case where T0 is the “empty

theory” (V, ∅, ∅), so that D, as given above, is simply the functor composition of F with CT0

(in this latter case). One interesting question is, then, to establish under which conditions CT0

admits a left or right adjoint. Nevertheless, this question, as well as other properties of PnrF (T )
and SnrF (T ), appears to to be strongly dependent on the actual characteristics of C and F
and will be considered in future work.

4. Prenormed models over a fixed target

Continuining with the notation of the previous section (unless explicitly overridden), assume
henceforth that M0 = (T0,A0) is a fixed “target” in PnrF (T), with A0 = (A0, σ0, I0), and
suppose that A0 is pivotal; let us denote its pivot by ≤ and set A0 := (F(A0),≤). A prenormed
F -model of T overM0 is, then, any pair M = (M,Φ) such that M is another object of PnrF(T)
and Φ an F -prenorm M → M0. We will, in this case, refer to Φ as an M0-valued F -prenorm
on M (or an F -prenorm on M with values in M0), and indeed as an M0-valued F -subnorm on
M (or an F -subnorm on M with values in M0) if M and M0 are both prenormed F -models
of T. Observe that M can be well identified with the morphism Φ : M → M0 of PnrF(T).

Given a prenormed F -model Mi = (Mi,Φi) of T over M0 (i = 1, 2), with Φi = (αi, ϕi), we
define an F -short morphism M1 → M2 to be any morphism (β, ψ) : M1 → M2 in PnrF (T) such
that β ◦Sgn α2 = α1 and (F(ϕ2 ◦C ψ),F(ϕ1)) ∈ ℘(F(A0),A0). The terminology is prompted
by the fact that the latter condition is ultimately equivalent to saying, in a much more familiar
notation, that ‖F(ψ)(a)‖2 ≤ ‖a‖1 for all a ∈ F(A), with ‖ · ‖i := F(ϕi). In particular, we write
that Ψ is an F -isometry M1 → M2 if ‖F(ψ)(a)‖2 = ‖a‖1 for all a ∈ F(A).

Remark 12. As shown shortly, prenormed F -models of T over M0 and F -short morphisms
thereof give rise to a further category, besides PnrF(T). In the many-sorted case (discussed in
the second part of the present work), this provides a full abstraction of the usual category of
left modules over a fixed valuated ring (normed spaces over a fixed valuated field can be viewed
as a special case of these), with morphisms given by weakly contractive linear transformations
between the underlying vector spaces. This sounds intriguing, for it seems to suggest that,
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from the perspective of the framework set up in this paper, the “right choice” about the kind
of morphisms to be considered in relation to normed structures, based only on abstract non-
sense reasoning (and especially regardless of any further considerations relevant to applications),
should “naturally” fall on short maps. Simply for the fact that common alternatives available
in the “localized” context of normed spaces, such as bounded transformations or continuous
functions between the standard topologies induced by the norms on the underlying sets, are
ruled out, for they are not even possible, in the setting where we are planting the foundations
of the general theory of normed structures.

Lemma 4.1. Let Mi = (Mi,Φi) be a prenormed F-model of T over M0 (i = 1, 2, 3) and suppose
that Ψ and Θ are, respectively, F-short maps M1 → M2 and M2 → M3. The composition of Θ
with Ψ in PnrF(T) is then an F-short map M1 → M3.

Proof. Let Ψ = (β, ψ) and Θ = (γ, ϑ) and set Mi = (Ti,Ai), Φi = (αi, ϕi) and ‖ · ‖i := F(ϕi).
It suffices to show that ‖F(ϑ ◦C ψ)(a)‖3 ≤ ‖a‖1 for all a ∈ F(|A1|). But this is straightforward
since, by hypothesis, ‖F(ϑ)(F(ψ)(a))‖3 ≤ ‖F(ψ)(a)‖2 on the one hand, and on the other hand
‖F(ψ)(a)‖2 ≤ ‖a‖1, so that the conclusion follows from the transitivity of ≤. �

Define Co as the class of prenormed F -models overM0 and Ch as that of triples (M1,M2,Ψ) such
that Mi is a prenormed F -model of T over M0 and Ψ an F -short morphism M1 → M2. Then,
take s and t to be the maps Ch → Co : (M1,M2,Φ) 7→ M1 and Ch → Co : (M1,M2,Φ) 7→ M2,
respectively, and denote by id the function Co → Ch sending a prenormed F -model M = (M,Φ)
to the triple (M,M, ε), where ε is the identity M → M in PrnF(T). Lastly, let ◦ be the partial
function Ch × Ch 7→ Ch specified as follows: Take m = (M1,M2,Ψ) and n = (N1,N2,Θ) in Ch.
If M2 6= N1, then ◦(m, n) is not defined. Otherwise, based on Lemma 4.1, assume Ψ = (β, ψ)
and Θ = (γ, ϑ) and set ◦(m, n) equal to the triple (M1,N2,Π), where Π := (γ ◦Sgn β, ϑ ◦C ψ).

It is easy to verify that the 6-uple (Co, Ch, s, t, id, ◦) gives a category. We call it the category of
prenormed F -models of T overM0 and refer to its objects as prenormed F -models of T overM0.
This category will be denoted, in general, by PnrF (T;M0), and especially by PnrF(T ;M0) in
the case where T consists of one prealgebraic theory T . When M0 is a seminormed F -model of
T, then the objects in PnrF(T;M0) that are, indeed, seminormed F -models of T overM0, form
a full subcategory of PnrF(T;M0). This will be written as SnrF(T;M0), or as SnrF (T ;M0)
for T = {T }, and called the category of seminormed F -models over M0.

An extended study of the properties of these categories is beyond the scope of the present pa-
per. Here, we just observe that there exists an obvious “forgetful” functor D : PnrF(T;M0) →
Set, defined by sending a prenormed F -model (M,Φ) of T overM0, withM = (T,A), to F(|A|),
and an F -short morphism (α, ψ) : (M1,Φ1) → (M2,Φ2) of PnrF (T;M0), with Mi = (Ti,Ai),
to the function F(ψ) : F(|A1|) → F(|A2|). This is full if F is full, and [essentially] surjec-
tive on objects if F is such. The same D restricts to a functor SnrF (T;M0) → Set for M0

being a seminormed F -model of T, in which case SnrF(T;M0) is, indeed, a full subcategory
of PnrF(T;M0). On another hand, assume that T = (V, σ,Ξ) is a prealgebraic [resp. sub-
algebraic] theory and T0 = (V, σ0,Ξ0) a prealgebraic subtheory of T . Then, we know from
the previous section that there exists a “forgetful” functor CT0

: PnrF(T ) → PnrF(T0) [resp.
CT0

: PnrF (T ) → PnrF (T0)]. This in turn induces a “forgetful” functor ET0
: PnrF (T ;M0) →

PnrF (T0; CT0
(M0)) [resp. ET0

: SnrF (T ;M0) → SnrF(T0; CT0
(M0))], defined by sending

(i) a prenormed [resp. subnormed] F -model (M,Φ) of T over M0 to (CT0
(M), CT0

(Φ));
12



(ii) an arrow Ψ : (M1,Φ1) → (M2,Φ2) of PnrF (T ;M0) [resp. SnrF (T ;M0)] to the
morphism CT0

(Ψ) : (CT0
(M1), CT0

(Φ1)) → (CT0
(M2), CT0

(Φ2)) of PnrF (T0; CT0
(M0))

[resp. SnrF (T0; CT0
(M0))].

In particular, ET0
returns a “forgetful” functor to C in the extreme case where T0 is the “empty

theory” (V, ∅, ∅), so that D, as given above, is simply the functor composition of F with ET0

(in this latter case). It is then interesting to ask when ET0
admits adjoints. However, the

question, along with other properties of PnrF (T ) and SnrF (T ), is seen to critically depend on
the specificity of C and F and will be investigated in a separate paper.

5. Some worked examples

Unless explicitly overridden, the notation throughout is based on that of the previous section.
Here, we show how the framework developed so far succeeds to capture all the essential features
of the notion itself of norm as this is traditionally defined in the classical approach to the
theory of normed groups, valuated rings, normed (vector) spaces, etc. In each of the examples
examined, we assume C = Set and F = 1Set. Therefore, we omit any further reference to F and
use, e.g., “model” in place of “F -model”, “prenorm” [resp. “subnorm”] instead of “F -prenorm”
[resp. “F -subnorm”], and so on. In fact, it is enough to focus on a family T consisting of two
theories T = (σ,Ξ) and T0 = (σ0,Ξ0), possibly equal to each other: The former is required to
be algebraic under 1Set, the latter prealgebraic [resp. subalgebraic].

Upon these premises, we take A = (A, σ, I) to be an algebraic model of T and A0 = (A0, σ0, I0)
a pivotal prealgebraic [resp. subalgebraic] model of T0. We set M := (T,A) and M0 := (T0,A0)
and denote the pivot of A0 by ≤. Furthermore, in the light of Remark 10, we assume that σ
is a subsignature of σ0 and concentrate only on M0-valued prenorms [resp. subnorms] on M
of the form Φ = (α, ‖ · ‖) such that α is the canonical injection σ → σ0, hence identifying Φ
with ‖ · ‖ by a convenient abuse of notation. Lastly, for Ts a subtheory of T0, we use CTs

for the
“forgetful” functor Pnr1Set

(T0) → Pnr1Set
(Ts) defined by the end of Section 3.

Now, we pick a distinguished set of (non-logical) function symbols, Σf = {+, ⋆, u, 0, 1}, and
a distinguished set of (non-logical) relation symbols, Σr = {≤+,≤⋆,≤u,≤0,≤1}, and introduce
a “reference signature” σref = (Σf ,Σr, arref), where arref is defined in such a way that +, ⋆ and
every member of Σr are binary, u is unary, and 0 and 1 are nullary. Then, as is usual, we call

(s.1) σsgrp := (+,≤+; arsgrp) the signature of semigroups;
(s.2) σmon := (+,≤+; 0,≤0; armon) the signature of monoids;
(s.3) σgrp := (+,≤+;u,≤u; 0,≤0; argrp) the signature of groups;
(s.4) σrg := (+,≤+; ⋆,≤⋆; 0,≤0; arrg) the signature of semirings;
(s.5) σrig := (+,≤+; ⋆,≤⋆; 0,≤0; 1,≤1; arrig) the signature of unital semirings;
(s.6) σrng := (+,≤+; ⋆,≤⋆;u,≤u; 0,≤0; arrng) the signature of rings;
(s.7) σring := (+,≤+; ⋆,≤⋆;u,≤u; 0,≤0; 1,≤1; arrng) the signature of unital rings.

Here, arsgrp, armon, etc are the appropriate restrictions of arref to {+,≤+}, {+,≤+, 0,≤0}, etc.
We then say that a subnorm ‖ · ‖ : M → M0, if any exists, is an M0-valued semigroup [resp.
group] subnorm (on M) if T is the smallest subalgebraic theory of signature σsgrp [resp. σgrp],
an M0-valued monoid subnorm if T is the smallest subalgebraic theory of signature σmon, an
M0-valued semiring [resp. ring] subnorm if T is the smallest subalgebraic theory of signature
σrg [resp. σrng], and an M0-valued subnorm of unital semirings [resp. unital rings] if T is the
smallest subalgebraic theory of signature σrig [resp. σring] (cf. Remark 6). When T0 = T , this
implies that a subnorm ‖ · ‖ : M → M0 can be characterized by saying that:
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(e.1) an M0-valued semigroup subnorm (on M) if and only if

‖a+ b‖ ≤+ ‖a‖+ ‖b‖ for all a, b ∈ A. (10)

In the most usual case, A and A0 are models of the subalgebraic theory Tsgrp of semi-
groups, which is the smallest subalgebraic theory of signature σsgrp including the axiom
of associativity (see Remark 5) for +. In common applications, it is assumed that M0 is
the ordered additive semigroup of the non-negative real numbers, with the (semigroup
and order) structure inherited from R. As a a specialization of the general terminol-
ogy, we then refer to an M0-valued semigroup subnorm ‖ · ‖ (on M) as an M0-valued
semigroup seminorm (on M), and call M a seminormed semigroup over M0.

(e.2) an M0-valued monoid subnorm if and only if C♯sTsgrp
(‖ · ‖) is a C♯sTsgrp

(M0)-valued
semigroup subnorm on C♯sTsgrp

(M) and ‖0‖ ≤0 0. Typically, A and A0 are models of
the subalgebraic theory Tmon of monoids, to wit, the smallest subalgebraic extension of
Tsgrp comprising the axiom of neutrality (see Remark 5) for the symbol 0. Also, one
usually takes M0 to be the ordered additive monoid of the non-negative real numbers,
with the structure inherited from R. By Remark 11, it then follows that ‖0‖ = 0. Thus,
motivated by the “classical theory”, we refer to an M0-valued monoid subnorm ‖ · ‖
(on M) which is upward semidefinite [resp. definite] with respect to 0 as an M0-valued
monoid seminorm [resp. norm] (on M), and call M a seminormed [resp. normed]
monoid over M0.

(e.3) an M0-valued group subnorm if and only if

‖u(a)‖ ≤u u(‖a‖) for all a ∈ A (11)

and C♯sTmon
(‖ · ‖) is a C♯sTmon

(M0)-valued monoid subnorm on C♯sTmon
(M). In familiar

instances, A is a model of the subalgebraic theory Tgrp of groups, the smallest subalge-
braic extension of Tmon containing the axiom of inverses (see Remark 5) for the triple
(+, u, 0). In these cases, u is usually represented by the symbol −, so that the above
Equation (11) reads as:

‖ − a‖ ≤u u(‖a‖) for all a ∈ A (12)

and indeed as: ‖ − a‖ ≤ −‖a‖ for all a ∈ A if T0 = Tgrp. This seems to suggest that
group prenorms are “naturally negative” (for an appropriate choice of the target model
A0 such as the additive group of the real numbers with its usual order) as far as we
look at them as morphisms between (prenormed) structures of the very same algebraic
type, i.e., groups. This is intriguing but not completely satisfactory, for it does not
cover the relevant case of standard (positive definite) group norms [2, p. 5]. However,
similar cases can be brought within the scope of our framework in the light of one trivial
consideration: That the target of a standard group norm is taken equal to R+

0 , which is
everything but a group. In particular, the most obvious solution is to assume that T0 is
not the same as T , but instead the smallest subalgebraic theory of its same signature.
Then, u can be interpreted as the identity function on A0 and Equation (12) becomes:
‖ − a‖ ≤u ‖a‖ for all a ∈ A. If ≤ is a partial order, it follows from here that ‖ · ‖ is
necessarily symmetric. This looks like another interesting byproduct of our approach,
as it suggests that “asymmetric group norms” (cf. [2, Remark 2]) do not really exist as
such. They can as monoid norms, which is absolutely reasonable if we think of the fact
that an “asymmetric group norm” is ultimately defined without any specific requirement
about inverses. Starting from these considerations, we then refer to an M0-valued group
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subnorm ‖ · ‖ (on M), which is upward semidefinite [resp. definite] with respect to 0, as
an M0-valued group seminorm [resp. norm] (on M), and call M a seminormed [resp.
normed] group over M0.

(e.4) an M0-valued semiring subnorm if and only if

‖a ⋆ b‖ ≤u ‖a‖ ⋆ ‖b‖ for all a, b ∈ A (13)

and C♯sTmon
(‖ · ‖) is a C♯sTmon

(M0)-valued monoid subnorm on C♯sTmon
(M). Note how

this approach suggests that norms on ring-like structures are “inherently submultiplica-
tive”: “Multiplicativeness” is covered by assuming that ≤⋆ is (interpreted as) the equal-
ity relation on A0, and the same applies to different [binary] operations, to the extent
that, from an abstract point of view, there is no apparent reason to focus on the one
rather than the others. For the rest, A and A0 will be typically models of the subalge-
braic theory Trg of semirings, i.e., the smallest subalgebraic extension of Tmon containing
the axioms of left and right distributiveness of ⋆ over + and the axiom of associativity for
⋆. E.g., this is the case with the semiring of non-negative real numbers (with the usual
structure inherited from R). Motivated by the terminology of the theory of valuated
rings1, we then refer to an M0-valued semiring subnorm ‖ · ‖ (on M), which is upward
semidefinite [resp. definite] with respect to 0, as an M0-valued semiring semivaluation
[resp. valuation] (on M), and call M a semivaluated [resp. valuated] semiring over M0.

(e.5) an M0-valued ring subnorm if and only if it is both a C♯sTgrp
(‖·‖)-valued group subnorm

and a C♯sTrg
(‖·‖)-valued semiring subnorm. Thus, all the considerations previously made

on group and semiring subnorms also apply to ring subnorms. In particular, we refer to
an M0-valued ring subnorm ‖ · ‖ (on M), which is upward semidefinite [resp. definite]
with respect to 0, as an M0-valued ring semivaluation [resp. valuation] (on M), and
then call M a semivaluated [resp. valuated] semiring over M0.

(e.6) an M0-valued subnorm of unital semirings if and only if it is a C♯sTrg
(‖ · ‖)-valued

semiring subnorm and ‖1‖ ≤1 1. In many relevant applications, A and A0 are models of
the subalgebraic theory Trig of unital semirings, i.e., the smallest subalgebraic extension
of Trg including the axiom of neutrality for 1: The non-negative real numbers form a
model of Trg with the usual (algebraic and order) structure inherited from R. The same
considerations previously made on the symbol 0 in the case of group subnorms apply
to 1. Furthermore, mimicking the case of semiring subnorms, we refer to an M0-valued
subnorm ‖ · ‖ of unital semirings (on M), which is upward semidefinite [resp. definite]
with respect to 0, as an M0-valued semivaluation [resp. valuation] of unital semirings
(on M), and then call M a semivaluated [resp. valuated] unital semiring over M0.

(e.7) an M0-valued subnorm of unital rings if and only if it is both a C♯sTrig
(‖ · ‖)-valued

subnorm of unital semirings and C♯sTgrp
(‖ · ‖)-valued group subnorm. In many relevant

applications, A and A0 are models of the subalgebraic theory Tring of unital rings, the
smallest subalgebraic extension of Trig including the axiom of inverses for the triple
(+, u, 0). Of course, the same considerations previously made in the case of group
subnorms and subnorms of unital semirings apply to ring subnorms. Also, we refer to
an M0-valued subnorm ‖ · ‖ of unital rings (on M), which is upward semidefinite [resp.
definite] with respect to 0, as an M0-valued semivaluation [resp. valuation] of unital
rings (on M), and then call M a semivaluated [resp. valuated] unital ring over M0.

1: differently from other authors, we use here the term “valuation” in the meaning of “absolute value”.
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M0-valued semigroup subnorms, monoid subnorms, etc are defined and characterized in the
very same way, by replacing “subalgebraic” with “prealgebraic” and ♯s with ♯p in all of their
occurrences in the above discussion. Furthermore, most of the considerations made in the
subalgebraic case still hold in the prealgebraic one, except for those based on Remark 11.

Field valuations and norms of vector spaces over a fixed valuated field, together with variants
thereof, will be discussed in Part II as special instances of many-sorted subnormed structures.
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