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Abstract

This paper addresses the distributed power adaptation ([PR#blem on the downlink for wireless cellular
networks. As a consequence of uncoordinated local schefdkecisions in classical networks, the base stations
produce mutual uncontrolled interference on their co-aehnsers. This interference is of a variable nature, and is
hardly predictable, which leads to suboptimal schedulimg) @ower control decisions. While some works propose to
introduce cooperation between BS, in this work we propostead to introduce a model of power variations, called
trajectories in the powers space, to help each BS to prddiotdriations of other BS powers. The trajectories are then
updated using a Model Predictive Control (MPC) to adaptsingih powers according to a trade-off between inertia
(to being predictable) and adaptation to fit with capacitgdge A Kalman filter (KF) is used for the interference
prediction. In addition, the channel gains are also predicin order to anticipate channel fading states.

This scheme can be seen as a dynamic distributed uncoadipatver control for multichannel transmission
that fits the concept of self-optimised and self-organisedless networks (SON). By using the finite horizon MPC,
the transmit powers are smoothly adapted to progressieaelel the current trajectory toward the optimal trajectory.
We formulate the optimisation problem as the minimisatidérthe utility function of the difference between the
target powers and MPC predicted power values. The presesiaadation results show that in dynamic channel
conditions, the benefit of our approach is the reduction ef itiierference fluctuations, and as a consequence a
more accurate interference prediction, which can furtkadIto a more efficient distributed scheduling, as well as
the reduction of the overall power consumption.

Index Terms

Distributed model-based power control, no inter-cell aaagion, power trajectory, model predictive control, sthoo
power adaptation, target power vs power inertia and prafiidty tradeoff.

I. INTRODUCTION

Present and future wireless networks intend to use small gellirban environment to create local coverage to
maximise the spatial reuse to support rapidly increasing taffic. However, this dense deployment of base stations
(BS) with shorter coverage range brings new challenges tantiee-cell interference management (especially at
the cell boundaries) with its associated complexity. Sudiwosks are characterised by an increasing number of
distributed infrastructure elements and the lack of pitedidity of the base station and user patterns. Self-orgahiz
and self-optimized networks (SON) concept is therefore seea potential solution expected to prevent a burden
of planning and optimisation tasks.

In this paper, we focus on the distributed power adaptatf?) problem for the downlink parallel interference
channels. Radio resource power allocation has been exédnstudied for many years. Recent complete overviews
of the matter can be found in [1], [2], [3]. It is commonly regused, that centralised or coordinated allocation
techniques in today’s classical network are more of prattgsues to control the inter-BS date exchange, network
latency, synchronisation aspects. The efficient power dilmtadn distributed systems was less studied and still
presents many challenging unsolved problems. Yet, sonlg warks on distributed radio resource management
exist [4], [5], [6].

Some distributed techniques such as game theory are frakewmat, in general, require static scenarios and
sequential or per-round allocation to converge to equilibrthat may not be optimum solutions. This technique



may not be well adapted to dynamic channels. The demonstraid the conditions of the existence and uniqueness
of the Generalized Nash Equilibrium are given in [7].

In most of the practical systems, the distributed radio wes® management (RRM) have to rely on incomplete
or altered knowledge of system or environment related petrars. For example, if a BS does not share its
scheduling decisions with its neighbouring BSs, and doeshawé precise (i.e. accurate and up-to-date) channel
state information (CSI) knowledge, then the interferena®iked at the users is not likely to be predictable, and
difficult to control.

Typically, the distributed scheduling algorithms whichcagnt for the interference in their decisions, use the
parameters measured at time(channel, interference) to compute the scheduling patterrthe time n + 1.
Obviously, this would be optimal only if all other BSs keptithecheduling unchanged. Since all of them follow the
same optimisation procedure independently at the samalydhis leads to an intrinsically suboptimal scheduling.
Some algorithms [8], [9], [10] use Kalman filter-based pradictof the interference.

Most of the approaches for resource-power allocation thathe found in the literature formulate a constrained
optimisation problem to reach a target capacity or SINR, dedhtively drive the system towards the (possibly
non-optimal) solution (e.g. [8], [11]). Some of them considetrade-off between being close to this target and
another metric, such as the generated interference, pewel étc. [9].

To avoid the unilateral optimisation of individual BS’s sdiers, one could further make an assumption on
system’s evolution. In this paper, we propose to apply tlhrtEjues used in automation, system assessment and
trajectory tracking to follow and predict the evolution dfet parameters of interest, such as the interference or
power in wireless networks. Our approach is inspired by dribese techniques, which is the finite-horizon model
predictive control (MPC) [12], successfully used in manyustlial applications throughout the past 20 years, like
process plants control in chemical industry, or productidbhe key idea is to look forward several steps of the
optimisation, and try to get closer to a targegtjectory instead of a single target state.

Instead of trying to develop a static method later extendedynamic systems, we rather directly consider the
system as dynamic. Indeed, the channel coefficients andahsntission powers evolve continuously. Thus, in our
approach, we first define dynamic models that build a prior médion about all the parameters in the system,
such as channel gains and interference. Next, to explasetheodels, we integrate in our approach three steps that
have to be done by each base station: estimation, prediatidndecision. In our problem investigated herein, the
estimation step aims at evaluating the channel states @&nuhtdgrfering transmission power levels. The prediction
step aims at extrapolating these values for future stepsill¥ithe decision step represents the local scheduling
applying a given vector of powers on the channel resourcesct BS.

This last decision step is the most important contributiorinig paper, as it suggests that each BS produces a
partially predictable interference, performing a tradiebetween its inertia and its required power variations.

This paper is organised as follows. The section Il containsntbeel description, the section Ill describes the
three previously mentioned processing steps. We presensithulation results in section 1V, which illustrate its
potential interest to gain in prediction quality and eneeypenditure.

Il. MODELS AND NOTATIONS
A. Notations

We use the following notations in this paper: bold upper da#iers indicate matrices; bold lower case letters
indicate vectors]y stands for identity matrix of siz&; 1 for a vector of lengthV of ones;x” for the transpose
of x.

B. System description

We consider a distributed cellular network wifh uncoordinated BSs, either because they are competitors for
the channel use as it is the case for WiFi APs on ISM bands, or bec#ne provider wishes to maximise the
resource use. We consider OFDMA systems with full-reuse ¢R€l), albeit our approach could be applied to
any other system with a set é&f orthogonal resources. As our main concern is to provide tbefmpf concept,
we consider the scenario where only one mobile is served bly B, both equipped with single antenna; more
elaborated scenarios are left for future work.
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Fig. 1: Simplified system overview.

The proposed system is a framework where four fundamentaiezits are introduced: modelling, parameter
estimation, trajectory predictions and decisions (see figThhe modelling part provides the mathematical formu-
lation for the interference, channel gains, and SINR. It ipantant to note that the model is a prerequisite that
directly defines the three others elements of this framewlwKurther develop our model we assume the following
capabilities:

1) Each BS broadcasts its identity and pilot signals, whieghsapposed orthogonal to those of other BSs.

2) Each mobile senses the interference and channel gainstfemeighbouring BSs on resources and using

pilot signals.

3) Each mobile feeds back its measured channel and intecielerels to its serving BS only (not to all BSs).

4) Each BS estimates and predicts the future values of thesenpters, and take an independent decision on

the power vector for the next round. All BSs run these estiomatisimultaneously.

The Signal to Interference and Noise Ratio (SINR)eceived at usei on resource: at timen is:
_ ’hi,k(n)‘ZPk (n)

Dozn, |00 (M)PPY(n) + o2
whereb; is the BS that serves the userThe complex channel gain coefficient between thetRBansmitting at
time n to useri on resource: with power PP(n) is denotedhf}k.The received signal noise powerads.

We aim at the model which could produce the future a priorugalfor some of these system parameters that

can be measured. Balancing the number of parameters anddtiel komplexity we can choose to work either
on the total interference, or to separately process thendtamefficients and the transmit powers. We opt for the

(1)

%’,k(n)



latter and jointly use two different parameter estimatioadels—one for the channel gains and another one for
the BS transmit powers, which we now describe.

C. Channel model: polynomial extrapolation

We consider the time-varying fading channels, correlatedme between the consecutive channel realisations.
For such a scenario, a low complexity channel model usingnawohial approximation has been proposed in [13],
which permits to fairly predict the next channel realisaticom only few previous samples by simple extrapolation.

D. Transmit power model: trajectory

The originality of our approach relies on the accounting fug tverall system dynamics by considering the
trajectory of the power transmitted on each resource, bioggpavith the spatial objects positions in target tracking
or computer graphics domains. These power trajectories @msidered in decibel, and at each BS we wish to
predict and to track those of the other BSs, in order to smgatthpt the BS’s own transmit power, and thus to
enhance the interference management within the wholerayste

In this model we make an analogy between the transmit powetdhee movement notations. Writing the generic
locationg) / speed() / accelerationf) equations in matrix form, we have at time(the time is discret with step

1):
- Y]

z(n+ N 1 Ni|z(n) AN P
e vb Y [U(n)]+;[ 2ot -0 @
In our case, the:, v, a represent respectively the transmit pow&rand its first and second derivatives over time.
We deliberately choose thend order model here, so that the powers do not stay constaimtgdine multiple
future steps of prediction and the acceleration plays the @b the process noise and is therefore not predicted.
This model can be generalised to higher order or even replagedsimilar one, as long as the decision steps act
accordingly (see IlI-C).

[’E(n—k 1)
v(n+1)
)

[Il. DISTRIBUTED POWER ADAPTATION
A. Parameters estimation

In our study, the channel is computed as a polynomial reignesd degree 4, based on the five last measurements
(see [13] for more details). The channel measurements aposeg perfect, or otherwise any simple filter could
be used prior to the extrapolation to limit the error propema

For the interference, we compute the trajectory of the nrealsuvalues. In a more general case of several sources
of interference and/or unknown channels, the trajectortheftotal interference plus noise can be considered. In a
more simple case with one dominant interferer, we assuntestdaan deduce its transmit power by dividing the
estimated received interference by its respective estidnahannel gain.

A Kalman filter is used to correct the measured stafer estimation biases or model approximations, based on
the following system (here again, a general notation is used

o= o)
x(n) =Fx(n—1) 4+ G(n)a(n) 4
=Fx(n—1)+w(n) (5)
with
11 1
-} -
E{a*(n)} = o} (7

Biwwn} = [1 3] ®



whereF is the state transition matrix, is the process noise andg its variance, estimated over a moving window of
previous samples, which can account for measurement arotuiding any inaccuracy related to hardware defaults,
guantization errors, etc. In [8], the authors arbitrarigy this value to be a fraction of process noise variance, that
way, the output of the Kalman filter sveragedand the system oscillations are reduced. The correxfeasteriori
values are obtained using the classical Kalman filter fortrarg14].

B. Predictions

The objective of the prediction part is to determine #hpriori values of the channels and interference for future
steps. In this work, we consider a finite-horizon based ptieaicsince we intend to perform scheduling not only
for the next time-slot, but for a few steps forward. The ultienabjective being the smooth power adaptation, we
need to track a target power over several scheduling inter®s well, for the channels, a prediction of several
future states allows us to know if a good or bad channel stéiteber maintained or changed quickly, and thus,
make a better anticipation for future scheduling.

Based on the chosen models, once the current state pararaetedefined, the future state prediction is quite
straightforward. The channel gains are predicted using firementioned regression by computing the polynomial
coefficients at timen for timen+1 ton+ N (V is the horizon). Note, that a high variability of the fadingpess
would lead to inaccurate long-term predictions: a Rayleighannel with Doppler spread of 50Hz to 100Hz and
1kHz sampling allows about 3 future samples prediction witheasonable quality, while lower Doppler spread
(< 40Hz) allows the prediction of 5 future states with good accurg 3].

To predict the power trajectory, one should just put acedien to zero in equation (2).

C. Decisions

Based on those predictions, the BSs will compute their trinsowers. We aim to minimise the transmit powers
under user capacity constraints for parallel interfereclcannels. This problem is a dual problem of capacity
maximisation under power constraint, and when only a singker per BS is considered, a classical water-filling
algorithm provides the optimal solution [1].

The resulting vector of power allocatidR € RXY is the target of the power tracking algorithm (also called
“reference”). Contrarily to what is proposed in literaturee do not schedule these powers directly. Instead, we
use the finite-horizon model predictive control (FMPC) [15] toa®thly track the optimal power allocation over
the iterations of the global procedure. At time a cost minimising control strategy is computed for a shionet
horizon in the futurein,n + N]|. Specifically, we derive the cost-minimising trajectory tlembanates from the
current state until the time + N. The horizonN of tracking is a system parameter. In this work, we D&e-= 5.

On the one hand, neighbouring users’ interference predidt based on the trajectory model, considering that
a = 0. On the other hand, the local user may require a differefedrary to satisfy the optimal scheduling. The
transmit powers are then subject to their inertia, and tihedualing onlydeviatesthe power vector from its initial
trajectory.

On a given resource, the vector containing tha’ future transmit power valueBy, = [Py(n+1)...Py(n+ N)|T
is given hy:

P, = lNPk(n) + [1,2, .. .,N]T’Uk(n) -+ Wak(n), (9)
with
3 0 0
_1 1
w=|" 22 (10
NS} en-d o
and
ai(n) = [ap(n), ax(n +1),...,ap(n+ N —1)|7 (11)

We perform the trade-off between the desired objectivestranpowersR and the actually transmitted powers
P, by introducing the following utility function to minimisever a:

U(a) = > (Ri — Pp)" (Ri — Py) + paaj ay (12)
k
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Fig. 2: From left to right: Received interference, capacitg &ransmit power for a given user.

Solving the equation (12) creates a trajectory deviation taances the optimal allocation and interference
prediction. When, is high, the importance is given on the predictability of gystem, while wheny, is small,
a higher importance is given to try to satisfy the instandadtion. Standard systems correspong:to= 0.

Lemma 1:The a; vectors that minimise utility (12) are giveNfk, by:

ar = (WI'W + pIy) " Wie; (13)

wheree;, = Ry, — 1xyPp(n) — [1,2,..., N] v, is the difference between the desired trajectory and thectay
that would occur without acceleration.
Proof. The utility (12) can be reformulated as:

Ula) = (ex — Way)" (e, — Way,) + paaf ay (14)
k
We differentiatel/’ with respect toay:
oU(a)

T —2ef W + 2a (WTW + p,In) (15)
k

Solving for aga(:) = 0 proves the Lemma 1.

Note that even if at a given time-step the scheduler plangjectory with horizon, this allocation is made every
time-step to accounts for environment changes.

IV. SIMULATION RESULTS

For each channel, the convergence of the distributed poglagtation occurs only when the SINR demands from
all users are low enough [5], even for random (unknown fadoigannel [16]. In practice, considering dynamic
channel conditions (mobility and fading), if the samplisgfast enough, the channel is correlated in time. Another
issue is then to converge fast enough compared to the cheawigfion speed. Parallel channels bring here a degree
of freedom for scheduling, but may increase the unpredidiabf interference due to the uncoordinated decisions.
A. Smooth variations

As a first approach in this paper, we choose to study the owarsiém behaviour. To do so, we analyse the basic
interference channel scenario: two bases stations, eaginga single user. In order to illustrate our approach, we
first present a system with = 2 orthogonal resources available for the downlink. The mahélee placed at half
the distance between the two BSs, so that the generatedenatieck is the major issue.



We use a simulated Rayleigh channel to obtain variable ginthis example, the target throughput for the
mobiles is4 bps/Hz. Other simulation parameters are in Table 1.

Figure 2 shows the comparison between the traditional systemere the distributed power allocation is updated
at each time-step, using a Kalman-filter based interferestimation on fig. 2a, and our smooth power allocation
method (in this example, we used = 1) on fig. 2b. From left to right, this figure presents, for a givenbite

« the interference level measured and its prediction for befources;

« the capacity measured and its prediction, compared to thmlademand;

« the transmit power used by the serving BS for both resources.

The presented result is an example over 250 iterations.

In the classical DPA, the convergence is slow and go throwgk unstable states. Since the interference is not
predicted correctly, either the transmitter uses a powat ithtoo low resulting in decoding errors and capacity
outage, or the transmitted power is too high wasting energly generating high interference. Note that using an
estimation filter would help to reduce oscillations &yeragingthe measured interferences.

Comparing fig.2a and fig.2b, one can observe that the osciiatice strongly reduced in duration and amplitude.
During the phases where the solutions are stable, the semdtsimilar for both methods in terms of capacity and
energy. But during transitions, or oscillations, the traiigopower consumed and the capacity lost with the standard
methods strongly affects overall performance (see nexsestiion).

The result of this is that even if the received capacity i$ 8tittuating around the objective (yet in a smoother
way than the standard method), the prediction of the obdagapacity is much more precise: Figure 3 shows the
Cumulated Density Function (CDF) of the difference between pihedicted and actual capacity received at the
mobiles, for various values of the parametgr This CDF has been obtained with the values of 10000 samples
for the two users considered in this scenario. Note that dawovalue of i, leads to an interference model that
is no longer predictable, and so applying the trajectoryiamyais not relevant. A too high value ¢f, results in a
predictable model, since powers tend to be constant, butdheduling may no longer satisfy users requirements.
Knowing the channel capacity, the transmitter can adaptvtleme of data to send (if traffic allows) and thus
reduce the outage.

B. Power and Capacity trade-off

We now want to show that having a more stable system leadsei@esaving and capacity improvement. The
scenario considered here is similar to the previous oneepxbat we extended the number of available resources
to K = 10, in order to have a less constrained resource allocation.

We compare the proposed model with the standard methodRduse-1 and Reuse-2 schemes, which correspond
to using simultaneous water-filling updates on availableusses and are similar to the Game Theory approach [7].
For Reuse-1 method and our proposed method, we apply twereliff estimation methods: one withfilering
estimator (which averages interference measurements),oap with non-averaged measurements (i.e. perfect
measurements).

The performance metrics used are the received goodput anttathemit power used, average over the 1000
samples of the simulation. For mobilethe goodputG; is the capacity that is successfully sent to the mobile: if
the data-rate transmittad;(n) is higher than the actual capacify = > i loga(14;.), the data are not decodable
and lost. Here, we define the goodput of the usas

oy [Cin) Lif Ci(n) < C;
Gi(n) = {0 , otherwise (16)

Note that we used appropriate data-rate margin for eachadg#o that the goodput is optimized w.r.t. outage
statistics.

BS to UE distance 200m Total noise | -114dBm
BS to BS distance 400m Max. Power 30dBm
Pathloss model (dB) 30.18+2fog;,(d) Min. Power -50dBm
Max. Doppler Shift 10Hz Sampling freq.| 1kHz

TABLE I: Simulation Parameters
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Figure 4 shows the performance of the compared methods, wiibus capacity requirements. It can be seen
that the proposed method outperforms the Reuse-2 by aboBteéhdrgy gain for low capacity requirements. Our
method also outperforms the standard method as soon astéréeiance is high enough to create convergence
issues. This gain in energy comes from the usage of the apat®gdevel of power for transmissions, due to
improved predictions and right usage of frequency diversit

For higher capacity requirements, the classical methodusitled by a maximum achievable rate after which any
further requirement leads to higher interference level asdllations, and so can not improve the system. Using
filtered measurements, these oscillations are reduced atitk swverall performance is improved, yet still affected
by frequent outage and energy waste, due to wrong predsctidubject to fewer wrong predictions, the proposed
method allows to improve both goodput and energy consumjainal obtains results closer to the Reuse-2 reference.
Note that Reuse-2 is an extreme case since it is not affegtethyp interference and so has no convergence issue.

It is shown that averaging the interference measurementiomethod brings no significant improvement, which
confirms that the trajectory-based approach schedulinmsntally acts as a smooth power allocation.

V. CONCLUSION

In this paper, we presented a framework for dynamic disteidbypower allocation in parallel interference channels,
which does not require information sharing among tranemsittWe adapted the finite-horizon model predictive
control to the power tracking, in order to derive the disttéad scheduling so that the generated interference is kept
tightly within a predefined model. We have shown that, usingagc¢tory modelling of the channel and interference
as ana priori knowledge on system behaviour, improves the interferermeagement and capacity prediction, and
thus leads to finer power allocations.

In a future work, we aim to look at theoretical stability reqgs, as well as consider multiple users and multiple
cells to extend this model to more realistic scenarios.
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