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Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and
biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking
is to determine the interaction between the particle and its environment. The price paid for having a direct
visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract
diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood
estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the
effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability
of observing estimates much smaller than the true (average) value.

DOI: 10.1103/PhysRevE.85.031136 PACS number(s): 05.40.Jc, 31.15.xk, 87.16.dp, 61.43.Er

I. INTRODUCTION

Single-particle tracking dates back to the classical study
of Perrin on Brownian motion (BM) [1]. It generates the
position time series of an individual particle trajectory B(t) in a
medium (see, e.g., Refs. [2,3]), and when properly interpreted,
the information drawn from a single or a finite number of
trajectories can provide insight into the mechanisms and forces
that drive or constrain the motion of the particle. The method
is thus potentially a powerful tool to probe physical and
biological processes at the level of a single molecule [4]. At
present, single-particle tracking is widely used to characterize
the microscopic rheological properties of complex media [5],
and to probe the active motion of biomolecular motors [6]. In
biological cells and complex fluids, single-particle trajectory
(SPT) methods have, in particular, become instrumental
in demonstrating deviations from normal BM of passively
moving particles (see, e.g., Refs. [7–10]).

The reliability of the information drawn from SPT analysis,
obtained at high temporal and spatial resolution but at the
expense of statistical sample size, is not always clear. Time-
averaged quantities associated with a given trajectory may be
subject to large fluctuations among trajectories. For a wide
class of anomalous diffusions described by continuous-time
random walks, time averages of certain particles’ observables
are, by their very nature, themselves random variables distinct
from their ensemble averages [11]. An example is the square
displacement time-averaged along a given trajectory, which
differs from the ensemble-averaged mean-squared displace-
ment [12]. By analyzing time-averaged displacements of a
particular trajectory realization, subdiffusive motion can ac-
tually look normal, although with strongly differing diffusion
coefficients from one trajectory to another [13].
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Standard BM is a much simpler and exceedingly well-
studied random process [14] than anomalous diffusion, but
it is still far from being as straightforward as one might be
tempted to think. Even in bounded systems, despite the fact
that the first passage time distribution has all moments, first
passages to a given target of two independent identical BMs,
starting at the same point in space, will most likely occur at two
distinctly different time moments [15], revealing a substantial
manifestation of sample-to-sample fluctuations. Ergodicity,
i.e., the equivalence of time and ensemble averages of square
displacement, holds only in the infinite sample size limit. In
practice, this means that standard fitting procedures applied
to finite (albeit very long) trajectories of a given particle
will unavoidably lead to fluctuating estimates of the diffusion
coefficient D. Indeed, variations by orders of magnitude
have been observed in SPT measurements of the diffusion
coefficient of the LacI repressor protein along elongated
DNA [16] (see also Sec. VI A). Significant sample-to-sample
fluctuations resulting in broad histograms for the value of the
diffusion coefficient have been observed experimentally for
two-dimensional (2D) diffusion in the plasma membrane [3],
as well as for diffusion of a single protein in the cytoplasm and
nucleoplasm of mammalian cells [17].

Such a broad dispersion of the value of the diffusion
coefficient extracted from SPT measurements raises important
questions about the correct or optimal methodology that
should be used to estimate D. Indeed, these measurements
are performed in rather complex environments, and each
SPT has its own history of encounters with other species,
defects, impurities, etc., which inevitably results in rather
broad histograms for observed D. On the other hand, it is
highly desirable to have a reliable estimator of the diffusion
coefficient even for the hypothetical “pure” cases, such as,
e.g., unconstrained standard BM. A reliable estimator should
produce a distribution of D as narrow as possible and
with the most probable value as close as possible to the
ensemble-averaged one. Knowledge of the distribution of such
an estimator could provide a useful gauge to identify the
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effects of the medium complexity as opposed to variations
in the underlying thermal noise driving microscopic diffusion.
Commonly used methods of extraction of D from the SPT data
are based on a least-squares (LS) estimate of the time-averaged
square displacement and some of its derivatives (see, e.g.,
[3,17,18] and the following section). A recent study, Ref. [19],
focused on estimators for D for 1D BM, the statistics of
which is amenable to analytical analysis. Several methods
for estimating D from the SPT data were studied, and it
was shown that a completely different approach—consisting
of maximizing the unconditional probability of observing
the whole trajectory—is superior to those based on the LS
minimization. As a matter of fact, at least in 1D systems the
distribution of the maximum likelihood (ML) estimator of
the diffusion coefficient not only appears narrower than the
LS ones, resulting in a smaller dispersion, but also the most
probable value of the diffusion coefficient appears closer to
the ensemble average D [19].

In this paper, we focus first on the case of pure standard
BM and calculate exactly, for arbitrary spatial dimension d,
the distribution P (u) of the maximum likelihood estimator,

u = 1

T

∫ t0+T

t0

dt
B2(t)

E{B2(t)} , (1)

of the diffusion coefficient of a single BM trajectory B(t). The
parameter t0 here is the lag time (at which the measurement
is started), which can be set equal to zero for standard
BM without any lack of generality. However, for anomalous
diffusion or BM in the presence of disorder, t0 will play a
significant role. The symbol E{· · ·} denotes ensemble average,
so that

E{B2(t)} = 2dDt , (2)

D being the ensemble-average diffusion coefficient. Conse-
quently, the random variable u is defined as the ratio of
the realization-dependent diffusion coefficient, calculated as
the weighted time average along a single trajectory and the
ensemble-average diffusion coefficient. Clearly, E{u} ≡ 1.

Later in the paper, we will analyze here a useful measure
of sample-to-sample fluctuations—the distribution function
P (ω) of the random variable

ω = u1

u1 + u2
, (3)

where u1 and u2 are two identical independent random
variables with the distribution P (u). Hence, the distribution
P (ω) probes the likelihood that the diffusion coefficients
drawn from two different trajectories are equal to each other.

Finally, we discuss the effect of disorder on the distributions
P (u) and P (ω) for 1D BM in random media. We consider two
different models of diffusion in 1D random environments:
diffusion in the presence of a random quenched potential
with a finite correlation length, as exemplified here by
the Slutsky-Kardar-Mirny model [20], and diffusion in a
random forcing landscape—the so-called Sinai model [21].
The former is appropriate for diffusion of proteins on DNA,
which is affected by the base-pair reading interaction and
thus is sequence-dependent, while the latter describes, for
example, the dynamics of the helix-coil boundary in a melting

heteropolymer [22]. Note that in the former case, at sufficiently
large times, one observes a diffusive-type motion with B2

t ∼ t ,
while in the latter case dynamics is strongly anomalous so that
Bt is logarithmically confined, B2

t ∼ ln4 t .
The paper is outlined as follows: In Sec. II, we recall some

common fitting procedures used to calculate the diffusion
coefficient from single-particle tracking data. In Sec. III, we
focus on the maximum likelihood estimator and, generalizing
the approach developed in Ref. [19] for 1D systems, we obtain
new results for the moment-generating function �(σ ) and
the probability density function P (u) of the ML estimator
for arbitrary spatial dimension d. In that section, we also
obtain the asymptotic behavior of the probability distribution
function P (u), as well as its kurtosis and skewness. Next,
in Sec. IV we focus on the probability distribution function
of the random variable ω—a novel statistical diagnostics of
the broadness of the parental distribution P (u), which probes
the likelihood that two estimates of the diffusion coefficient
drawn from two different trajectories are the same. Section V
presents a comparison of the commonly used least-squares
estimator and the maximum-likelihood estimator. We show
that the latter outperforms the former in any spatial dimension
d producing a lower variance, with the most probable value
being closer to the ensemble-average value. Next, in Sec. VI
we focus on Brownian motion in the presence of disorder.
As exemplified by two models of dynamics in systems with
quenched disorder—Sinai diffusion (random force) and the
Slutsky-Kardar-Mirny model (random potential)—disorder
substantially enhances the importance of sample-to-sample
fluctuations. We show that the observation of values of the
diffusion coefficient significantly lower than the ensemble
average becomes more probable. We show as well that as
the strength of disorder is increased, the distribution P (ω)
undergoes a surprising shape-reversal transition from a bell-
shaped unimodal form to a bimodal form with a local minimum
at ω = 1/2. Finally, we conclude in Sec. VII with a brief
recapitulation of our results and an outline of our further
research.

II. FITS FOR THE DIFFUSION COEFFICIENT OF
A SINGLE TRAJECTORY

To set the scene, we first briefly recall several fitting
procedures commonly used to calculate the diffusion coef-
ficient from the SPT data. More detailed discussion can be
found in Refs. [3,17–19]. We focus here on estimators which
yield a first power of D. Nonlinear estimators, e.g., a mean
maximal excursion method [23] which has been used to study
anomalous diffusion and produces

√
D, will be analyzed

elsewhere.
One of the simplest methods consists in calculating a least-

squares estimate based on the minimization of the integral

∫ T

0
dt[B2(t) − l(t)]2, (4)

where the diffusion law l(t) is taken either as a linear, l(t) =
2dDlt , or an affine function, l(t) = 2dDat + ba . In particular,
for the linear case the least-squares minimization yields the
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following linear-least-squares estimator:

uls = A

T

∫ T

0
dt t B2(t), (5)

where A is the normalization factor, A = 3/2dDT 2, conve-
niently chosen so that E{uls} ≡ 1.

A second, more sophisticated, approach is based on

δ2
T (t) = 1

T − t

∫ T −t

0
dt ′ [B(t ′ + t) − B(t ′)]2, (6)

which is the temporal moving average over a sufficiently long
trajectory B(t) produced by the underlying process of duration
T � t . The diffusion coefficient is then extracted from fits of
δ2
T (t), or from a related least-squares estimator, which is given

by the following functional of the trajectory:

uδ = A

T

∫ T

0
dt t δ2

T (t), (7)

where A is the same normalization constant as in Eq. (5). Note
that the random variable uδ is again conveniently normalized
so that E{uδ} ≡ 1, which enables a direct comparison of the
respective distributions of different estimators. As shown in
Ref. [19], uδ only provides a slightly better estimate of D

than uls . A conceptually different fitting procedure, which
was discussed in Ref. [19], amounts to maximizing the
unconditional probability of observing the whole trajectory
B(t), assuming that it is drawn from a Brownian process with
mean-square displacement 2dDt [see Eq. (2)]. This is the
maximum-likelihood estimate which takes the value of D that
maximizes the likelihood of B(t), defined as

L =
T∏

t=0

(4πdDt)−d/2 exp

(
− B2(t)

4dDt

)
, (8)

where the trajectory B(t) is appropriately discretized. Differ-
entiating the logarithm of L with respect to D and setting
d ln L/dD = 0, one finds the maximum-likelihood estimate
of D, which upon proper normalization is defined by Eq. (1).

Below we will derive the distribution function P (u) of the
ML estimator u and compare it against numerical results for
the distribution function of the LS estimator uδ for d = 1,2,3.

III. DISTRIBUTION OF THE ML ESTIMATOR

A. The moment-generating function

Let �(σ ) denote the moment-generating function of the
random variable u defined in Eq. (1),

�(σ ) = E{e−σu}. (9)

The squared distance from the origin, of d-dimensional BM at
time t for a given realization, decomposes into the sum

B2(t) =
d∑

i=1

B2
i (t), (10)

Bi(t) being realizations of trajectories of independent 1D BMs
(for each spatial direction). Thus, �(σ ) factorizes

�(σ ) = Gd (σ ), (11)

where

G(σ ) = E

{
exp

(
− σ

2dDT

∫ T

0
dτ

B2
i (τ )

τ

)}
. (12)

Here, in order to calculate G(σ ), we follow the strategy of
Ref. [19] and introduce an auxiliary functional:

�(x,t) = Ex
t

{
exp

(
− σ

2dDT

∫ T

t

dτ
B2

i (τ )

τ

)}
, (13)

where the expectation is for a BM starting at x at time t . We
derive a Feynman-Kac-type formula for �(x,t) considering
how the functional in Eq. (13) evolves in the time interval
(t,t + dt). During this interval, the BM moves from x to x +
dBi(t), where dBi(t) is an infinitesimal Brownian increment
such that EdB{dBi(t)} = 0 and EdB{dB2

i (t)} = 2Ddt , where
EdB denotes now averaging with respect to the increment
dBi(t). For such an evolution, we have to order dt :

�(x,t) = E

{(
1 − σx2

2dDT t
dt

)

×Ex+dBi (t)
t+dt

[
exp

(
− σ

2dDT

∫ T

t+dt

dτ
B2

i (τ )

τ

)]}

= E

{
�(x + dBi(t),t + dt)

(
1 − σx2

2dDT t
dt

)}
. (14)

Expanding the right-hand side of the latter equation to second
order in dBi(t), linear order in dt , and performing averaging,
we find eventually the following Schrödinger equation:

∂�(x,t)

∂t
= −D

∂2�(x,t)

∂x2
+ σx2

2dDT t
�(x,t). (15)

The solution of this equation has been obtained in Ref. [19]
and gives

G(σ ) = �(0,0) = [I0(
√

8σ/d)]−1/2, (16)

where I0(·) is the modified Bessel function [24]. Consequently,
we find the following general result:

�(σ ) = [I0(
√

8σ/d)]−d/2. (17)

Note that �(σ ) is independent of T and D, as it should be by
virtue of the scaling properties of the BM.

B. The distribution function

We turn next to the analysis of the distribution of the ML
estimator defined in Eq. (1). First of all, we calculate several
first moments of u by merely differentiating the result in
Eq. (17):

E{u2} = 1 + 1

d
,

E{u3} = 1 + 3

d
+ 8

3d2
, (18)

E{u4} = 1 + 6

d
+ 41

3d2
+ 11

d3
.

Consequently, one may expect that all moments tend to 1 as
d → ∞, so that P (u) → δ(u − 1). For fixed d, the variance
E{u2} − E{u}2 ≡ 1/d, the coefficient of asymmetry γa ≡
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8/3
√

d, and the kurtosis γe ≡ 11/d. All these characteristics
vanish when d → ∞.

Note next that since I0(
√

8σ/d) = J0(i
√

8σ/d), the poles
of �(σ ) are located at σ = −dγ 2

k /8, where γk is the kth zero
of the Bessel function J0(·) [24]. Consequently, for even d, we
can straightforwardly find P (u) in the form of an infinite series
in the zeros of the Bessel function J0(·). For d = 2, �(σ ) has
only simple poles so that the expansion theorem gives

P (u) = 1

2

∞∑
k=1

γk

J1(γk)
exp

(
− γ 2

k

4
u

)
. (19)

For d = 4 and 6, the standard residue calculus yields

P (u) =
∞∑

k=1

γk[γk J1(γk) u − J2(γk)]

J 3
1 (γk)

exp

(
− γ 2

k

2
u

)
(20)

and

P (u) = 3

16

∞∑
k=1

αk

γkJ
5
1 (γk)

exp

(
− 3γ 2

k

4
u

)
, (21)

where

αk = 9γ 4
k J 2

1 (γk)u2 − 36γ 2
k J 2

1 (γk)u + 4J 2
2 (γk)(γ 2

k − 8). (22)

Similar results can be readily obtained for greater even d.
For arbitrary d, including odd values, the distribution P (u)

is defined by inverting the Laplace transform and is given by
the following integral:

P (u) = 1

π

∫ ∞

0

cos(uy − dφ/2) dy

[ber2(
√

8y/d) + bei2(
√

8y/d)]d/4
, (23)

where the phase φ is given by

φ =
∞∑

k=1

arcsin

⎛
⎝ 8y√

d2γ 4
k + 64y2

⎞
⎠ = arctan

⎛
⎝ bei(

√
8y

d
)

ber(
√

8y

d
)

⎞
⎠ ,

(24)

ber(x) and bei(x) being the zeroth-order Kelvin functions [24].
Finally, we consider the small-u and large-u asymptotic

behavior of the probability density function P (u). To extract
the small-u asymptotic behavior of P (u), we consider the
large-σ form of �(σ ). From Eq. (17), we get

�(σ ) ∼ (2π )d/4

(
8σ

d

)d/8

exp(−
√

2dσ ) (25)

as σ → ∞. Consequently, we find the following strongly
nonanalytic behavior:

P (u) ∼ (4π )d/4

√
d

2π
exp

(
− d

2u

)
1

u1+μ
, μ = d + 2

4
.

(26)

The large-u behavior of the distribution P (u) is defined by
the behavior of the moment-generating function �(σ ) in the
vicinity of σ ∗ = −dγ 2

1 /8,

�(σ ) ∼
(

dγ1

4J1(γ1)

)d/2 1

(σ + dγ 2
1 /8)d/2

. (27)

-4 -3 -2 -1 0 1 2 3 4 ln u0

0.2

0.4
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0.8
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P(u)
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lnu0

0.5

1
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FIG. 1. (Color online) The distribution P (u) in Eq. (23) for ML
estimates of BM: the blue solid line (left) corresponds to d = 1, the
red line (middle) to d = 2 and the green line (right) to d = 3. The
open circles present the results of numerical simulations. In the inset,
the dashed lines correspond to the small-u and large-u asymptotics
in Eqs. (26) and (28).

Consequently, we find that for u → ∞, P (u) decays as

P (u) ∼ 1


(d/2)

(
dγ1

4J1(γ1)

)d/2

ud/2−1 exp

(
− dγ 2

1

8
u

)
.

(28)

This behavior is, of course, consistent with the series expan-
sions in Eqs. (19), (20), and (21). Our results on the distribution
P (u) are summarized in Fig. 1.

IV. THE DISTRIBUTION OF THE RANDOM VARIABLE ω

Suppose next that we have two different independent
realizations of BM trajectories, B1(t) and B2(t), which we
use to generate to independent random variables u1 and u2. A
natural question arising about their suitability as estimators is,
how likely is it that they will have the same value? Of course the
distributions and thus moments of these two random variables
are the same, however a measure of their relative dispersion
can be deduced by studying the distribution function P (ω)
of the random variable ω [15,25], defined in Eq. (3). This
distribution is given explicitly by [26]

P (ω) = 1

(1 − ω)2

∫ ∞

0
u duP (u) P

(
ω

1 − ω
u

)
(29)

and hence it suffices to know P (u) in order to determine P (ω).
For d = 2 (and, in fact, for any other even d), P (ω) can be

evaluated exactly. Plugging Eq. (19) into (29), we get

P (ω) = 4
∞∑

k,l=1

γk

J1(γk)

γl

J1(γl)

1[
(1 − ω)γ 2

k + ωγ 2
l

]2 . (30)

Performing the sum over l, we arrive at the following result
for the distribution P (ω) in 2D systems:

P (ω) = 2
d

dω

∞∑
k=1

1

γkJ1(γk)I0[γk

√
(1 − ω)/ω]

. (31)
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0 0.2 0.4 0.6 0.8 1
ω0

0.5

1

1.5

2

P(ω)

FIG. 2. (Color online) Distribution P (ω) for standard BM ob-
tained from Eqs. (23) and (29). P (ω = 1/2) increases with the
dimension d . The blue (lower) solid line corresponds to d = 1, the
red (middle) line to d = 2, and the green (upper) line to d = 3. Open
circles with the same color code (and relative positions) present the
results of numerical simulations for the LS estimator uδ defined in
Eq. (7). Note that an apparent coincidence of the results for the
distributions P (ω) for the ML estimator in 2D and that for the LS
estimator uδ in 3D is accidental. It just signifies that the former
outperforms the latter.

Numerically obtained distributions P (ω) for d = 1, 2, and 3
dimensional systems are presented in Fig. 2. Notice that in
all dimensions, ω = 1/2 is the most probable value of the
distribution P (ω) so that most probably u1 = u2. Nevertheless,
the distributions are rather broad, which signifies that sample-
to-sample fluctuations are rather important.

V. COMPARISON OF THE LS AND ML ESTIMATORS

We will now show that the ML estimator defined in Eq. (1)
substantially outperforms the MS estimator as defined in
Eq. (7) in any spatial dimension d. This is a very surprising
result, as one would intuitively expect, and it is often stated
in the literature, that using the process δT has the effect of
reducing the fluctuations of the estimate of D because the
process is partially averaged in time.

To demonstrate this, we present in Fig. 3 a comparison of
the analytical results for P (u) of the ML estimator with the
corresponding distributions of the LS estimator for uδ obtained
numerically.

Indeed, we find that the variance of the distribution P (uδ)
equals 1.38, 0.66, and 0.44 for d = 1, 2, and 3, respectively.
The distribution of the ML estimator appears to be substan-
tially narrower so that the variance is significantly lower, 1,
1/2, and 1/3. Moreover, the most probable values of u are
closer to the ensemble-average value E{u} ≡ 1 than the most
probable values of P (uδ) to E{uδ} ≡ 1: we observe that the
distribution P (uδ) attains its maximal values at uδ ≈ 0.15,
0.33, and 0.47 for d = 1, 2, and 3, respectively, while the
corresponding maxima of the distribution P (u) are located at
u ≈ 0.28, 0.47, and 0.6. Last but not least, the distribution
P (ωδ) appears to be significantly broader than P (ω), as
revealed by Fig. 2. The worst performance of the LS estimator

-4 -3 -2 -1 0 1 2 ln u0

0.2

0.4

0.6

0.8

1

1.2

1.4
P(u)

FIG. 3. (Color online) Comparison of P (u) in Eq. (23) (solid
lines) and the results of the numerical simulations for the distribution
P (uδ) (histograms). From left to right: d = 1, 2, and 3.

uδ is in 1D systems in which the distribution P (ωδ) has a
bimodal M shape with a local minimum at ωδ = 1/2 and
maxima (most likely values) around 0.1 and 0.9. This means
that the values u1 and u2 drawn from two different trajectories
will most probably be different by an order of magnitude.

VI. 1D BROWNIAN MOTION IN THE PRESENCE
OF DISORDER

In this final section, we address the question of how the
distribution P (u) of the ML estimator of a single trajectory
diffusion coefficient will change in the presence of quenched
disorder. We will consider two different models of BM
in random 1D environments: diffusion in the presence of a
random correlated potential and diffusion in the presence of a
random force.

A. Diffusion in the presence of a random potential

First we consider a BM in a 1D inhomogeneous energy
landscape, where disorder is correlated over a finite length
ξc. This model gives a simple description of diffusion of a
protein along a DNA sequence, for instance where the particle
interacts with several neighboring base pairs at a time [20]. The
total binding energy of the protein is assumed to be a random
variable. When the particle hops one neighboring base further
to the right or to the left, its new energy is highly correlated to
the value it had before the jump. Slutsky et al. [20] modeled
this process as a pointlike particle diffusing on a 1D lattice of
unit spacing with random site energies {Ui}, whose distribution
is Gaussian with zero mean, variance σ 2, and is correlated in
space as 〈(Ui − Uj )2〉 = 2σ 2[1 − exp(−|i − j |/ξc)]. At each
time step, the particle located at some site i jumps to the
left or to the right with probabilities pi ∝ exp[β(Ui − Ui−1)]
and qi ∝ exp[β(Ui − Ui+1)], respectively, where pi + qi = 1.
Diffusion is asymptotically normal for any disorder strength
ε = βσ . Nevertheless, the particle can be trapped in local
energy minima for long periods of time. During an extended
intermediate time regime, it is observed that first passage
properties fluctuate widely from one sample to another [20].
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FIG. 4. (Color online) Distribution P (u) for a particle diffusing
in a random energy landscape with variance σ 2, correlation length
ξc = 20, and various disorder strengths ε = βσ . From right to left: the
blue histogram corresponds to ε = 0.5, the red to ε = 0.8, the green
to ε = 1, the yellow to ε = 2, and the brown to ε = 3. The walk
duration is T = 105, t0 = 0 and averages are taken over 12 000 walks
occurring in independent landscapes. For comparison, we present
the distribution (solid black curve) for standard 1D BM (ε ≡ 0). The
corresponding distributions P (ω) are shown in the inset [P (ω = 1/2)
decreases with increasing ε].

Our numerical simulations reveal that disorder has a
dramatic effect on the distributions P (u) and P (ω). As shown
by Fig. 4, the distribution P (u) broadens significantly in
the small u regime: very small values of the time-average
diffusion constant (compared to the thermal and disorder
average) become increasingly more probable as the disorder
strength increases. However, the right tail of P (u) is much
less affected. Similarly, two independent measurements are
likely to differ significantly, even in moderately disordered
media (see the inset of Fig. 4). When ε ≈ 0.8, the distribution
P (ω) undergoes a continuous shape reversal transition—from
a unimodal bell-shaped form to a bimodal M-shaped one with
the minimum at ω = 1/2 and two maxima approaching 0 and
1 at larger disorder strengths. Unfortunately, it does not seem
possible to obtain this critical value analytically. Even for the
case of a pure Brownian motion considered in Ref. [15], such
an analysis appears to be extremely difficult.

Therefore, for ε > 0.8, sample-to-sample fluctuations be-
comes essential and it is most likely that the diffusion
coefficients drawn from two different trajectories will be
different.

B. Diffusion in the presence of a random force

We discuss now the effect of disorder on the distributions
P (u) and P (ω) for 1D BM in the presence of a quenched
uncorrelated random force—the so-called Sinai diffusion [21].
In this model, one considers a random walk on a 1D infinite
lattice and site i dependent hopping probabilities: pi = 1

2 − εi

for hopping from i to the site i + 1 and qi = 1
2 + εi for hopping

to the site i − 1. Here, εi are independent, uncorrelated,
identically distributed random variables with distribution
P (εi) = 1

2δ(εi − ε) + 1
2δ(εi + ε), and the strength of disorder
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FIG. 5. (Color online) (a) Distribution P (u) for Sinai diffusion
and different strengths of the disorder ε. From right to left: the blue
histogram corresponds to ε = 0.05, the red to ε = 0.1, the green to
ε = 0.2, and the yellow to ε = 0.3. The solid black curve depicts
the distribution P (u) for 1D BM (ε ≡ 0), and the corresponding
distributions P (ω) are shown in the inset with the same color code
[for ω close to 0 or 1, P (ω) increases with ε]. (b) Distribution P (ω)
for Sinai diffusion with ε = 0.1; the integration time is set to T = 102

and t0 is varied. P (ω = 1/2) decreases with increasing t0: the different
curves correspond to (from darker gray to lighter gray): t0 = 5 (blue),
t0 = 5 × 102 (red), t0 = 5 × 103 (green), and t0 = 5 × 105 (yellow).
(c) The lag time is set to t0 = 5 and the integration time T is varied.
P (ω = 1/2) decreases with increasing T : 102 (blue), 5 × 104 (red),
1,5 × 105 (green), and 2,5 × 105 (yellow).

ε is bounded away from 0 and 1. It is well known that
in the large-t limit, the model produces an anomalously
slow subdiffusion 〈x2(t)〉 ∼ ln4(t), where the angular brackets
denote averaging with respect to different realizations of
disorder. At shorter times, however, one observes an extended
stage with a transient behavior which is substantially different
from the asymptotic one. As a consequence, the statistics of u,
defined in Eq. (1), and ω will depend not only on the integration
time T but also on the lag time t0 from which a single trajectory
is analyzed.

We have numerically computed the distributions P (u) and
P (ω). In Fig. 5(a), we present the dependence of the u

and ω statistics on the strength of the disorder ε. As in the
previous disordered potential case, we find that the maximum
of P (u) shifts toward zero as the disorder gets stronger. For
comparison, the solid black line in Fig. 5(a) represents P (u)
observed for standard BM, ε ≡ 0. Moreover, the stronger the
disorder is, the broader the distribution P (u) becomes, yielding
more peaked maxima in P (ω) [see the inset of Fig. 5(a)].
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We also note that P (ω) has a bimodal M-shaped form even
for the weakest disorder ε = 0.005 that we have considered,
suggesting that the zero-disorder limit is nonanalytic compared
to the continuous transition observed for diffusion in the
random energy landscape of the previous section.

In Figs. 5(b) and 5(c), we show the statistics of ω for
different values of t0 and T . Increasing t0 (or T ), we observe
that P (ω) changes from an almost uniform form, for which any
relation between u1 and u2 is equally probable, to a bimodal
M-shaped distribution, which signifies that in this regime
two ML estimates u1 and u2 will most likely have different
values. Bimodality is a property of the Sinai regime [15],
as also noticed earlier in Ref. [27], and thus it shows up
only at sufficiently long times when the trajectories follow
the asymptotic ultraslow diffusion. The distribution P (ω)
is remarkably sensitive to the characteristic aging of Sinai
diffusion.

As a final observation, one may also study the statistics of u

for trajectories evolving in the same random force field. In this
case (not shown here), one gets a narrow distribution of u and
a unimodal P (ω) that converges to a δ singularity at ω = 1/2
when the disorder becomes infinite. This is due to the fact,
known as the Golosov phenomenon, that two trajectories in
the same disorder will move together [28].

VII. DISCUSSION

We have analyzed the reliability of the ML estimator for
the diffusion constant of standard Brownian motion and shown
its superiority over the more commonly used LS estimator
in a number of important aspects, notably the variance of

the estimator, the proximity of the most probable value to
the true mean value, and the distribution of the random
variable ω, which is a measure of the extent to which two
estimations of D vary. Going beyond the important test case
of pure Brownian motion, we have also analyzed the effect of
quenched disorder, modeling fluctuations of the local energy
landscape and forces. As one may have intuitively expected,
the presence of short-range disorder tends to broaden the
distribution of the so measured value of D, as it presents
an additional source of fluctuation. However, in the Sinai
model, in the same realization of the force field, trajectories are
disorder-dominated and are almost independent of the thermal
noise, leading to highly peaked distributions of D. Analyt-
ically understanding the distribution of D in the presence
of disorder presents an interesting mathematical challenge
that will involve analysis of the corresponding Schrödinger
equation with a random drift term. Other interesting questions
remain to be addressed. In particular, can one use the two-
time correlation function of measured trajectories to obtain
better estimators? Single-particle tracking technology will
undoubtedly improve further in the coming years, and many
interesting mathematical, statistical, and physical challenges
will arise on the way to the ultimate goal of getting the most
out of the trajectories so obtained.
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