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ON WEAK∗-CONVERGENCE IN H1
L(R

d)

LUONG DANG KY

Abstract. Let L = −∆+V be a Schrödinger operator on R
d, d ≥ 3, where

V is a nonnegative function, V 6= 0, and belongs to the reverse Hölder class
RHd/2. In this paper, we prove a version of the classical theorem of Jones

and Journé on weak∗-convergence in the Hardy space H
1

L(R
d).

1. Introduction

A famous and classical result of Fefferman [7] states that the John-Nirenberg
space BMO(Rd) is the dual of the Hardy space H1(Rd). It is also well-known
that H1(Rd) is one of the few examples of separable, nonreflexive Banach space
which is a dual space. In fact, let VMO(Rd) denote the closure of the space
C∞

c (Rd) in BMO(Rd), where C∞
c (Rd) is the set of C∞-functions with compact

support, Coifman and Weiss showed in [1] that H1(Rd) is the dual space of
VMO(Rd), which gives toH1(Rd) a richer structure than L1(Rd). For example,
the classical Riesz transforms ∇(−∆)−1/2 are not bounded on L1(Rd), but are
bounded on H1(Rd). In addition, the weak∗-convergence is true in H1(Rd),
which is useful in the application of Hardy spaces to compensated compactness
(see [2]). More precisely, in [9], Jones and Journé proved the following.

Theorem J-J. Suppose that {fj}j≥1 is a bounded sequence in H1(Rd), and
that fj(x) → f(x) for almost every x ∈ R

d. Then, f ∈ H1(Rd) and {fj}j≥1

weak∗-converges to f , that is, for every ϕ ∈ VMO(Rd), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.

The aim of this paper is to prove an analogous version of the above theorem
in the setting of function spaces associated with Schrödinger operators.

Let L = −∆ + V be a Schrödinger differential operator on R
d, d ≥ 3,

where V is a nonnegative potential, V 6= 0, and belongs to the reverse Hölder
class RHd/2. In the recent years, there is an increasing interest on the study
of the problems of harmonic analysis associated with these operators, see for
example [4, 5, 6, 10, 11, 13, 14]. In [6], Dziubański and Zienkiewicz consid-
ered the Hardy space H1

L(R
d) as the set of functions f ∈ L1(Rd) such that
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‖f‖H1
L
:= ‖MLf‖L1 < ∞, where MLf(x) := supt>0 |e

−tLf(x)|. There, they

characterized H1
L(R

d) in terms of atomic decomposition and in terms of the
Riesz transforms associated with L. Later, in [5], Dziubański et al. introduced
a BMO-type space BMOL(R

d) associated with L, and established the dual-
ity between H1

L(R
d) and BMOL(R

d). Recently, Deng et al. [4] introduced
and developed new VMO-type function spaces VMOA(R

d) associated with
some operators A which have a bounded holomorphic functional calculus on
L2(Rd). When A ≡ L, their space VMOL(R

d) is just the set of all functions
f in BMOL(R

d) such that γ1(f) = γ2(f) = γ3(f) = 0, where

γ1(f) = lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






,

γ2(f) = lim
R→∞






sup

x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






,

γ3(f) = lim
R→∞






sup

B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






.

The authors in [4] further showed thatH1
L(R

d) is in fact the dual of VMOL(R
d),

which allows us to study the weak∗-convergence in H1
L(R

d). This is useful in
the study of the Hardy estimates for commutators of singular integral operators
related to L, see for example Theorem 7.1 and Theorem 7.3 of [10].

Our main result is the following theorem.

Theorem 1.1. Suppose that {fj}j≥1 is a bounded sequence in H1
L(R

d), and
that fj(x) → f(x) for almost every x ∈ R

d. Then, f ∈ H1
L(R

d) and {fj}j≥1

weak∗-converges to f , that is, for every ϕ ∈ VMOL(R
d), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.

Throughout the whole paper, C denotes a positive geometric constant which
is independent of the main parameters, but may change from line to line. In
R

d, we denote by B = B(x, r) an open ball with center x and radius r > 0.
For any measurable set E, we denote by |E| its Lebesgue measure.

The paper is organized as follows. In Section 2, we present some notations
and preliminary results. Section 3 is devoted to the proof of Theorem 1.1. In
the last section, we prove that C∞

c (Rd) is dense in the space VMOL(R
d).

Acknowledgements. The author would like to thank Aline Bonami and
Sandrine Grellier for many helpful suggestions and discussions.
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2. Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

L = −∆+ V

on R
d, d ≥ 3, where V is a nonnegative potential, V 6= 0. As in the works of

Dziubański et al [5, 6], we always assume that V belongs to the reverse Hölder
class RHd/2. Recall that a nonnegative locally integrable function V is said to
belong to a reverse Hölder class RHq, 1 < q < ∞, if there exists a constant
C > 0 such that for every ball B ⊂ R

d,
( 1

|B|

∫

B

(V (x))qdx
)1/q

≤
C

|B|

∫

B

V (x)dx.

Let {Tt}t>0 be the semigroup generated by L and Tt(x, y) be their kernels.
Namely,

Ttf(x) = e−tLf(x) =

∫

Rd

Tt(x, y)f(y)dy, f ∈ L2(Rd), t > 0.

Since V is nonnegative, the Feynman-Kac formula implies that

(2.1) 0 ≤ Tt(x, y) ≤
1

(4πt)d/2
e−

|x−y|2

4t .

According to [6], the space H1
L(R

d) is defined as the completion of

{f ∈ L2(Rd) : MLf ∈ L1(Rd)}

in the norm
‖f‖H1

L
:= ‖MLf‖L1,

where MLf(x) := supt>0 |Ttf(x)| for all x ∈ R
d.

In [5] it was shown that the dual space of H1
L(R

d) can be identified with the
space BMOL(R

d) which consists of all functions f ∈ BMO(Rd) with

(2.2) ‖f‖BMOL
:= ‖f‖BMO + sup

ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞,

where ρ is the auxiliary function defined as in [13], that is,

(2.3) ρ(x) = sup
{

r > 0 :
1

rd−2

∫

B(x,r)

V (y)dy ≤ 1
}

,

x ∈ R
d. Clearly, 0 < ρ(x) < ∞ for all x ∈ R

d, and thus Rd =
⋃

n∈Z Bn, where
the sets Bn are defined by

(2.4) Bn = {x ∈ R
d : 2−(n+1)/2 < ρ(x) ≤ 2−n/2}.

The following fundamental property of the function ρ is due to Shen [13].
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Proposition 2.1 (see [13], Lemma 1.4). There exist C0 > 1 and k0 ≥ 1 such
that for all x, y ∈ R

d,

C−1
0 ρ(x)

(

1 +
|x− y|

ρ(x)

)−k0
≤ ρ(y) ≤ C0ρ(x)

(

1 +
|x− y|

ρ(x)

)

k0
k0+1

.

Let VMOL(R
d) be the subspace of BMOL(R

d) consisting of those functions
f satisfying γ1(f) = γ2(f) = γ3(f) = 0, where

γ1(f) = lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






,

γ2(f) = lim
R→∞






sup

x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






,

γ3(f) = lim
R→∞






sup

B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






.

In [4] it was shown that H1
L(R

d) is the dual space of VMOL(R
d).

In the sequel, we denote by CL the L-constant

CL = 8.9k0C0

where k0 and C0 are defined as in Proposition 2.1.
Following Dziubański and Zienkiewicz [6], we define atoms as follows.

Definition 2.1. Given 1 < q ≤ ∞. A function a is called a (H1
L, q)-atom

related to the ball B(x0, r) if r ≤ CLρ(x0) and
i) supp a ⊂ B(x0, r),
ii) ‖a‖Lq ≤ |B(x0, r)|

1/q−1,
iii) if r ≤ 1

CL
ρ(x0) then

∫

Rd a(x)dx = 0.

Then, we have the following atomic characterization of H1
L(R

d).

Theorem A (see [6], Theorem 1.5). Let 1 < q ≤ ∞. A function f is in
H1

L(R
d) if and only if it can be written as f =

∑

j λjaj, where aj are (H1
L, q)-

atoms and
∑

j |λj| <∞. Moreover, there exists a constant C > 0 such that

‖f‖H1
L
≤ inf

{

∑

j

|λj| : f =
∑

j

λjaj

}

≤ C‖f‖H1
L
.

Let P (x) = (4π)−d/2e−|x|2/4 be the Gauss function. According to [6], the
space h1n(R

d), n ∈ Z, denotes the space of all integrable functions f such that

Mnf(x) = sup
0<t<2−n/2

|Pt ∗ f(x)| ∈ L1(Rd),
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where Pt(·) := t−dP (t−1·). The norm on h1n(R
d) is then defined by

‖f‖h1
n
:= ‖Mnf‖L1.

It was shown in [8] that the dual space of h1n(R
d) can be identified with

bmon(R
d) the space of all locally integrable functions f such that

‖f‖bmon = ‖f‖BMO + sup
x∈Rd,2−n/2≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞.

Here and in what follows, for a ball B and a locally integrable function f , we
denote by fB the average of f on B. Following Dafni [3], we define vmon(R

d)
as the subspace of bmon(R

d) consisting of those f such that

lim
σ→0






sup

x∈Rd,r<σ

1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy






= 0

and

lim
R→∞






sup

B(x,r)∩B(0,R)=∅,r≥2−n/2

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy






= 0.

Recall that C∞
c (Rd) is the space of all C∞-functions with compact support.

Then, the following was established by Dafni [3].

Theorem B (see [3], Theorem 6 and Theorem 9). Let n ∈ Z. Then,
i) The space vmon(R

d) is the closure of C∞
c (Rd) in bmon(R

d).
ii) The dual of vmon(R

d) is the space h1n(R
d).

Furthermore, the weak∗-convergence is true in h1n(R
d).

Theorem C (see [3], Theorem 11). Let n ∈ Z. Suppose that {fj}j≥1 is a
bounded sequence in h1n(R

d), and that fj(x) → f(x) for almost every x ∈ R
d.

Then, f ∈ h1n(R
d) and {fj}j≥1 weak∗-converges to f , that is, for every ϕ ∈

vmon(R
d), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.

3. Proof of Theorem 1.1

We begin by recalling the following two lemmas due to [6]. These two lemmas
together with Proposition 2.1 play an important role in our study.
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Lemma 3.1 (see [6], Lemma 2.3). There exists a constant C > 0 and a
collection of balls Bn,k = B(xn,k, 2

−n/2), n ∈ Z, k = 1, 2, ..., such that xn,k ∈ Bn,
Bn ⊂

⋃

k Bn,k, and

card {(n′, k′) : B(xn,k, R2
−n/2) ∩ B(xn′,k′, R2

−n/2) 6= ∅} ≤ RC

for all n, k and R ≥ 2.

Lemma 3.2 (see [6], Lemma 2.5). There are nonnegative C∞-functions ψn,k,
n ∈ Z, k = 1, 2, ..., supported in the balls B(xn,k, 2

1−n/2) such that
∑

n,k

ψn,k = 1 and ‖∇ψn,k‖L∞ ≤ C2n/2.

The following corollary is useful, its proof follows directly from Lemma 3.1.
We omit the details here (see also Corollary 1 of [5]).

Corollary 3.1. i) Let K be a compact set. Then, there exists a finite set
Γ ⊂ Z× Z

+ such that K ∩ B(xn,k, 2
1−n/2) = ∅ whenever (n, k) /∈ Γ.

ii) There exists a constant C > 0 such that for every x ∈ R
d,

card {(n, k) ∈ Z× Z
+ : B(xn,k, 2

1−n/2) ∩B(x, 2ρ(x)) 6= ∅} ≤ C.

iii) There exists a constant C > 0 such that for every ball B(x, r) with
ρ(x) ≤ r, we have

|B(x, r)| ≤
∑

B(xn,k ,2−n/2)∩B(x,r)6=∅

|B(xn,k, 2
−n/2)| ≤ C|B(x, r)|.

The key point in the proof of Theorem 1.1 is the following result that we
will prove in the last section.

Theorem 3.1. The space C∞
c (Rd) is dense in the space VMOL(R

d).

To prove Theorem 1.1, we need also the following two lemmas.

Lemma 3.3 (see [10], Lemma 6.5). Let 1 < q ≤ ∞, n ∈ Z and x ∈ Bn.
Suppose that f ∈ h1n(R

d) with supp f ⊂ B(x, 21−n/2). Then, there are (H1
L, q)-

atoms aj related to the balls B(xj , rj) such that B(xj , rj) ⊂ B(x, 22−n/2) and

f =

∞
∑

j=1

λjaj ,

∞
∑

j=1

|λj| ≤ C‖f‖h1
n

with a positive constant C independent of n and f .

Lemma 3.4 (see (4.7) in [6]). For every f ∈ H1
L(R

d), we have
∑

n,k

‖ψn,kf‖h1
n
≤ C‖f‖H1

L
.

Now, we are ready to give the proof of the main theorem.
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Proof of Theorem 1.1. By assumption, there exists M > 0 such that

‖fj‖H1
L
≤ M , for all j ≥ 1.

Let (n, k) ∈ Z × Z
+. Then, for almost every x ∈ R

d, ψn,k(x)fj(x) →
ψn,k(x)f(x) since fj(x) → f(x). By Theorem C, this yields that ψn,kf belongs
to h1n(R

d) and {ψn,kfj}j≥1 weak∗-converges to ψn,kf in h1n(R
d), that is,

(3.1) lim
j→∞

∫

Rd

ψn,k(x)fj(x)φ(x)dx =

∫

Rd

ψn,k(x)f(x)φ(x)dx,

for all φ ∈ C∞
c (Rd). Furthermore,

(3.2) ‖ψn,kf‖h1
n
≤ lim

j→∞
‖ψn,kfj‖h1

n
.

As xn,k ∈ Bn and supp ψn,kf ⊂ B(xn,k, 2
1−n/2), by Lemma 3.3, there are

(H1
L, 2)-atoms an,kj related to the balls B(xn,kj , rn,kj ) ⊂ B(xn,k, 2

2−n/2) such that

ψn,kf =
∑

j

λn,kj an,kj ,
∑

j

|λn,kj | ≤ C‖ψn,kf‖h1
n
.

Let N,K ∈ Z
+ be arbitrary. Then, the above together with (3.2) and

Lemma 3.4 imply that there exists mN,K ∈ Z
+ such that

N
∑

n=−N

K
∑

k=1

∑

j

|λn,kj | ≤
N
∑

n=−N

K
∑

k=1

C
(

M

(1 + n2)(1 + k2)
+ ‖ψn,kfmN,K

‖h1
n

)

≤ C
∑

n,k

M

(1 + n2)(1 + k2)
+ C‖fmN,K

‖H1
L

≤ CM ,

where the constants C are independent of N,K. By Theorem A, this allows
to conclude that

f =
∑

n,k

ψn,kf ∈ H1
L(R

d) and ‖f‖H1
L
≤

∑

n,k

∑

j

|λn,kj | ≤ CM .

Finally, we need to show that for every φ ∈ VMOL(R
d),

(3.3) lim
j→∞

∫

Rd

fj(x)φ(x)dx =

∫

Rd

f(x)φ(x)dx.

By Theorem 3.1, we only need to prove (3.3) for φ ∈ C∞
c (Rd). In fact, by

(i) of Corollary 3.1, there exists a finite set Γφ ⊂ Z× Z
+ such that

fφ =
∑

(n,k)∈Γφ

ψn,kfφ and fjφ =
∑

(n,k)∈Γφ

ψn,kfjφ
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since supp ψn,k ⊂ B(xn,k, 2
1−n/2). This together with (3.1) give

lim
j→∞

∫

Rd

fj(x)φ(x)dx = lim
j→∞

∫

Rd

∑

(n,k)∈Γφ

ψn,k(x)fj(x)φ(x)dx

=
∑

(n,k)∈Γφ

lim
j→∞

∫

Rd

ψn,k(x)fj(x)φ(x)dx

=
∑

(n,k)∈Γφ

∫

Rd

ψn,k(x)f(x)φ(x)dx

=

∫

Rd

f(x)φ(x)dx,

which ends the proof of Theorem 1.1.
�

4. Proof of Theorem 3.1

The main point in the proof of Theorem 3.1 is the theorem.

Theorem 4.1. Let CMOL(R
d) be the closure of C∞

c (Rd) in BMOL(R
d).

Then, H1
L(R

d) is the dual space of CMOL(R
d).

To prove Theorem 4.1, we need the following three lemmas.

Lemma 4.1. There exists a constant C > 0 such that

2−n/2 ≤ Cr

whenever B(xn,k, 2
1−n/2) ∩B(x, r) 6= ∅ and ρ(x) ≤ r.

The proof of Lemma 4.1 follows directly from Proposition 2.1. We leave the
details to the reader.

Lemma 4.2. Let ψn,k, (n, k) ∈ Z × Z
+, be as in Lemma 3.2. Then, there

exists a constant C independent of n, k, ψn,k, such that

(4.1) ‖ψn,kf‖bmon ≤ C‖f‖bmon

for all f ∈ bmon(R
d), and

(4.2) ‖ψn,kφ‖BMOL
≤ C‖φ‖bmon

for all φ ∈ C∞
c (Rd).

Lemma 4.3. For every f ∈ BMOL(R
d), we have

‖f‖BMOL
≈ sup

r≤ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)−fB(x,r)|dy+ sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy.
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Proof of Lemma 4.2. Noting that ψn,k is a multiplier of bmon(R
d) and ‖ψn,k‖L∞ ≤

1, Theorem 2 of [12] allows us to reduce (4.1) to showing that

(4.3)
log

(

e+ 2−n/2

r

)

|B(x, r)|

∫

B(x,r)

∣

∣

∣
ψn,k(y)−

1

|B(x, r)|

∫

B(x,r)

ψn,k(z)dz
∣

∣

∣
dy ≤ C

holds for every ballB(x, r) which satisfies r ≤ 2−n/2. In fact, from ‖∇ψn,k‖L∞ ≤

C2n/2 and the estimate r
2−n/2 log

(

e+ 2−n/2

r

)

≤ sup0<t≤1 t log(e+ 1/t) <∞,

log
(

e + 2−n/2

r

)

|B(x, r)|

∫

B(x,r)

∣

∣

∣
ψn,k(y)−

1

|B(x, r)|

∫

B(x,r)

ψn,k(z)dz
∣

∣

∣
dy

≤
log

(

e + 2−n/2

r

)

|B(x, r)|2

∫

B(x,r)

∫

B(x,r)

|ψn,k(y)− ψn,k(z)|dzdy

≤ log
(

e +
2−n/2

r

)

‖∇ψn,k‖L∞2r

≤ C
r

2−n/2
log

(

e+
2−n/2

r

)

≤ C,

which proves (4.3), and thus (4.1) holds.
As (4.1) holds, we get

‖ψn,kφ‖BMO ≤ ‖ψn,kφ‖bmon ≤ C‖φ‖bmon .

Therefore, to prove (4.2), we only need to show that

(4.4)
1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φ(y)|dy ≤ C‖φ‖bmon

holds for every x ∈ R
d and r ≥ ρ(x). Since supp ψn,k ⊂ B(xn,k, 2

1−n/2), (4.4)
is obvious if B(x, r)∩B(xn,k, 2

1−n/2) = ∅. Otherwise, as ρ(x) ≤ r, Lemma 4.1
gives 2−n/2 ≤ Cr. As a consequence, we get

1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φ(y)|dy ≤ C sup
2−n/2≤r

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy

≤ C‖φ‖bmon ,

which proves (4.4), and hence (4.2) holds.
�
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Proof of Lemma 4.3. Clearly, it is sufficient to prove that

(4.5) sup
ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy ≤ C sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy.

In fact, for every ball B(x, r) which satisfies ρ(x) ≤ r, setting

G = {(n, k) ∈ Z× Z
+ : B(xn,k, 2

−n/2) ∩ B(x, r) 6= ∅},

one has

B(x, r) ⊂ ∪(n,k)∈GB(xn,k, 2
−n/2) and

∑

(n,k)∈G

|B(xn,k, 2
−n/2)| ≤ C|B(x, r)|

since R
d = ∪n∈ZBn ⊂ ∪n,kB(xn,k, 2

−n/2) and (iii) of Corollary 3.1. Therefore,

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy ≤
1

|B(x, r)|

∫

∪(n,k)∈GB(xn,k ,2−n/2)

|f(y)|dy

≤
1

|B(x, r)|

∑

(n,k)∈G

|B(xn,k, 2
−n/2)| sup

ρ(z)≤s≤2ρ(z)

1

|B(z, s)|

∫

B(z,s)

|f(y)|dy

≤ C sup
ρ(z)≤s≤2ρ(z)

1

|B(z, s)|

∫

B(z,s)

|f(y)|dy,

which implies that (4.5) holds.
�

Proof of Theorem 4.1. Since CMOL(R
d) is a subspace of BMOL(R

d), which
is the dual of H1

L(R
d), every function f in H1

L(R
d) determines a bounded linear

functional on CMOL(R
d) of norm bounded by ‖f‖H1

L
.

Conversely, given a bounded linear functional T on CMOL(R
d). Then, for

every (n, k) ∈ Z×Z
+, from (4.2) and density of C∞

c (Rd) in vmon(R
d), the linear

functional Tn,k(g) 7→ T (ψn,kg) is continuous on vmon(R
d). Consequently, by

Theorem B, there exists fn,k ∈ h1n(R
d) such that for every φ ∈ C∞

c (Rd),

(4.6) T (ψn,kφ) = Tn,k(φ) =

∫

Rd

fn,k(y)φ(y)dy,

moreover,

(4.7) ‖fn,k‖h1
n
≤ C‖Tn,k‖,

where C is a positive constant independent of n, k, ψn,k and T .
Noting that supp ψn,k ⊂ B(xn,k, 2

1−n/2), (4.6) implies that supp fn,k ⊂
B(xn,k, 2

1−n/2). Consequently, as xn,k ∈ Bn, Lemma 3.3 yields that there are
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(H1
L, 2)-atoms an,kj related to the balls B(xn,kj , rn,kj ) such that

(4.8) fn,k =
∞
∑

j=1

λn,kj an,kj ,
∞
∑

j=1

|λn,kj | ≤ C‖fn,k‖h1
n

with a positive constant C independent of ψn,k and fn,k.
Since supp fn,k ⊂ B(xn,k, 2

1−n/2), by Lemma 3.1, the function

x 7→ f(x) =
∑

n,k

fn,k(x)

is well defined, and belongs to L1
loc(R

d). Moreover, for every φ ∈ C∞
c (Rd), by

(i) of Corollary 3.1, there exists a finite set Γφ ⊂ Z× Z
+ such that

T (φ) =
∑

(n,k)∈Γφ

T (ψn,kφ) =
∑

(n,k)∈Γφ

∫

Rd

fn,k(y)φ(y)dy =

∫

Rd

f(y)φ(y)dy.

Next, we need to show that f ∈ H1
L(R

d).
We first claim that there exists C > 0 such that

(4.9)
∑

n,k

‖fn,k‖h1
n
≤ C‖T ‖.

Assume that (4.9) holds for a moment. Then, from (4.8), there are (H1
L, 2)-

atoms an,kj and complex numbers λn,kj such that

f =
∑

n,k

∑

j

λn,kj an,kj and
∑

n,k

∑

j

|λn,kj | ≤ C
∑

n,k

‖fn,k‖h1
n
≤ C‖T ‖.

By Theorem A, this proves that f ∈ H1
L(R

d), moreover, ‖f‖H1
L
≤ C‖T ‖.

Now, we return to prove (4.9).
Without loss of generality, we can assume that T is a real-valued functional.

By (4.7), for each (n, k) ∈ Z× Z
+, there exists φn,k ∈ C∞

c (Rd) such that

(4.10) ‖φn,k‖vmon ≤ 1 and ‖fn,k‖h1
n
≤ CT (ψn,kφn,k).

For any Γ ⊂ Z × Z
+ a finite set, let φ =

∑

(n,k)∈Γ ψn,kφn,k ∈ C∞
c (Rd). We

prove that ‖φ‖BMOL
≤ C. Indeed, let B(x, r) be an arbitrary ball satisfying

r ≤ 2ρ(x). Then, by (ii) of Corollary 3.1, we get

card {(n, k) ∈ Z× Z
+ : B(xn,k, 2

1−n/2) ∩ B(x, r) 6= ∅} ≤ C.
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This together with (4.1) and (4.10) give

1

|B(x, r)|

∫

B(x,r)

|φ(y)− φB(x,r)|dy ≤ C sup
(n,k)∈Γ

‖ψn,kφn,k‖BMO

≤ C sup
(n,k)∈Γ

‖ψn,kφn,k‖bmon

≤ C sup
(n,k)∈Γ

‖φn,k‖bmon ≤ C

if r ≤ ρ(x), and as (4.4),

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy ≤ C sup
(n,k)∈Γ

1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φn,k(y)|dy

≤ C sup
(n,k)∈Γ

‖φn,k‖bmon ≤ C

if ρ(x) ≤ r ≤ 2ρ(x). Therefore, Lemma 4.3 yields

‖φ‖BMOL
≤ C

{

sup
r≤ρ(x)

1

|B(x, r)|

∫

B(x,r)

|φ(y)− φB(x,r)|dy +

+ sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy
}

≤ C

since B(x, r) is an arbitrary ball satisfying r ≤ 2ρ(x). This implies that
∑

(n,k)∈Γ

‖fn,k‖h1
n

≤ C
∑

(n,k)∈Γ

T (ψn,kφn,k) = CT (φ)

≤ C‖T ‖‖φ‖BMOL
≤ C‖T ‖.

Consequently, (4.9) holds since Γ ⊂ Z × Z
+ is an arbitrary finite set and the

constants C are dependent of Γ. This ends the proof of Theorem 4.1.
�

To prove Theorem 3.1, we need to recall the following lemma.

Lemma 4.4 (see [6], Lemma 3.0). There is a constant ε > 0 such that for
every C ′ there exists C > 0 such that for every t > 0 and |x− y| ≤ C ′ρ(x),

∣

∣

∣

1

(4πt)d/2
e−

|x−y|2

4t − Tt(x, y)
∣

∣

∣
≤ C

1

|x− y|d

( |x− y|

ρ(x)

)ε

.

Proof of Theorem 3.1. As H1
L(R

d) is the dual space of VMOL(R
d) (see

Theorem 4.1 of [4]), by Theorem 4.1 and the Hahn-Banach theorem, it suffices
to show that C∞

c (Rd) ⊂ VMOL(R
d). In fact, for every f ∈ C∞

c (Rd) with supp
f ⊂ B(0, R0), one only needs to establish the following three steps:
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Step 1. By (2.1), one has ‖e−tLf‖L2 ≤ ‖f‖L2 for all t > 0. Therefore,

1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy ≤
1

|B(x, t)|
4‖f‖2L2

for all x ∈ R
d and t > 0. This implies that

γ2(f) = lim
R→∞






sup

x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






= 0.

Step 2. For every R > 2R0 and B(x, t) ∩B(0, R) = ∅, by (2.1) again,

1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy

≤
1

|B(x, t)|

∫

B(x,t)

( 1

(4πt)d/2

∫

B(0,R0)

e−
(R−R0)

2

4t |f(z)|dz
)2

dy

≤ (4π)−d‖f‖2L1

1

td
e−

R2

8t ≤ (4π)−d‖f‖2L1

( 8d

R2

)d

e−d.

Therefore,

γ3(f) = lim
R→∞






sup

B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






= 0.

Step 3. Finally, we need to show that

(4.11) γ1(f) = lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2






= 0.

For every x ∈ R
d and t > 0, we have











1

|B(x, t)|

∫

B(x,t)

∣

∣

∣
f(y)−

1

(4πt)d/2

∫

Rd

e−
|y−z|2

4t f(z)dz
∣

∣

∣

2

dy











1/2

≤ sup
|y−z|<t1/4

|f(y)− f(z)|+ 2‖f‖L∞

1

(4πt)d/2

∫

|z|≥t1/4

e−
|z|2

4t dz.
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By the uniformly continuity of f , the above implies that

lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

∣

∣

∣
f(y)−

1

(4πt)d/2

∫

Rd

e−
|y−z|2

4t f(z)dz
∣

∣

∣

2

dy
)1/2






= 0.

Therefore, we can reduce (4.11) to showing that
(4.12)

lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

[

∫

Rd

∣

∣

∣

1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣

∣

∣
|f(z)|dz

]2

dy
)1/2






= 0.

From supp f ⊂ B(0, R0) and R
d ≡ ∪n,kB(xn,k, 2

−n/2), there exists a finite
set Γf ⊂ Z×Z

+ such that supp f ⊂ ∪(n,k)∈Γf
B(xn,k, 2

−n/2). As a consequence,
(4.12) holds if we can prove that for each (n, k) ∈ Γf ,
(4.13)

lim
r→0






sup

x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

[

∫

B(xn,k ,2−n/2)

∣

∣

∣

1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣

∣

∣
|f(z)|dz

]2

dy
)1/2






= 0.

We now prove (4.13). Let x ∈ R
d and 0 < t < 2−2n. As xn,k ∈ Bn, by

Proposition 2.1, there is a constant C > 1 such that C−12−n/2 ≤ ρ(z) ≤ C2−n/2

for all z ∈ B(xn,k, 2
−n/2). This together with (2.1) and Lemma 4.4, give











1

|B(x, t)|

∫

B(x,t)

[

∫

B(xn,k ,2−n/2)

∣

∣

∣

1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣

∣

∣
|f(z)|dz

]2

dy











1/2

≤ 2‖f‖L∞

1

(4πt)d/2

∫

|z|≥t1/4

e−
|z|2

4t dz + C2nε/2‖f‖L∞

∫

|z|<t1/4

1

|z|d−ε
dz,

which implies that (4.13) holds. The proof of Theorem 3.1 is thus completed.
�
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