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TRAVELLING FRONTS IN ASYMMETRIC NONLOCAL REACTION DIFFUSION

EQUATIONS: THE BISTABLE AND IGNITION CASES

JÉRÔME COVILLE1,2

ABSTRACT. This paper is devoted to the study of the travelling front solutions which appear
in a nonlocal reaction-diffusion equations of the form

∂u

∂t
= J ⋆ u− u+ f(u).

When the nonlinearity f is of bistable or ignition type, and the dispersion kernel J is asym-
metric, the existence of a travelling wave is proved. The uniqueness of the speed of the front
is also established. The construction of the front essentially relies on the vanishing viscosity
techniques, some a priori estimates on the speed’s front and various comparison principles.

1. Introduction

In 1930, Fisher [26] suggested to model the spatial spread of a mutant in a given popula-
tion by the following reaction-diffusion equation :

(1.1) Ut −∆U = U(1− U),

where U represents the gene fraction of the mutant. The dispersion of the genetic characters
is assumed to follow a diffusion law while the logistic term U(1 − U) takes into account the
saturation of this dispersion process.

Since then, much attention has been devoted to the reaction-diffusion equations, as they
have proved to give a robust and accurate description of a wide variety of phenomena,
ranging from combustion to bacterial growth, phase transitions, nerve propagation or epi-
demiology. See for example [2, 5, 24, 28, 31] and their many references.

During the past ten years, the nonlocal versions of (1.1) where the diffusion is modeled
by a convolution operator have been introduced to analyze the long range effects of the
dispersion. See [4, 16, 21, 22, 32, 34]. The corresponding reaction diffusion equation is then
the following:

(1.2) Ut − (J ⋆ U − U) = f(U),

where J : Rn → R is a nonnegative function of mass one and f a given nonlinearity, see for
example [4, 18, 17, 23, 28, 30].

According to the application, three types of nonlinearities are usually consider in the lit-
erature: bistable, ignition and monostable. More precisely, for f ∈ C1(R), f(0) = f(1) = 0,
f ′(1) < 0, we say that

• f is of bistable type if there exists ρ ∈ (0, 1) such that

f < 0 in (0, ρ), f(ρ) = 0 and f > 0 in (ρ, 1)

• f is of ignition type if there exists ρ ∈ (0, 1) such that

f |[0,ρ] ≡ 0, f |(ρ,1) > 0 and f(1) = 0.
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• f is of monostable type if

f > 0 in (0, 1).

In this article we focus on the bistable and ignition nonlinearities, which arise in Ising and
combustion models. See [16, 21, 29, 33]. We are particularly interested in the travelling wave
solutions of equation (1.2), i.e., the solutions of the form

U(x, t) = u(x.e+ ct),

where e ∈ Sn−1 is a given unit vector, c ∈ R is called the wave speed and u the wave profile,
which is required to satisfy the equation

(1.3)





[J ⋆ u− u]− cu′ + f(u) = 0 in R,

u(−∞) = 0,
u(+∞) = 1,

where u(±∞) denotes the limit of u(z) as z → ±∞ and J is the real function defined by

J(s) :=

∫

Πs

J (y) dy

where Πs = {y ∈ RN : 〈y, e〉 = s}.
In the context of an Ising model, the existence of a travelling front solution with unique

speed of(1.3) was first investigated by De Masi, Orlandi, Presutti and Triolo [21, 22] for the
specific nonlinearity f(s) := Arctanh(s) − s and a smooth symmetric kernel J with expo-
nential decay. Then Bates,Fife, Ren and Wang [4] using an homotopy approach investigated
the case of a smooth bistable nonlinearity and a smooth symmetric kernel. Later, Alberti
and Bellettini [1] using a variational formulation of the problem have extended the results
of Bates et al. to more general symmetric kernels J (i.e. J ∈ L1) and the general Lipschitz
bistable nonlinearities f . Recently in [16] the author has extended the results of Alberti and
Bellettini to the case of ignition nonlinearities. The following Theorem summarizes all these
results.

Theorem 1.1. [1, 4, 16, 22]
Let J ∈ C0(R) ∩ L1(R) be such that J ≥ 0, J(z) = J(−z),

∫
R
J = 1,

∫
R
J(z)|z|dz < +∞.

Let f ∈ C1(R) be an ignition or bistable nonlinearity satisfying f ′(0) < 0. Then there exists an
increasing travelling wave u with speed c satisfying (1.3). Furthermore, if v is another travelling
wave with speed c′, then c = c′ and when u or v is smooth v(x) = u(x+ τ) for some τ ∈ R.

When the kernel J is asymmetric the different approaches used in [1, 4, 22] fail and some
new ideas are needed. In this direction, assuming that J is smooth, J ⋆u−u satisfies a strong
maximum principle and f is a bistable nonlinearity, Chen [10] has proved the uniqueness of
the speed of a travelling wave using a squeezing technique. Moreover, with more assump-
tions on J and f , Chen has constructed a travelling wave using a careful analysis of the ω−
limit set of the evolution equation (1.2). In particular in his analysis Chen assumes that J is
at least C2 while f is at least C1,1, f ′(0) < 0 and f(s)− s is monotone decreasing. Recently
the author in [14, 15] has extended the uniqueness result of Chen to more general kernel
assuming only that J ⋆ u − u satisfying a strong maximum principle and a nonlinearity f

satisfying the following assumption:

There exists ǫ > 0 such that f is non-increasing for s ≤ ǫ (H).
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For a L1 kernel J , a necessary and sufficient condition to ensure that J ⋆ u − u satisfies a
strong maximum principle can be expressed as follow:
J ⋆ u− u satisfies a strong maximum principle if and only if the following holds

(H1) There exists a ≤ 0 ≤ b, a 6= b such that J(a) > 0 and J(b) > 0

A short proof of this well known condition can be found in [15].

The aim of this paper is to construct a travelling wave solution with the most minimal
set of assumptions on the nonlinearity f and the kernel J . In particular, we investigate the
case when the operator J ⋆ u− u does not satisfy anymore a strong maximum principle and
the case of J := µ a Borel probability measure. We present and develop here an approach
briefly discussed by Chen [10] which is inspired by the viscosity solution theory introduced
by Crandall - Lions [3, 20, 19].

For simplicity of the presentation of our results, let us assume that J satisfies

(H2) J ∈ C0(R), J ≥ 0,

∫

R

J = 1 and

∫

R

J(z)|z|dz < +∞.

Our first result concern the existence of a travelling wave. More precisely, we prove the
following

Theorem 1.2.
Assume that J satisfies assumption (H2) and let f be of ignition or bistable type and satisfy (H).
Then there exists a constant c ∈ R and a non-decreasing function u satisfying (1.3). Moreover the
speed c is unique.

Observe that the profile u is not a priori unique up to translation when J is asymmetric.
In particular, when the speed c = 0, the solution u may be discontinuous and infinite many
profile can exists. There is a very nice example of this phenomena in [4, 10].
With an extra assumption on the speed c, we can still establish the monotone behavior of
any bounded solutions of (1.3). Namely, we show the following

Theorem 1.3.
Assume that J satisfies assumption (H2) and let f be of ignition or bistable type which satisfies (H).
Let (u, c) be a solution of (1.3) and assume that c 6= 0, then u is monotone non decreasing.

1.1. Method and plan. The proof of Theorem 1.2 is achieved in three steps using the van-
ishing viscosity technique which was briefly suggested in [10]. This approach is inspired by
the viscosity solution theory introduced by Crandall and Lions [20] in the early eighty’s. In
a first step, we study the following problem:

(1.4)





M[u] + f(u) = 0 in R

u(−∞) = 0
u(+∞) = 1,

where

(1.5) M[u] = M(ǫ, J, c)[u] = ǫu′′ + [J ⋆ u− u]− cu′,

J satisfies (H1&H2), ǫ > 0 and c ∈ R.
For this problem we show the following:
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Theorem 1.4.
Let f be of ignition or bistable type satisfying (H) and assume that J has a compact support, satisfies
(H2) and there exists a ∈ R such that J(a) > 0 and J(−a) > 0. Then there exists a constant cǫ ∈ R

and an increasing function uǫ such that (uǫ, cǫ) is a solution of (1.4). Moreover the solution (uǫ, cǫ)
is unique in following sense: If (v, c′) is another solution of (1.4) then cǫ = c′ and v(x) = uǫ(x+ τ)
for some τ ∈ R.

In a second step, using a standard approximation of the kernel, we extend the above
theorem to non-compact kernels J .

Theorem 1.5.
Assume that J satisfies (H2) and let f be of ignition or bistable type satisfying (H). Then there exists
a constant cǫ ∈ R and an increasing function uǫ such that (uǫ, cǫ) is a solution of (1.4). Moreover
the solution (uǫ, cǫ) is unique in following sense: If (v, c′) is another solution of (1.4) then cǫ = c′

and v(x) = uǫ(x+ τ) for some τ ∈ R.

Theorem 1.2 is proved in the final step, where a careful study of the singular limit of (1.4)
as ǫ→ 0 is performed.

Though elementary in nature, the proofs require a number of lemmas which are listed
and prove in the Appendix. In Section 2, we establish some a priori estimates that we use
throughout this paper. Theorems 1.4 and 1.5 are proved in Section 3 and 4 respectively. In
the last section, we proved Theorems 1.2 and 1.3.

1.2. Remarks and general comments. Uniqueness of the speed c and the front profile u of
1.4 and 1.5 have already been proved in [14, 15]. We do not repeat the proofs here.

The existence of travelling waves with unique speed is not surprising. Indeed, let us
recall a connection between the nonlocal problem (1.2) and a local version, which arises by
considering a family of kernels Jǫ that approach the Dirac mass δ0, that is, Jǫ(x) = 1

ǫ
J(x

ǫ
)

with ǫ > 0. Assuming that u is smooth and J decays fast enough, by expanding Jǫ ⋆ u− u in
powers of ǫ we see that

Jǫ ⋆ u(x)− u(x) =
1

ǫ

∫

R

J(
x− y

ǫ
)(u(y) − u(x)) dy =

∫

R

J(−z)(u(x + ǫz)− u(x)) dz

= ǫβu′(x) + ǫ2αu′′(x) + o(ǫ2)(1.6)

as ǫ→ 0, where

α =
1

2

∫

R

J(z)z2 dz and β =

∫

R

J(−z)z dz.

Thus there is a formal analogy between J ⋆u−u and βu′(x)+ ǫαu′′(x). When J is symmetric
then β = 0 and the results for travelling waves of (1.3) are similar to those for travelling
wave solutions of

u′′ − cu′ + f(u) = 0 in R, u(−∞) = 0, u(+∞) = 1.(1.7)

For (1.7) there exists a unique speed c such that a travelling front solution exists. For general
asymmetric J we see from (1.6) that a better analogue than (1.7) for (1.3) is the problem

ũ′′ − (c− β̃)u′ + f(u) = 0 in R, u(−∞) = 0, u(+∞) = 1
4



for some β̃ and α̃ ≥ 0. This equation is the same as (1.7) with a shift in the speed, that is,

the unique speed is c+ β̃ where c is the unique speed in (1.7). This new speed can be either

positive or negative depending on the size and sign of β̃ and α̃, which are related to the
asymmetry of J .

Using the techniques developed in this paper, Theorem 1.2 can be easily extend to opera-
tors of the form

E [u] + J ⋆ u− u,

where E is a translation invariant elliptic operator which satisfies the positive maximum
principle of Courrège [9, 12]:

Positive maximum Principle : Let A be a continuous linear map from C0(Rn) → C(R). Then A
satisfies the positive maximum principle if and only if

For all f ∈ D(A) and x ∈ Rn, such that f(x) = sup(f) ≥ 0 ,then A[f ](x) ≤ 0.

Another consequence of the vanishing viscosity techniques and the estimates proved here
is that the existence results in Theorem 1.2 is still true when f is only assume to be Lipschitz
and J := µ is a Borel probability measure with a finite first moment. In this context the
convolution is defined by µ⋆u :=

∫
R
u(x−y)dµ(y). In particular, we can construct a travelling

wave solution for the following discrete reaction diffusion equations of the form

(1.8)
∂U

∂t
=

1

2
[U(x+ 1) + U(x− 1)− 2U(x)] + f(U) in R+ × R.

Indeed, let ψ be a mollifier with compact support, i.e., a positive even function of mass one
with a support on the unit ball. Let us define a kernel Jǫ the following way :

Jǫ(x) :=
1

2ǫ

(
ψ(
x+ 1

ǫ
) + ψ(

x− 1

ǫ
)

)
.

We easily check that for any continuous function u

lim
ǫ→0

[Jǫ ⋆ u(x)− u(x)] → 1

2
[u(x+ 1) + u(x− 1)− 2u(x)].

Therefore for any ǫ, according to Theorem 1.2 there exists a travelling wave (uǫ, cǫ) to the
equation (1.3) with Jǫ. Pick a sequence (ǫn)n∈N which converges to 0 and let (un, cn) be
the corresponding sequence of travelling wave solution. Using now Helly’s Theorem and a
priori estimate on the speed see Remark 4.1, we can extract a subsequence of the normalized
sequence (un, cn)n∈N which converges to a non trivial travelling wave solution (u, c) of the
equation (1.8). The boundary conditions are obtained following the same argument as in the
regular case, see Remark 5.3.

To get the results for any Borel probability measure µ, we just observe that µ can be ap-
proximated by ρǫ ⋆µ where ρǫ is a regular mollifier. This construction extends known results
on the existence of travelling wave in discrete system, see for example [11, 13, 27].

The monotonicity of the front, Theorems 1.3, holds as well for a general Borel probability
measure µ provided that µ satisfies the conditions supp(µ) ∩ R+ 6= ∅ and supp(µ) ∩ R− 6= ∅,
see remarks 5.6. To obtain the uniqueness of the speed of the front we require further that µ
satisfies that there exists two real a, b ∈ supp(µ) such that a

b
6∈ Q, see Remarks 5.8. The last

condition ensures that the operator µ ⋆ u− u satisfies a strong maximum principle.
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2. USEFUL ESTIMATES ON THE SOLUTION OF (1.4)

In this section we prove some estimates on solutions (u, c) of (1.4). We start by showing
some useful a priori estimates on u. More precisely, we have

Lemma 2.1.
Let ǫ > 0 and (u, c) be a bounded smooth non-decreasing solution of the following problem

M[u] + f(u) = 0 in R,(2.1)

u(0) = ρ,(2.2)

where M = M(ǫ, J, c) is defined in (1.5). Let us denote Σ := {z ∈ R|J(−z) > 0}. Then the
following hold:

(i) u′(x), u′′(x) → 0 as x → ±∞ and f(l±) = 0 where l± denotes the corresponding limits of
u at ±∞.

(ii) If l+ ≤ ρ, then u ≡ ρ and u′ ≡ 0 in Σ ∪ R+.
(iii) If l− ≥ ρ, then u ≡ ρ and u′ ≡ 0 in Σ ∪ R−.
(iv)

∫
R
(u′)2 <∞,

∫
R
f(u) = (c−

∫
R
J(−z)z dz)[l+ − l−] <∞.

(v) When c 6= 0, there exists K > 0 independent of u and c such that |c|‖u′‖L∞(R) < K and

c2‖u′′‖L∞(R) < K|c|‖u′‖L∞(R).

(vi) There exists K ′ > 0 such that ǫ‖u′‖L∞(R) < K ′ + 2|c|(l+ − l−) + ǫu′(0).

Remark 2.1. Note that when J satisfies (H1), u ≡ ρ in all R.

The proofs of (i),(iv),(v) follow standard ideas that we can find in [2, 7, 8, 24, 25] in the
elliptic case and in [4] in the case of a symmetric kernel. For the sake of completeness of this
paper, we give a detailed proof of them.

Proof:

First observe that since u is a bounded non-decreasing function, u achieves its limits at
±∞. Let l+ and l− denote these limits. Observe also that it is a trivial matter to prove (ii-
iii). Indeed, since u is a non-decreasing smooth function, in both cases u achieves a global
extrema at zero. At this point we have:

0 = M[u](0) + f(u(0))

= ǫu′′(0)− cu′(0) + J ⋆ u(0)− ρ+ f(ρ)

= J ⋆ u(0) − ρ

=

∫

R

J(−y)[u(y) − ρ]dy.

Therefore, for all −y ∈ supp(J), u(y) = ρ. Hence (ii)-(iii) hold.
Now, let us prove the behavior of the derivatives of u at ±∞.

We only show that u′ → 0 as x → +∞. The other cases u′ → 0 as x → −∞ and u′′ → 0 as
x→ ±∞ are obtained similarly.

To obtain u′ → 0 as x → +∞, we argue by contradiction. If not, there exists a positive
constant α and a sequence (xp)p∈N such that

(2.3) ∀ p ∈ N u′(xp) ≥ α > 0.

Let (γp)p∈N be the following sequence (γp)p∈N = lim inf (xp)p∈N . Now let us define the
following sequence of functions (up)p∈N = (u(. + γp))p∈N. Then (up)p∈N is a monotonic
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sequence and for each p, up is a uniformly bounded non-decreasing function and satisfies

M[up] + f(up) = 0 in R.

Using now local C2,α estimates, Helly’s Theorem, and diagonal extraction, we deduce
that there exists a subsequence still denoted up which converges pointwise to some nonde-
creasing function ũ. Since (up)p∈N is a monotonic sequence, the all sequence converge point-
wise. Moreover, using standard elliptic theory, and Lebesgue’s Theorem, then the sequence

(up)p∈N converges in the C2,α
loc topology to ũ and ũ satisfies

(2.4) M[ũ] + f(ũ) = 0 in R.

By definition, up converges pointwise to l+. Therefore by uniqueness of the limit, ũ ≡ l+.
Hence u′p → 0 uniformly on every compact set.
In particular, we have u′(γp) = u′p(0) → 0, which contradicts (2.3).

We can now show that f(l±) = 0. Since u is a solution of (2.1), we have

−f(u) = M[u] = ǫu′′ − cu′ + J ⋆ u− u.(2.5)

Taking x→ +∞ in the above equation (2.5) yields

−f(l+) = J ⋆ l+ − l+ = l+ − l+ = 0.

We show that f(l−) = 0 by taking x→ −∞ in (2.5).
Next, we obtain (iv). Let us first integrate (2.1) over (−r, r).

This leads to

−
∫ r

−r

f(u) = ǫ

∫ r

−r

u′′ +

∫ r

−r

(J ⋆ u− u)− c

∫ r

−r

u′

= ǫ[u′(r)− u′(−r)] +
∫ r

−r

(∫

R

J(x− y)(u(y)− u(x))dy

)
dx− c[u(r)− u(−r)]

= ǫ[u′(r)− u′(−r)] +
∫ r

−r

(∫

R

J(−z)z
∫ 1

0
u′(x+ tz)dt dz

)
dx− c[u(r)− u(−r)]

= ǫ[u′(r)− u′(−r)] +
∫ 1

0

(∫

R

J(−z)z[u(r + tz)− u(−r + tz)]dz

)
dt− c[u(r)− u(−r)].

Letting r → ∞ we find

(2.6)

∫

R

f(u) = (c−
∫

R

J(−z)z dz)[l+ − l−].

We denoteM1 :=
∫
R
J(−z)z dz.

We obtain the second inequality in a similar way. Multiplying equation (2.1) by u and inte-
grating over (−r, r) leads to
∫ r

−r

f(u)u = −ǫ
∫ r

−r

u′′u−
∫ r

−r

(J ⋆ u− u)u+ c

∫ r

−r

u′u

= ǫ

∫ +R

−r

(u′(x))2 dx−
∫ r

−r

(J ⋆ u(x)− u(x))u(x) dx +
c[u2(r)− u2(−r)]

2
+ o(1).

By letting r → ∞ we find

(2.7) ǫ

∫

R

(u′(x))2 dx = −c [(l
+)2 − (l−)2]

2
+

∫

R

(J ⋆ u(x)− u(x))u(x) dx +

∫

R

f(u(x))u(x) dx

7



and (iv) is proved.
Let us now show (v). From (i) u′ vanishes at infinity. Since u is smooth and non-decreasing,

u′ achieves a global maximum at some point x0 ∈ R. At x0, since u is uniformly bounded
and f globally Lipschitz, we have

cu′(x0) =(J ⋆ u− u)(x0) + f(u)

|cu′(x0)| ≤|J ⋆ u(x0)|+ |u|(x0) +K1‖u‖L∞(R)

|c|‖u′‖L∞(R) ≤K‖u‖L∞(R),

with K = K1 + 2. Differentiating (2.1), it follows that

cu′′ = f ′(u(x))u′ − ǫu′′′ + u′ − J ⋆ u′.

Using that u is bounded and (i), u′′ achieves a global extrema at some points x1, x2. Assume
that u′′ achieves global maximum at x1 At this point, we have

|c||cu′′(x1)| = |c||f ′(u(x1))u′(x1) + u′(x1)− J ⋆ u′(x1)|
≤ (K1 + 2)|c|‖u′‖L∞(R).

Similarly, if u′′ achieves global minimum at x1 we have

|c||cu′′(x2)| = |c||f ′(u(x2))u′(x2) + u′(x2)− J ⋆ u′(x2)|
≤ (K1 + 2)|c|‖u′‖L∞(R).

Hence (v) holds.
Finally we obtain (vi). Let us integrate equation (2.1) over (−∞, x). It follows that

ǫu′(x)− c(u(x) − l−) +

∫ x

−∞

∫ 1

0

∫

R

J(−z)zu′(s+ tz) dtdzdx = −
∫ x

−∞
f(u)

ǫu′(x)− c(u(x) − l−) +

∫ x

−∞

∫ 1

0

∫

R

J(−z)zu′(s+ tz) dtdzdx ≤ −
∫ 0

−∞
f(u)

Therefore we have

ǫ|u′(x)| ≤ |c|(l+ − l−) +

∫ x

−∞

∫ 1

0

∫

R

J(−z)|z|u′(s+ tz) dtdzdx+ |
∫ 0

−∞
f(u)|(2.8)

≤ (

∫

R

J(z)|z| dz + |c|)(l+ − l−) + |
∫ 0

−∞
f(u)|.(2.9)

Observe that in the case of an ignition nonlinearity, we are done since f(u) ≡ 0 on R−.

Now, let us compute
∫ 0
−∞ f(u). By integrating (2.1) over R− and using Fubini’s Theorem, it

follows that

(2.10) ǫu′(0)− c(ρ− l−) +

∫ 1

0

∫

R

J(−z)z[u(tz) − l−] dtdz = −
∫ 0

−∞
f(u).

Substituting (2.10) into (2.9) yields

ǫ|u′(x)| ≤ 2(

∫

R

J(z)|z| dz + |c|)(l+ − l−) + ǫu′(0).

Hence
ǫ‖u′‖L∞(R) ≤ K ′ + 2|c|(l+ − l−) + ǫu′(0),

with K ′ := 2(
∫
R
J(z)|z| dz)(l+ − l−). Thus, (vi) holds.
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Remark 2.2. Observe that even for a non-smooth function u that has limits at infinity, it yields
lim→x±∞(J ⋆ u− u) = 0. Therefore, if u satisfies

J ⋆ u− u+ f(u) = 0 in R,

then l± must satisfy f(l±) = 0. For bounded solutions u satisfying J ⋆ u− u− cu′ + f(u) = 0, we
can easily see that, when c 6= 0, (i)-(v) hold as well.

We now obtain some a priori estimates on the speed c of solutions (u, c) of (1.4). Namely
we have

Lemma 2.2.
Let (u, c) be a bounded non-decreasing solution of (1.4). Then there exists positive constants µ, κ

such that

µc2 − κ|c| ≤ ǫK,

where K is defined in the above Lemma 2.1.

Proof:

Without loss of generality, we may assume that u(0) = ρ. Observe that since u is non-
decreasing and bounded, we have ‖u‖L∞(R) ≤ u(+∞) = 1. We study two cases.

• Case 1 c ≥ 0 :

In this case, let us now integrate (1.4) over R−. This leads to
∫

R−

(J ⋆ u− u) dy

︸ ︷︷ ︸
+ ǫ

∫

R−

u′′ dy

︸ ︷︷ ︸
− c

∫

R−

u′dy

︸ ︷︷ ︸
= −

∫

R−

f(u)dy

︸ ︷︷ ︸
.

I1 I2 I3 I4

A quick computation shows that:

• I2 = ǫu′(0),
• I3 = cρ,
• I4 ≤ 0.

So we have,

cρ ≤ ǫu′(0) + |I1|.
Since c ≥ 0 multiplying the above equation by c leads to

c2ρ ≤ ǫcu′(0) + c|I1|.
Using the Fundamental Theorem of Calculus and Fubini’s Theorem, we have

|I1| = |
∫

R−

(J ⋆ u− u)| ≤
∫

R−

(∫

R

J(−z)|z|
∫ 1

0
u′(x+ tz) dt dz

)
dx

≤
∫

R−

(∫

R

J(−z)|z|
∫ 1

0
u′(x+ tz) dt dz

)
dx

≤
∫

R

J(−z)|z|
∫ 1

0
u(tz) dt dz

≤ κ,

9



where κ =
∫
R
J(z)|z| dz. Therefore we have

c2ρ ≤ ǫc‖u′‖L∞(R) + |c|κ,
c2ρ− |c|κ ≤ ǫK‖u‖L∞(R).

Let µ := inf{ρ, 1 − ρ}. Then we have the desired conclusion

µc2 − cκ ≤ ǫK.

• Case 2 c ≤ 0 :

In this case, we argue similarly. Let us now integrate (1.4) over R+. This leads to
∫

R+

(J ⋆ u− u) dy

︸ ︷︷ ︸
+ ǫ

∫

R+

u′′ dy

︸ ︷︷ ︸
− c

∫

R+

u′dy

︸ ︷︷ ︸
= −

∫

R+

f(u)dy

︸ ︷︷ ︸
.

I5 I6 I7 I8

A quick computation shows that:

• I6 = −ǫu′(0),
• I7 = c(1 − ρ),
• I8 ≥ 0.

So we have

(1− ρ)c ≥ −ǫu′(0) + I5.

Since c ≤ 0, multiplying the above equation by c leads to

(1− ρ)c2 ≤ −ǫcu′(0) + cI5.

Hence

(1− ρ)c2 ≤ −ǫcu′(0) + |c||I5|.
Using a similar computation as for |I1|, we can show that |I5| ≤ κ. Therefore we obtain

(1− ρ)c2 − |c|κ ≤ ǫK.

Hence

µc2 − |c|κ ≤ ǫK.

�

Remark 2.3. Observe that the constants K,µ depend only on f and κ depends only on J .

3. Construction of a solution of (3.1) for ǫ > 0 and J with compact support

In this section, assuming that J has compact support, we show that there exists a unique
positive increasing solution (uǫ, cǫ) of the following problem

(3.1)





M[u] + f(u) = 0 in R,

u(x) → 0 as x→ −∞,

u(0) = ρ,

u(x) → 1 as x→ +∞,

where M = M(ǫ, J, c) is defined by (1.5) and f is a bistable or an ignition nonlinearity. We
prove the following

10



Theorem 3.1.
Let ǫ > 0 and assume that J has compact support and satistifies (H2). Assume further that there
exists a ∈ R such that {−a, a} ⊂ supp(J). Then there exists a unique positive increasing solution
(uǫ, cǫ) of (3.1),i.e. The uniqueness is state as follow, if (vǫ, c

′
ǫ) is a solution of (3.1), then cǫ = c′ǫ and

uǫ ≡ vǫ.

The proof of Theorem 3.1 uses ideas developed by Dupaigne and the present author in [17]
combined with ideas of Berestycki–Larroutourou–Lions in [6] and Berestycki–Nirenberg in
[8]. We prove Theorem 3.1 in two steps. In the first step, subsections 3.1 and 3.2, using sub-
and super-solutions techniques and standard limiting procedure we construct normalised
solutions for an approximate problem on a semi-infinite interval. Then in a second step,
using a standard limiting procedure and some a priori estimates, we extract a solution of
(3.1). The uniqueness of the solution has already been established in [14, 15], so we omit it.

3.1. Existence of a normalized solution in an interval. In this subsection we construct an
increasing solution (u, c) of the following problem :

(3.2)





L[u] + f(u) + hR = 0 for x ∈ Ω,
u(−r) = 0,
u(+R) = 1,

where Ω = (−r,+R) and where L = L(ǫ, J, r,R, c) and hR are defined by

(3.3)

L[u] = L(ǫ, J, r,R, c)[u] = ǫu′′ +
[∫ +R

−r
J(x− y)u(y)dy − u

]
− cu′,

hR(x) =
∫ +∞
+R

J(x− y)dy.

Namely, we have for ǫ > 0,

Theorem 3.2.
Assume that J has compact support, satisfies (H2) and there exits a ∈ R such that J(a) > 0 and
J(−a) > 0. For any ǫ > 0, 1 ≤ r < R so that suppJ ⊂ (−r,R) and c ∈ R, there exists a

unique positive increasing solution uc of (3.2). Moreover there exists a unique c := c
r,R
ǫ such that

u
c
r,R
ǫ

(0) = ρ.

Proof of Theorem 3.2:

Observe that, since the constant functions u = 0 and ū = 1 are sub- and super-solutions of
(3.2) respectively, using a basic iterative scheme (see the Appendix), there exists a solution
uc of (3.2) for any values of c ∈ R. The uniqueness and the monotonicity of this solution is
obtained in [15], so we omit the proof.

Knowing the existence and uniqueness of solution of (3.2), the main difficulty now re-
mains on finding a real c which achieves the normalisation uc(0) = ρ.

Define now the following map:

T : R → R

c 7→ uc(0).

Observe that T is continuous by standard elliptic a priori estimates and the uniqueness of
uc. Furthermore from the monotonicity and uniqueness of solution of (3.2), T is decreasing.

11



Indeed, choose any c′ ≥ c. Then uc is a super-solution of the following problem

(3.4)





L(ǫ, J, r,R, c′)[uc] + f(uc) + hR = (c− c′)(uc)
′ ≤ 0 in Ω

u(−r) = 0,
u(+R) = 1.

Since 0 is a sub-solution and 0 ≤ uc, it follows that 0 < uc′ < uc.
Hence T (c′) < T (c).

Next we show that there exists c1 and c2 such that T (c1) < ρ and T (c2) > ρ.

Lemma 3.1.
Let ǫ, r,R and J be as in Theorem 3.2. Then there exists c1 and c2 such that

T (c1) < ρ < T (c2).

Assume for a moment that the Lemma is proved, then using a basic continuity argument,

we achieve T (cr,Rǫ ) = ρ, for some unique real cr,Rǫ . This ends the proof of Theorem 3.2.
�

Now let us prove the Lemma.

Proof of the Lemma 3.1:

We find c1 and c2 using a comparison argument with solutions of (3.2) and adequate sub-
and super-solutions. We first extend f continuously by 0 outside [0 ,1].

Let us consider the following function ū := ρeλ0x with λ0 such that ρeλ0 = 1.
Choose c1 such that

(3.5) ǫλ20 − c1λ0 − 1 + k +

∫ +∞

−∞
J(−z)eλ0zdz ≤ 0,

where k is the Lipschitz constant of f . First observe that, since ū ≥ 1 in [1,+∞) and ū ≥ 0 in
(−∞,−1], for any R > r ≥ 1, we have the following

∫ R

−r

J(x− y)ū(y) + hR < J ⋆ ū.

Now, let us compute L[ū] + f(ū) + hR with c = c1. Since J has compact support, f is
globally Lipschitz, ū ≥ 1 in [R,+∞) and ū ≥ 0 in (−∞,−r], we have

L[ū] + f(ū) + hR = ǫū′′ − c1ū
′ +

∫ +R

−r

J(x− y)ū(y)dy − ū+ hR + f(ū),

≤ ǫū′′ − c1ū
′ +

∫ +∞

−∞
J(x− y)ū(y)dy − ū+ kū,

≤ ρeλ0x

(
ǫλ20 − c1λ0 − 1 + k +

∫ +∞

−∞
J(x− y)eλ0(y−x)dy

)
,

≤ ρeλ0x

(
ǫλ20 − c1λ0 − 1 + k +

∫ +∞

−∞
J(−z)eλ0zdz

)
.

Using (3.5), it follows that

L[ū] + f(ū) + hR ≤ 0 in (r,R).
12



Since ū > 0, we get uc1 < ū and in particular T (c1) = uc1(0) < ū(0) = ρ.

To obtain c2, we argue similarly. Let us take u := 1−e−δ0(x+1) with δ0 such that 1−e−δ0 = ρ.
Choose c2 so that,

(3.6) −ǫδ20 − c2δ0 + 1−
∫ +∞

−∞
J(−z)e−δ0zdz ≥Meδ0 ,

where M = max[0,1] f . For convenience, let us define the constant γ by

γ := −ǫδ20 − c2δ0 + 1−
∫ +∞

−∞
J(−z)e−δ0zdz.

From (3.6) it follows that

γe−δ0 −M ≥ 0.

Observe now that, for any R, r > 1, u is a sub-solution of (3.2) with c = c2. Indeed, since
u ≤ 1 in [1,+∞) and u ≤ 0 in (−∞,−1], we have for any R, r > 1,

∫ R

−r

J(x− y)ū(y) + hR > J ⋆ u.

Computing L[u] + f(u) + hR in (−r,R) with c = c2 yields

L[u] + f(u) + hR = ǫu′′ − c2u
′ +

∫ +R

−r

J(x− y)u(y)dy − u+ hR + f(u),

≥ ǫu′′ − c2u
′ + J ⋆ u− u+ f(u),

≥ γe−δ0(x+1) + f(u).

Observe that in [0, R), since u ≥ ρ, we have f(u) ≥ 0. Therefore we have

(3.7) γe−δ0(x+1) + f(u) ≥ 0,

since γ ≥ 0. Observe now that in (−r, 0), since e−δ0(x+1) ≥ e−δ0 and f(s) ≥ −M , we have

(3.8) γe−δ0(x+1) + f(u) ≥ γe−δ0 −M ≥ 0.

By combining (3.7) and (3.8) it follows that

L[u] + f(u) + hR ≥ 0 in (r,R).

By construction, u ≤ 1. Thus we have u < uc2 . In particular, we have T (c2) = uc2(0) >
u(0) = ρ.

�

An easy consequence of the above proof is the boundedness of the speed c
r,R
ǫ . Namely,

we have the following corollary:

Corollary 3.1.

Let ǫ, r,R and J be as in Theorem 3.2. Then c2 < c
r,R
ǫ < c1.

Remark 3.1. Note that the speed c2 can be negative.

Remark 3.2. The bound c1 and c2 found in the Corollary 3.1 are independent of r and R.
13



Proof:

From Lemma 3.1, we have for any R > r ≥ 1, T (c1) < T (cr,Rǫ ) < T (c2). Since T is

decreasing we have c2 < c
r,R
ǫ < c1.

�

3.2. Existence of a normalized solution in semi-infinite intervals. In this subsection we
construct a normalized solution of the following problem :

(3.9)





S[u] + f(u) = 0 in ω,

u(−r) = 0,
u(+∞) = 1,

where ω := (−r,+∞) and S(ǫ, J, r, c) is defined by

(3.10) S[u] = S(ǫ, J, r, c)[u] = ǫu′′ +
[∫∞

−r
J(x− y)u(y)dy − u

]
− cu′.

More precisely, we show:

Theorem 3.3.
Let ǫ > 0, J be as in Theorem 3.2 and r > 1 be such that suppJ ⊂ ω. Then there exits a sequence

of solutions (ur,Rn
ǫ , c

r,Rn
ǫ ) of (3.2) which converges locally uniformly to (urǫ , c

r
ǫ). Moreover, (urǫ , c

r
ǫ)

satisfies (3.9) and urǫ(0) = ρ. Furthermore urǫ is increasing and satisfies (urǫ)
′ ≥ 0.

Proof of Theorem 3.3:

Let us fix ǫ > 0 and r > 1 such that supp(J) ⊂ ω. Let (Rn)n∈N be a sequence of real
numbers which converges to +∞. Since J has compact support, without loss of generality
we may assume that supp(J) ⊂ (−r,Rn) for all n ∈ N. Let us denote by(un, cn) the corre-

sponding normalized solution given by theorem 3.2 (i.e., cn = c
r,Rn
ǫ , un := u

c
r,Rn
ǫ

).

Using Corollary 3.1 and Remark 3.2, we have c2 ≤ cn ≤ c1 for all n ∈ N. So we may choose
a subsequence of Rn such that cn converges to some number c with c2 ≤ c ≤ c1. Clearly,
hRn → 0 pointwise as n → ∞. Observe now that (un)n∈N is a uniformly bounded sequence
of increasing functions. Therefore using Helly’s Theorem there exists a subsequence which
converges pointwise to a non-decreasing function u. Since ǫ > 0, using local C2,α estimates,

up to extraction, the subsequence converges in C2,α
loc . Therefore u ∈ C2,α and satisfies

(3.11)





ǫu′′ +
∫ +∞
−r

J(x− y)u(y) dy − u− cu′ + f(u) = 0 in ω,

u(−r) = 0,
u(0) = ρ.

To end the construction, it remains to show that u tends to 1 as x→ +∞.
Since u is a bounded smooth increasing function, we have

l+ := lim
x→+∞

u(x)

for some nonnegative l+.
Observe that the arguments developed in the proof of Lemma 2.1 (i-ii) can easily be

adapted to the solution of (3.11), whence we have

f(l+) = 0.

Moreover, l+ ∈ {ρ, 1} since f|(ρ,1) > 0 and u is non-decreasing.
14



Observe that if l+ = ρ, from the monotonicity of u it follows that u ≡ ρ in R+. Therefore,
u achieves a global maximum at x0 = 0 and by the maximum principle, it follows that u ≡ ρ

in ω, which is impossible since u(−r) = 0. Hence, l+ = 1 and (u, c) := (urǫ , c
r
ǫ) is the desired

solution.
�

Next we prove some useful estimates on the solution (urǫ , c
r
ǫ) of (3.9). More precisely we

prove:

Lemma 3.2.
Let ǫ > 0, J be as in Theorem 3.2 and r > 1 be such that suppJ ⊂ ω. Then there exists positive

constants K and τ independent of r such that the following hold:

‖(urǫ)′‖L∞(ω) < K,(3.12)
∫ +∞

0
f(urǫ) ≥ τ > 0,(3.13)

ǫ(urǫ)
′(0) +

∫ 1

0

∫ +∞

−r

J(−z)zurǫ(tz) dz dt−M1 + (1− ρ)crǫ ≥ τ,(3.14)

where M1 =
∫ +∞
−∞ J(−z)z dz and (urǫ , c

r
ǫ) is the solution obtained in Theorem 3.3.

Proof of Lemma 3.2:

Let us start with (3.12). Choose any x ∈ ω and integrate (3.9) over (x,+∞). It follows that

(3.15) ǫ(urǫ)
′(x) + (1− urǫ(x))c

r
ǫ −

∫ +∞

x

(∫ +∞

−r

J(s− y)urǫ(y) dy − urǫ

)
ds =

∫ +∞

x

f(urǫ).

Observe that we can rewrite the above equation in the following way:

ǫ(urǫ)
′(x) = −(1−urǫ(x))crǫ+

∫ +∞

x

∫ +∞

−r

J(s−y)[urǫ(y)−urǫ(s)] dyds−
∫ ∞

x

gr(s)u
r
ǫ+

∫ +∞

x

f(urǫ),

where gr(s) :=
∫ −r−s

−∞ J(−z) dz.

Since urǫ is non-decreasing and f(urǫ) ≤ 0 in (−r, 0), using the normalisation, we have for any
x ∈ (−r, 0),

∫ 0

x

f(urǫ) ≤ 0.

Using now the Fundamental Theorem of Calculus, we see that

ǫ(urǫ)
′(x) ≤ |crǫ | +

∫ 1

0

∫ +∞

x

∫ +∞

−r−s

J(−z)|z|(urǫ )′(s+ tz) dzdsdt

︸ ︷︷ ︸
+

∫ ∞

−r

gr(s) ds

︸ ︷︷ ︸
+

∫ +∞

0
f(urǫ)

︸ ︷︷ ︸
.

I1 I2 I3

Now it remains to find bounds for the Ii to complete the proof.
Choose R0 > 0 such that supp(J) ⊂ (−R0, R0) and observe that for s ≥ 0 we have gr(s) ≡ 0.
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Therefore

I2 =

∫ 0

−r

gr(s)ds

=

∫ 0

−r

∫ −r−s

−∞
J(−z)eze−zdz

≤
∫ 0

−r

e−r−s

∫ R0

−R0

J(−z)e−zdz

≤
∫ R0

−R0

J(z)ezdz = K1.

Now, using that 0 ≤ urǫ ≤ 1, the Chasles relation and Fubini’s Theorem in I1, we see that

I1 =

∫ 1

0

∫ +∞

x

∫ +∞

−r−s

J(−z)|z|(urǫ )′(s+ tz) dzdsdt

=

∫ 1

0

∫ +∞

x

∫ r+s

−∞
J(z)|z|(urǫ )′(s − tz) dzdsdt

=

∫ 1

0

∫ +∞

x

∫ r+x

−∞
J(z)|z|(urǫ )′(s − tz) dzdsdt+

∫ 1

0

∫ +∞

x

∫ r+s

r+x

J(z)|z|(urǫ )′(s− tz) dzdsdt

=

∫ 1

0

∫ r+x

−∞
J(z)|z|(1 − urǫ(x− tz)) dzdt +

∫ 1

0

∫ +∞

r+x

J(z)|z|
∫ +∞

z−r

(urǫ)
′(s− tz) dsdzdt

≤
∫ r+x

−∞
J(z)|z| dz +

∫ 1

0

∫ +∞

r+x

J(z)|z|(1 − urǫ(z − r − tz)) dzdt

≤
∫ +∞

−∞
J(z)|z| dz = K2.

From (3.15) with x = 0 and the previous computation it follows that

I3 ≤ K2 + |crǫ |+ ǫ(urǫ)
′(0).

Now since −f(urǫ)+ u−
∫ +∞
−r

J(x− y)urǫ(y)dy and crǫ are bounded uniformly independently

of r, using standard elliptic estimates in (−1, 1) we get (urǫ)
′(0) ≤ K3. Therefore

I3 ≤ K2 + |crǫ |+K3.

Thus
ǫ(urǫ)

′(x) ≤ 2(K2 + |crǫ |) +K1 +K3

and (3.12) holds.

Now let us show (3.13). Fix a number λ ∈ (ρ, 1). Let x0 > 0 be such that urǫ(x0) = λ. By
(3.12), we have ‖(urǫ)′‖∞ ≤ K . Therefore we see that

1− λ

K
≤ r − x0 and

λ− ρ

K
≤ x0.

Thus, we can find σ > 0 and δ > 0 such that f(urǫ) ≥ σ on (x0 − δ, x0 + δ). Hence
∫ +∞

0
f(urǫ) ≥

∫ x0+δ

x0−δ

f(urǫ) ≥ 2δσ = τ,

which ends the proof of (3.13).
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We are now in position to obtain (3.14). Using (3.15) with x = 0, it follows that

−ǫ(urǫ)′(0)− crǫ(1− ρ) +

∫ +∞

0

∫ +∞

−r

J(s− y)[urǫ(y)− urǫ(s)]dy ds = −
∫ ∞

0
f(urǫ) ds.

Now, using (3.13), the Fundamental Theorem of Calculus and that supp(J) ⊂ (−R0, R0), we
have

ǫ(urǫ)
′(0) + crǫ(1− ρ)−

∫ +∞

0

∫ +∞

−R0

J(−z)z
∫ 1

0
(urǫ)

′(s+ tz) dt dz ds ≥ τ.

Hence, using Fubini’s Theorem, we have

ǫ(urǫ)
′(0) + crǫ(1− ρ)−

∫ ∞

−R0

∫ 1

0
J(−z)z[1 − urǫ(tz)]dz dt ≥ τ

ǫ(urǫ)
′(0) + crǫ(1− ρ) +

∫ ∞

−R0

∫ 1

0
J(−z)zurǫ(tz)dz dt−

∫ ∞

−R0

J(−z)z dz ≥ τ.

�

3.3. Limit procedure, a priori estimates and construction of a solution of (3.1). Finally,
we let r → ∞ and obtain a solution satisfying almost all the conditions of (3.1), which we
summarize in the following proposition:

Proposition 3.1.
Let ǫ > 0 and let J be as in Theorem 3.2. Then there exits a sequence (rn)n∈N which goes to +∞ such
that the sequence of solutions (urnǫ , c

rn
ǫ )n∈N given by Theorem 3.3 satisfies urnǫ converges in C2

loc to a
smooth function u and cn converges to a constant c. Moreover (u, c) satisfies

(3.16)

{
M[u] + f(u) = 0 in R,

u(0) = ρ,

with M := M(ǫ, J, c). Furthermore, u′ ≥ 0.

Proof:

Let ǫ > 0 fixed. Choose a sequence of real numbers (rn)n∈N which converges to +∞, such
that ∀n ∈ N, supp(J) ⊂ (−rn,+∞). This is always possible since J has compact support.
Let (un, cn) be the corresponding normalized solution given by Theorem 3.3. Using again
Corollary 3.1 and Remark 3.2, ∀n ∈ N, c2 ≤ cn ≤ c1 and un is uniformly bounded. We
may now argue as in the proof of Theorem 3.3. Choose a subsequence of rn such that cn
converges to some number c. Since (un)n∈N is a uniformly bounded sequence of increasing
functions, using Helly’s Theorem and local C2,α estimates, there exists a subsequence which

converges in C2,α
loc and pointwise to a non-decreasing function u. Moreover, u satisfies

{
M[u] + f(u) = 0 in R,

u(0) = ρ.

�
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We are now in position to construct a solution of (3.1).

Proof of Theorem 3.1:

From Proposition 3.1 the solution u is bounded and non-decreasing. Thus

l− := lim
x→−∞

u(x) and l+ := lim
x→+∞

u(x)

exist and the only things left to prove are

(3.17) l− = 0

and

(3.18) l+ = 1.

By construction, using Lemma 2.1, we see that l+ ∈ {ρ, 1} and l− ≤ ρ.
Now, for convenience, we break down our proof into three Steps.

Step 1.

Recall that u is the limit of the sequence urnǫ . Using Lemma 3.2, there exists a positive con-
stant τ such that ∀ n ≥ n0,

(3.19) ǫ(urnǫ )′(0) +

∫ 1

0

∫ +∞

−rn

J(−z)zurnǫ (tz) dz dt−M1 + (1− ρ)crnǫ ≥ τ.

Step 2.

Next, we establish some a priori estimates on the speed c. Namely, we have change claim to
lemma

Lemma 3.3. If l+ ≤ ρ then u ≡ ρ and c−M1 > 0.

Proof:

If l+ ≤ ρ, using Lemma 2.1 and the maximum principle, we see that u ≡ ρ. So it only
remains to prove that c−M1 > 0.
For convenience, let us define (un, cn) := (urnǫ , c

rn
ǫ ). Since u ≡ ρ, then un converges to ρ

pointwise and in C2,α
loc . Therefore u′n(0) → 0 as n→ +∞.

Observe that |J(−z)zun(tz)| ≤ J(−z)|z| ∈ L1(R × [0, 1]). Then using the Lebesgue’s Domi-
nated Convergence Theorem, to pass to the limit in (3.19) yields

c(1 − ρ)−M1 +

∫ 1

0

∫ +∞

−∞
J(−z)zρ dz dt ≥ τ,

c(1 − ρ)− (1− ρ)M1 ≥ τ,

(1− ρ)(c −M1) ≥ τ.

Hence c−M1 > 0.
�

Step 3.

We are now in a position to prove that l+ = 1 and l− = 0.

Let us start with l+ = 1. We argue by contradiction. Assume l+ = ρ. Then from Lemma
3.3 u ≡ ρ and one can choose δ > 0 such that c̄−M1 > 0 for any c̄ ∈ (c− δ, c + δ).
Now let us compute S[eλx] in (−rn,+∞) with S := S(ǫ, J, rn, cn).
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S[eλx] = eλx[ǫλ2 − cnλ+

∫ +∞

−rn−x

J(−z)eλz dz − 1],(3.20)

S[eλx] = eλxhn(x, λ).(3.21)

Since cn → c, then cn ∈ (c−δ, c+δ) for n large enough. We will show that for n large enough
eλx is a supersolution of (3.11) for some positive λ.
Namely we have change claim to lemma

Lemma 3.4. There exists λ1 > 0 such that hn(λ1, x) ≤ 0 uniformly in x for n large enough.

Proof:

Since J has a compact support, using Lebesgue’s Theorems, we easily see that

hn(0, x) =

∫ +∞

−rn−x

J(−z)dz − 1 ≤ 0 for x ∈ [−rn,+∞)

and
∂hn

∂λ
(0, x) =

∫ +∞

−rn−x

J(−z)zdz − cn for x ∈ [−rn,+∞).

Moreover, for rn large enough, we have

{ ∫ +∞
−rn−x

J(−z)zdz ≤
∫ +∞
−rn

J(−z)zdz =M1 for x ∈ [−rn, 0],∫ +∞
−rn−x

J(−z)zdz =
∫ +∞
−rn

J(−z)zdz =M1 for x > 0.

Hence for rn large enough

(3.22)
∂hn

∂λ
(0, x) =

∫ +∞

−rn−x

J(−z)zdz − cn ≤M1 − cn for x ∈ [−rn,+∞).

Since cn −M1 > 0 for n sufficiently large, using (3.22), we deduce that there exists a λ1 > 0
independent of x and n such that

∀n ≥ n0, hn(λ1, x) ≤ 0 in [−rn,+∞).

�

Define now w := eλ1x − un. Observe that w > 0 in R+. Using Lemma 3.4, we see that for
n ≥ n0, w also satisfies the following





S[w] ≤ 0 for x ∈ [−rn, 0],
w(0) = 1− ρ > 0,
w(−rn) = e−λ1rn > 0,

where S := S(ǫ, J, rn, cn).
Now, using the maximum principle (see Appendix), we find that w ≥ 0 in [−rn,+∞). Hence

(3.23) ∀n ≥ n0, un ≤ eλ1x.

By passsing to the limit n→ +∞ in (3.23) it follows that

u ≤ eλ1x.
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This contradicts u ≡ ρ. Thus l+ = 1.

We now show that l− = 0.
By construction and using Lemma 2.1, it follows that l− ∈ {0, ρ} (resp.l− ∈ [0, ρ]) when f is
bistable (resp. ignition).

Again we argue by contradiction. Assume that l− > 0. By construction and from the
monotonicity of u we see that l− = ρ and u ≡ ρ in R− (resp. l− ∈ (0, ρ] and u ≤ ρ in R−)
when f is bistable (resp. ignition). Note that in both case, the following holds:

f(u) ≡ 0 in R−,(3.24)

f(u) > 0 in R+.(3.25)

enveler paragraphe
Since u satisfies (3.16), using (iv) of Lemma 2.1, we achieve

(c−M1)[l
+ − l−] =

∫

R

f(u) =

∫

R+

f(u) ≥ 0.

Using that l+ = 1, l− ≤ ρ and u is non-trivial in R+, we deduce that
∫
R+ f(u) > 0 and

therefore
c−M1 > 0.

We can now argue as above to conclude that u ≤ eλ2x for some positive λ2. Therefore
0 < l− = 0, which is the desired contradiction. Hence l− = 0, which ends the construction
of the solution of the problem (3.1) and the proof of Theorem 3.1.

�

4. Construction of solutions of (3.1) when ǫ > 0

In this section we prove Theorem 1.5. Namely, we construct solutions of (3.1) for ǫ > 0
and for J satisfying (H2). For convenience let us recall (H2), some notation and Theorem
1.5.

J ∈ C0(R), J ≥ 0,

∫

R

J = 1 and

∫

R

J(z)|z|dz < +∞,(H2)

M1 :=

∫

R

J(−z)zdz Σ := {z ∈ R|J(−z) > 0}.

Theorem 4.1.
Let ǫ > 0 and assume that J satisfies (H2). Then there exists a smooth solution (uǫ, cǫ) of (3.1).
Moreover cǫ is unique and uǫ is strictly increasing and unique up to translation.

The monotonicity of uǫ and the uniqueness of (uǫ, cǫ) are a consequence of the nonlinear
comparison principle proved in [14, 15]. So we refer the interested reader to these references
for more details of the proofs.

The construction of a solution of (3.1) in this case uses a standard approximation proce-
dure of J by kernels Jn with compact support. First, let j0 be a positive symmetric function
defined by

(4.1) j0(x) =

{
e

1

x2−1 for x ∈ (−1, 1),
0 elsewhere.
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Let (χn)n∈N be the following sequence of “cut-off” functions:

• χn ∈ C∞
0 (R),

• 0 ≤ χn ≤ 1,
• χn(s) ≡ 1 for |s| ≤ n and χn(s) ≡ 0 for |s| ≥ 2n.

Define the following approximation kernel

Jn :=
1

mn

(
j0

n
+ J(z)χn(z)

)
,

where mn := 1
n

∫
R
j0(z)dz +

∫
R
Jχn(z) dz. Observe that since

∫
R
j0 > 0, Jn is well-defined,

Jn(z) → J(z) pointwise and for n big enough say n ≥ n0, we have Jn ≤ 2(j0 + J).
By construction, we easily see that there exists a ∈ R such that for all n, Jn(a) > 0 and Jn(−a) >
0. Therefore Jn satisfies the assumptions of Theorem 3.1. Futhermore, using Theorem 3.1,
there exists for each n ∈ N a smooth increasing normalized solution (un, cn) of the problem
(4.2) below:

(4.2)





M(ǫ, Jn, c) + f(u) = 0 in R,

u(−∞) = 0,
u(0) = ρ,

u(+∞) = 1.

Before proving Theorem 4.1, let us prove some a priori estimates on un and cn.

Proposition 4.1.
Let (un, cn) be a normalised solution of (4.2). Then

(i) There exists K > 0 such that ∀n, |cn|‖u′n‖L∞(R) < K ,
(ii) There exists C > 0 such that ∀n, |cn| < C .

Proof:

Let (un, cn) be the normalized solution of (4.2).
Observe that (i) is a straight forward application of Lemma 2.1 and Remark 2.3.
To obtain (ii) we argue as follows. From Lemma 2.2 and Remark 2.3 we have

(4.3) µc2n − |cn|κn ≤ ǫK,

where µ := min{ρ, 1− ρ},K := 2 + sup[0,1] |f | and κn :=
∫
R
Jn(z)|z| dz.

Observe that mn → 1 and let n0 be such that mn ≥ 1
2 for n ≥ n0. Therefore, for n ≥ n0,

(4.4) κn =
1

mn

(∫
R
j0(z)|z|dz
n

+

∫

R

Jχn(z)|z| dz
)

≤ 2κ,

where κ :=
∫
R
J(z)|z| dz.

Combining (4.4) with (4.3), we obtain

(4.5) µc2n − 2|cn|κ ≤ ǫK.

Hence (ii) follows from (4.5).
�

Remark 4.1. Observe that the constantK,µ are independant of the approximation. Therefore, Propo-
sition 4.1 holds as soon as we have a uniform control of κn. In particular, Proposition 4.1 holds if J
is a probability measure with a finite first moment.
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We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1:

Let (un, cn) denote the sequence of normalized solutions of (4.2). By Proposition 4.1,
(cn)n∈N is bounded and (un)n∈N is uniformly bounded. We may now argue as in the proof
of Theorem 3.3. Choose a subsequence of cn, which converges to some number c̃. Since
(un)n∈N is a uniformly bounded sequence of increasing functions, using Helly’s Theorem

and local C2,α estimates, there exists a subsequence which converges in C2,α
loc and pointwise

to a non-decreasing function ũ. Moreover, ũ satisfies

(4.6)

{
M[ũ] + f(ũ) = 0 in R,

ũ(0) = ρ.

To complete the proof, it remains to show that ũ satisfies the right boundary conditions. Our
argument follows the one developed in subsection 3.3. However, we stress the fact that in
this case J does not necessarly have compact support. Therefore, for general J , we cannot
expect that ũ has an exponential behavior near −∞.
As in subsection 3.3, since ũ is bounded and non-decreasing, we can define

l− := lim
x→−∞

ũ(x) and l+ := lim
x→+∞

ũ(x).

Since ǫ > 0 and un converges in C
2,α
loc , using Proposition 4.1 and Lemma 2.1, we deduce

that ‖u′n‖L∞(R) ≤ C1 with C1 independent of n. Thus, arguing as in Lemma 3.2, one can
easily construct τ > 0 such that

∀n
∫

R+

f(un) ≥ τ,(4.7)

∀n ∈ N, ǫu′n(0) + (1− ρ)cn +

∫ 1

0

∫

Σn

Jn(−z)zun(tz) dt dz −
∫

Σn

Jn(−z)z dz ≥ τ,(4.8)

where Σn = {z ∈ R|Jn(−z) > 0}.
We now prove some useful estimates:

Lemma 4.1. Let (un, cn) be the above sequence of solutions. Then

(4.9) ∀n ∈ N, ǫu′n(0) − ρcn +

∫ 1

0

∫

Σn

Jn(−z)zun(tz) dt dz ≥ 0.

Proof:

Integrating equation (4.2) over R− yields

ǫu′n(0)− cnρ+

∫ 1

0

∫ 0

−∞

∫ +∞

−∞
Jn(−z)zu′n(x+ tz) dt dz dx = −

∫ 0

−∞
f(un) dx.

Hence

ǫu′n(0) − cnρ+

∫ 1

0

∫

Σn

Jn(−z)zun(tz) dt dz ≥ 0,

since f(un) ≤ 0 in R−.
�

We are now in a position to show that l+ = 1. Assume by contradiction that l+ < 1. Then
l+ = ρ and from Lemma 2.1 ũ ≡ ρ and ũ′ ≡ 0 in Σ ∪ R+. Thus u′n(0) → 0.
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Recall that un → ũ pointwise and for n big enough |Jn(z)zun(tz)| ≤ 2(j0(z) + J(z))|z|.
Therefore passing to the limit in (4.8) and (4.9) using Lebesgue’s Dominated Convergence
Theorem, we get

(1− ρ)c̃+

∫ 1

0

∫

Σ
J(−z)zũ(tz) dt dz −M1 ≥ τ,

−ρc̃+
∫ 1

0

∫

Σ
J(−z)zũ(tz) dt dz ≥ 0.

Using now that ũ ≡ ρ in Σ, we get the following contradiction:

(1− ρ)(c̃ −M1) ≥ τ > 0,

ρ(c̃−M1) ≤ 0.

Hence l+ = 1.
�

For simplicity, we treat the case of bistable and ignition nonlinearities seperately. Let us
first assume that f is bistable. From the above computation, we can see that l− = 0. Indeed,
from Lemma 2.1 if l− 6= 0, then ũ ≡ ρ and ũ′ ≡ 0 in Σ ∪ R−, and the previous argument
holds.

The case of ignition nonlinearity needs further investigation. In that case, we argue as
follow. We claim that

Claim 4.1. Let (ũ, c̃) be a solution of (4.6) and f be of ignition type. Then the following holds:

(4.10) (M1 − c̃)[1− l−] < 0

and

(4.11) ǫũ′(0) +

∫ 1

0

∫ +∞

−∞
J(−z)zũ(tz) dz dt− ρc̃ = 0.

From this claim we get easily l− = 0. Indeed, since ũ satisfies equation (4.6), is smooth and
non-trivial, after integration of (4.6) over R−, a quick computation using the Fundamental
Theorem of Calculus and Fubini’s Theorem yields

ǫũ′(0) − (ρ− l−)c̃+

∫ 1

0

∫ 0

−∞

∫ +∞

−∞
J(−z)zũ′(x+ tz) dt dz dx = 0,(4.12)

ǫũ′(0) − (ρ− l−)c̃+

∫ 1

0

∫ +∞

−∞
J(−z)z

(∫ 0

−∞
ũ′(x+ tz) dx

)
dt dz = 0,(4.13)

ǫũ′(0) − (ρ− l−)c̃+

∫ 1

0

∫ +∞

−∞
J(−z)z[ũ(tz)− l−] dt dz = 0(4.14)

Using (4.11) in (4.14) leads to

l−(c̃−M1) = 0.

Thus l− = 0 since (c̃−M1) 6= 0 by (4.10).
We turn now our attention to the proof of Claim.

Proof of Claim 4.1
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The first equality is a straight forward consequence of Lemma 2.1 and of the definition of
f . Indeed, since ũ satisfies (4.6), from Lemma 2.1

(

∫

R

J(−z)z dz − c̃)[l+ − l−] = −
∫

R

f(ũ).

Using the definition of f (f is of ignition type) we get
∫
R
f(u) dx =

∫
R+ f(ũ) dx. Since ũ is

smooth, non-constant, ũ→ 1 as x→ +∞ and
∫
R+ f(ũ) > 0, we end up with

(M1 − c̃)[1− l−] < 0.

Let us now prove the second equality. From the assumption on f we have, for all n ∈
N, f(un) ≡ 0 in R−. Thus, un satisfies the linear equation below

(4.15) ǫu′′n + Jn ⋆ un − un − cnũ
′
n = 0 in R−.

Integrating over R− (4.15) yields

ǫu′n(0) +

∫ 1

0

∫ 0

−∞

∫ +∞

−∞
Jn(−z)zu′n(x+ tz) dz dt dx− ρcn = 0.

Using Fubini’s Theorem we find that

(4.16) ǫu′n(0) +

∫ 1

0

∫ +∞

−∞
Jn(−z)zun(tz) dz dt− ρcn = 0.

Since for n big enough Jn(−z)|z|un(tz) ≤ 2(j0(−z) + J(−z))|z| and (j0 + J(z))z ∈ L1(R),
we can apply the Lebesgue’s Dominated Convergence Theorem and pass to the limit in (4.16)
to obtain the desired equality

ǫũ′(0) +

∫ 1

0

∫ +∞

−∞
J(−z)zũ(tz) dz dt− ρc̃ = 0.

�

5. Singular limits and construction of a solution of (3.1) for ǫ = 0

In this section we prove Theorem 1.2. More precisely, we focus our attention on the solu-
tion of (3.1) when ǫ = 0, i.e., the solution of:

(5.1)





J ⋆ u− u− cu′ + f(u) = 0 in R,

u(x) → 0 x→ −∞,

u(x) → 1 x→ +∞.

In this case two different situations may occur, either c 6= 0 and the solution is smooth or
c = 0 and the solution may be discontinuous. However, we still have existence of a travelling
front solution with unique speed. Let us recall Theorem 1.2:

Theorem 5.1.
Assume that J satisfies (H2). Then there exists a solution (u, c) of (5.1). Moreover the speed c is
unique and u is non-decreasing.
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Since the proof of Theorem 5.1 is rather long, it is split up into three parts. In the first part,
Section 5.1, we construct a non-decreasing front solution of (5.1). Then in the second part,
Section 5.3, when J does not satisfy (H1), some asymptotic and monotone properties of the
solutions are established. Finally, the uniqueness of the speed is obtained in the last part,
Section 5.4.

Again the proof of existence essentially uses the same type of argumentation as in the
above sections. Let (ǫn)n∈N be a sequence of positive number which converges to 0 and
(un, cn) be the unique normalized solution given by Theorem 4.1, e.g. (un, cn) satisfies the
following equation

(5.2)





ǫnu
′′
n + J ⋆ un − un − cnu

′
n + f(un) = 0 in R,

un(−∞) = 0,
un(+∞) = 1.

and un(0) = σ for some σ ∈ (0, 1)). From Lemma 2.2 and Remark 2.3, one has

µc2n − |cn|κ ≤ ǫnK.

Therefore cn is bounded. Since for each n, un is a uniformly bounded increasing function,
using Helly’s Theorem, there exists a subsequence which converges pointwise to some (u, c).
So at least, in the sense of distribution, (u, c) satisfies:

J ⋆ u− u− cu′ + f(u) = 0,

u(0) = σ = un(0).

Remark 5.1. Note that the normalization of the sequence is not a priori prescribed. To obtain the
right boundary conditions, one must choose the appropriate normalization, which depends on f , J
and c.

Before proving the existence of a front, let us establish some useful estimates which occur
when f is of ignition type.

Lemma 5.1. Let f be of ignition type, assume that M1 :=
∫
R
J(−z)z dz ≥ 0, then there exists a

positive constant c0 and an integer n0 such that cn ≥ c0 for all n ≥ n0.

Proof:

Observe that the proof is trivial when M1 > 0. Indeed, using Lemma 2.1, we have

cn =M1 +

∫

R

f(un) dx.

Therefore cn >
M1

2 for all n ∈ N.
The case M1 = 0 is more delicate. We argue by contradiction. Assume that there exists a

sequence of speeds cn that converges to 0.
Let (un, cn) be the sequence of solutions normalized by un(0) = ρ + δ that converges

pointwise to u. Since u is monotone it satisfies

J ⋆ u− u = −f(u) almost everywhere .

Using Fatou’s Lemma, we easily see that

0 ≤
∫

R

f(u) ≤ lim inf
n→+∞

∫

R

f(un) = lim
n→+∞

cn = 0.

Therefore u is discontinuous at zero and satisfies u ≡ 1 in R+.
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Now note that sinceM1 = 0, J satisfies the assumption (H1) and therefore M satisfies the
strong maximum principle. Let x0 ∈ R+ be a point where u achieves a global maximum, at
this point we have

0 ≥ J ⋆ u(x0)− 1 = −f(1) = 0.

Using the strong maximum principle and the monotonicity of u, we get u ≡ 1 in R, which
contradicts the normalization u(0) = ρ+ δ.

�

5.1. Existence of a travelling wave. We are now in a position to get the existence of a front.
From the above calculation there exists (u, c), satisfying :

J ⋆ u− u− cu′ + f(u) = 0,(5.3)

u(0) = σ,(5.4)

in the sense of distribution. For simplicity we consider two cases, c 6= 0 and c = 0.

5.1.1. The case c 6= 0: If c 6= 0, then the solution u normalized by u(0) = ρ is smooth and
(u, c) is a strong solution of (5.3). Indeed, from (v) of Lemma 2.1 , we have

‖u′n‖L∞(R) ≤
K

cn
,

‖u′′n‖L∞(R) ≤
(
K

cn

)2

.

Therefore for some n0 ∈ N,

‖un‖C2(R) ≤ C for any n ≥ n0

and for some τ > 0

(5.5) ∀n ≥ n0,

∫ +∞

0
f(un) ≥ τ.

Thus, we can extract a subsequence of (un)n∈N that converges pointwise and in C1
loc(R) to

some smooth function u. Furthermore, (u, c) satisfies (5.3) with u(0) = ρ. Since u is a smooth
solution, Lemma 2.1 holds and we have

(i) u′(x) → 0 as x→ ±∞ and f(l±) = 0.
(ii) If l+ ≤ ρ then u ≡ ρ in R+ and u′ ≡ 0 in R+.

If l− ≥ ρ then u ≡ ρ in R− and u′ ≡ 0 in R−.
(iii)

∫
R
f(u) <∞ ,

∫
R
(u′)2 <∞.

Moreover, we also have the following:

Lemma 5.2.
Let (u, c) be a solution of (5.3) normalized by u(0) = ρ. Then

− ρc+

∫ 1

0

∫ +∞

−∞
J(−z)zu(tz) dt dz ≥ 0,(5.6)

(1− ρ)c+

∫ 1

0

∫ +∞

−∞
J(−z)zu(tz) dt dz −M1 ≥ τ.(5.7)

Remark 5.2. When f is of ignition type, then −ρc+
∫ 1
0

∫ +∞
−∞ J(−z)zu(tz) dt dz = 0.

26



Proof:

By integrating equation (5.2) over R+ and R− respectively and using (5.5), we obtain the
two inequalities

ǫnu
′
n(0) + (1− ρ)cn +

∫ 1

0

∫ +∞

−∞
J(−z)zun(tz) dz dt−M1 =

∫

R+

f(un) ≥ τ,

ǫnu
′
n(0)− ρcn +

∫ 1

0

∫ +∞

−∞
J(−z)zun(tz) dt dz = −

∫

R−

f(un) ≥ 0.

Since ‖u′n‖L∞(R) < K and J(−z)|z||un(tz)| ≤ J(−z)|z|, letting n → ∞ in the above equa-
tions yields

(1− ρ)c+

∫ 1

0

∫ +∞

−∞
J(−z)zu(tz) dz dt−M1 ≥ τ,

− ρc+

∫ 1

0

∫ +∞

−∞
J(−z)zu(tz) dt dz ≥ 0.

�

Now, to obtain l+ = 1 and l− = 0, we argue as in Section 4. If l+ < 1 then u ≡ ρ in Σ.
Using Lemma 5.2 we obtain the following contradiction

(1− ρ)(c−M1) ≥ τ,

− ρ(c−M1) ≥ 0.

Thus l+ = 1. For a bistable nonlinearity a similar argument holds, since if l− > 0, then u ≡ ρ

in Σ. For ignition type nonlinearities f the same argument as in Section 4 holds, except that
we use Lemma 5.2 and Remark 5.2 instead of Claim 4.1.

5.1.2. The case c = 0: In this case u may be discontinuous. However, u is monotone and
satisfies

(5.8) J ⋆ u− u+ f(u) = 0 almost everywhere.

Since u is uniformly bounded and monotone, we can still define l± and show that
f(l±) = 0. The main difficulty is then proving that u is non-trivial and that l+ = 1 and
l− = 0.

Let us first prove a useful lemma.

Lemma 5.3.
Let u be the solution of (5.8). Then the following holds:

∫

R

f(u) dx = −(l+ − l−)M1.

Proof:

Integrating (5.8) over (−R,R) for some positive R gives

(5.9)

∫ R

−R

(J ⋆ u− u) dx = −
∫ R

−R

f(u) dx.
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Using the Fundamental Theorem of Calculus and Fubini’s Theorem, we get

∫ R

−R

(J ⋆ un − un) dx =

∫ R

−R

∫

R

∫ 1

0
J(−z)zu′n(x+ tz) dtdzdx(5.10)

=

∫

R

∫ 1

0
J(−z)z[un(R+ tz)− un(−R+ tz)] dtdz.(5.11)

Since un converges pointwise to u and un is uniformly bounded, by using Lebesgue’s
Dominated Convergence Theorem we obtain

(5.12)

∫ R

−R

(J ⋆ u− u) dx =

∫

R

∫ 1

0
J(−z)z[u(R + tz)− u(−R+ tz)] dtdz.

Thus we have

(5.13)

∫

R

∫ 1

0
J(−z)z[u(R + tz)− u(−R+ tz)] dtdz = −

∫ R

−R

f(u) dx.

From the above equation, the boundedness of u, and |M1| < +∞, we deduce that f(u)
has a finite integral. Moreover, by letting R→ +∞ in the above equation yields:

(5.14) (l+ − l−)M1 = −
∫

R

f(u) dx.

�

Since the construction of a solution (u, c) with the right boundary conditions is different
for bistable and ignition type nonlinearities f , we treat these cases separately.

5.1.3. The bistable case:. Let us first assume that M1 :=
∫
R
J(−z)z dz ≥ 0. Let (un) be the

sequence of solutions normalized by un(0) = ρ+ δ for some small positive δ. With the above
normalization, the solution u of (5.8) satisfies

J ⋆ u− u+ f(u) = 0,

u(0) = ρ+ δ.

Since f(l+) = 0 and u(0) > ρ, then u is non-trivial and l+ = 1. Moreover we have
∫

R+

f(u) > 0.

So the main difficulty is to show that l− = 0. Using the fact that f is bistable, the only
possible values for l− are 0 and ρ. Now argue by contradiction: Assume that l− = ρ. Then
f(u) ≥ 0 in R. By using Lemma 5.3, we have our desired contradiction

0 <

∫

R

f(u) = −(1− ρ)M1 ≤ 0.

Thus l− = 0.
When M1 < 0, a similar argument will also work. In this case we use the normalization

un(0) = ρ− δ instead of un(0) = ρ+ δ.
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5.1.4. The ignition case:. Using Lemma 5.1, the only case to consider is when M1 < 0, since

otherwise c 6= 0.
According to the previous computation, for every σ ∈ (0, ρ], we get a solution uσ of

J ⋆ uσ − uσ + f(uσ) = 0,

uσ(0) = σ.

We claim that for all these solutions uσ, l+σ = 1.

Claim 5.1. ∀σ ∈ (0, 1), l+σ = 1.

Proof:

When σ > ρ then l+σ = 1 follows easily from f(l+σ )=0 and the monotone behavior of uσ.
When σ ≤ ρ, we argue by contradiction. Assume that l+σ < 1. Since f(l+σ ) = 0, then l+ ≤ ρ

and f(uσ) ≡ 0 in R. By using Lemma 5.3, it follows that

(l+σ − l−σ )M1 = 0.

This implies that l+σ = l−σ . Therefore uσ ≡ σ in R by monotonicity.
From uσ ≡ σ, we get that there exists a constant K and a sequences of points (xn)n∈N,

such that for all n, xn ∈ (−1, 0) and u′n(xn) < K. Let us now integrate equation (5.2) over
(−∞, xn]. Since σ ≤ ρ and xn ∈ (−1, 0), it follows that

ǫnu
′
n(xn)− cnu(xn) +

∫ 1

0

∫

R

J(−z)zun(xn + tz) dzdt = 0.

Since (xn)n∈N is bounded, using the monotonicity of un, we see that un(xn + z) → σ for any
z ∈ R. Letting n → +∞ in the above equation and using Lebesgue’s Dominated Conver-
gence Theorem, we end up with the following contradiction

0 > σ

∫

R

J(−z)z dz = 0.

�

We are now in a position to construct a solution with the right boundary conditions. Let us
denote uτσ(x) := uσ(x+ τ) and define the following set for σ < ρ :

Aτ
σ := {τ ≥ 0|uτσ(0) < ρ}.

Observe that from Claim 5.1, for a fixed σ,

τ−(σ) := supAσ
τ

is well defined. We easily check that the function u
τ−(σ)
σ satisfies

J ⋆ uτ
−

σ − uτ
−

σ + f(uτ
−

σ ) = 0,(5.15)

uτ
−(σ)

σ > ρ in R+,∗,(5.16)

uτ
−(σ)

σ (0) ≤ ρ.(5.17)

Let (σn)n∈N be a sequence of real numbers converging to 0. By using Helly’s Theorem, we

can extract a subsequence of (u
τ−(σn)
σn )n∈N, that converges pointwise to some function u. The
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function u satisfies

J ⋆ u− u+ f(u) = 0,(5.18)

u ≥ ρ in R+,∗,(5.19)

u(0) ≤ ρ.(5.20)

By Claim 5.1, we see that u → 1 as x → +∞ and u is non-trivial since u(0) ≤ ρ. Now it
remains to show that l− = 0.

Claim 5.2. l− = 0.

Proof:

Observe that since σ → 0, it follows that l−σ → 0. By integrating the equations (5.15) and
(5.18) over R−, we get

∫

R

∫ 1

0
J(−z)zu(tz) dtdz −M1l

− = 0,(5.21)

∫

R

∫ 1

0
J(−z)zuτ−(σ)

σ (tz) dtdz −M1l
−
σ = 0.(5.22)

Now letting σ → 0 in the second equation and using Lebesgue’s Dominated Convergence
Theorem, we end up with ∫

R

∫ 1

0
J(−z)zu(tz) dtdz = 0.

Therefore M1l
− = 0 and l− = 0.

�

Remark 5.3. Observe that the equalities or inequalities satisfied by a solution (u, c) can be obtained
as well when J is assumed to be a Borel probability measure µ with a finite first moment. Therefore
the argument to obtain the right boundary condition for u stands as well for this case.

5.2. Some useful asymptotic behavior. In this section, provided an extra assumption on
the sign of the speed, we establish some a priori bounds on any solution u of (5.1) when J
does not satisfy the strong maximum condition. Namely, we establish

Proposition 5.1.

(i) When supp(J) ⊂ R+ :
Let (u, c) be a solution of (5.1) with c < 0. Then for some positive δ,

ρ

2
e−δ|x| ≤ u < 1.

(ii) When supp(J) ⊂ R− :
Let (u, c) be a solution of (5.1) with c > 0. Then for some positives γ, µ,

0 < u ≤ 1− 1− ρ

2
e−µ|x|.

Before proving Proposition, let us recall the following results that we prove in the appen-
dix.
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Theorem 5.2. Pre-Maximum-Principle
Let u ∈ C1(R) be such that

J ⋆ u− u− cu′ ≥ 0.

Assume that u achieves a maximum at a point x0. Then the following holds

• When supp(J) ⊂ R+, u ≡ u(x0) in a neighbourhood of −∞.
• When supp(J) ⊂ R−, u ≡ u(x0) in a neighbourhood of +∞.

For a general measure µ, the above pre-maximum principle is replaced by the following
Theorem where the notion of the support is understood as follow:

supp(µ) := {x ∈ R|∀Nx open neighbourhood of x =⇒ µ(Nx) > 0}.
Theorem 5.3. Let u ∈ C1(R) be such that

J ⋆ u− u− cu′ ≥ 0.

Assume that u achieves a maximum at a point x0. Then the following holds

• When supp(µ) ⊂ R+, u ≡ u(x0) in a unbounded set of −∞.
• When supp(µ) ⊂ R−, u ≡ u(x0) in a unbounded set of +∞.

Let us now prove Proposition 5.1

Proof of Proposition 5.1:

Let us start with (i). Since c < 0, u is smooth. By a standard argument using the Pre-
Maximum Principle, we have u < 1. Since u is smooth and satisfies u(+∞) = 1, without loss
of generality, we can assume that u(x) ≥ ρ

2 in R+. Define now the operator L by:

L[v] := J ⋆ v − v − cv′ − kv.

Choose k > 0 such that −k <
f(u)
u

< k and −k <
f(u)
u−1 < k. Such a k exists because f is

Lipschitz continuous in [0,1] and f(0) = f(1) = 0. Let us define

γ1(x) :=

{
f(u)
u

when u(x) > 0,
0 otherwise.

Observe that u and any translation of u satisfy

L[u] = −(γ1(x) + k)u ≤ 0 in R.

Now let us compute L[g
δ
] in R∗,− with g

δ
(x) := e−δ|x|. This gives

L[g
δ
] =e−δ|x|

∫

R

J(x− y)e−δ(|y|−|x|)dy − eδx − cδeδx − keδx(5.23)

=e−δ|x|

(∫

R

J(−z)e−δ(|x+z|−|x|)dz − 1− cδ − k

)
(5.24)

≥g
δ

(∫

R

J(−z)e−δ|z|dz − 1− cδ − k

)
.(5.25)

Since c < 0, let δ1 be such that
∫

R

J(−z)e−δ1|z|dz − 1− cδ1 − k ≥ 0.

Therefore Lg
δ1

≥ 0 in R∗,−.
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By construction we have ρ
2gδ1 ≤ ρ

2 < u(x) in R+. Using the comparison principle ( Theo-

rem A.2) with u and ρ
2gδ1 in R−,∗, it follows that ρ

2gδ1 ≤ u in R, which proves (i).

The proof of (ii) is in the same spirit. Again by a standard argument using the pre-
maximum principle we have u > 0. Since u is smooth and satisfies u(−∞) = 0, without
loss of generality, we can this time assume that u(x) ≤ ρ

2 in R−.
Let us now define

γ2(x) :=

{
−f(u)
1−u

when u(x) < 1,

0 otherwise.

Observe that 1− u satisfies

L[1− u] = f(u)− k(1− u)

= − (γ2(x) + k) (1− u) ≤ 0 in R.

Let us now compute L[g
δ
] in R∗,+. This gives

L[g
δ
] =e−δ|x|

∫

R

J(x− y)e−δ(|y|−|x|)dy − e−δx + cδe−δx − ke−δx(5.26)

=e−δ|x|

(∫

R

J(−z)e−δ(|x+z|−|x|)dz − 1 + cδ − k

)
(5.27)

≥g
δ

(∫

R

J(−z)e−δ|z|dz − 1 + cδ − k

)
.(5.28)

Since c > 0, let δ2 be such that
∫

R

J(−z)e−δ2|z|dz − 1 + cδ2 − k ≥ 0.

Therefore L[g
δ2
] ≥ 0 in R∗,+.

By construction, u and g
δ2

satisfies 1−ρ
2 g

δ2
≤ 1−ρ

2 < 1 − u in R−. Using the comparison

principle (Theorem A.2) with 1 − u and 1−ρ
2 g

δ2
in R+,∗, it follows that 1−ρ

2 g
δ2

≤ 1 − u in R,

which proves (ii).
�

5.3. Some monotony properties of solutions of (5.1). In this section we establish some
monotonicity properties of solutions of equation (5.1) and give some apriori bounds on the
speed c when the strong maximum principle does not hold. Let us start with the following

Theorem 5.4. Let (u, c) be a continuous solution of (5.1). Then the following holds:

• When supp(J) ⊂ R+, u is monotone in a neighbourhood of −∞.
• When supp(J) ⊂ R−, u is monotone in a neighbourhood of +∞.

The proof of this result uses improved techniques and ideas developed in [14, 15]. In par-
ticular, the proof relies on the following nonlinear comparison principle that was established
in [14]:
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Theorem 5.5. Nonlinear Comparison Principle
Assume that f is as in Theorem 1.2 and let 0 < u and v < 1 be two continuous functions such that

J ⋆ u− u− αu′ + f(u) ≤ 0 in R,(5.29)

J ⋆ v − v − αv′ + f(v) ≥ 0 in R,(5.30)

lim
x→−∞

u(x) ≥ 0, lim
x→−∞

v(x) ≤ 0,(5.31)

lim
x→+∞

u(x) ≥ 1, lim
x→+∞

v(x) ≤ 1.(5.32)

Then there exists a positive real number τ such that uτ ≥ v.

and the following technical Lemma :

Lemma 5.4.
Let u and v be as in the above Theorem 5.5 and let 0 < δ ≤ ǫ

2 be such that

(5.33) f(p) non increasing for p < δ and 1− p < δ.

Then there exists M > 0 so that

1− u(x) <
δ

2
∀x > M(5.34)

and v(x) <
δ

2
∀x < −M.(5.35)

If furthermore there exists a positive constant b such that u and v satisfy:

u(x+ b) > v(x) ∀x ∈ [−M − 1,M + 1](5.36)

and u(x+ b) +
δ

2
> v(x) ∀x ∈ R(5.37)

Then we have u(x+ b) ≥ v(x) ∀x ∈ R.

Remark 5.4. The proof of the Theorem 5.5 and the Lemma 5.4 uses only the comparison property of
the operator J ⋆ u− u and an explicit construction. Therefore Theorem 5.5 and the Lemma 5.4 hold
also when J is replaced by any Borel probability measure µ.

Before proving Theorem 5.4, let us establish the two useful Lemmas

Lemma 5.5. Let u be a bounded continuous solution of (5.1) and assume that there exists τ > 0 such
that uτ ≥ u. Then we have the following alternative

• Either u is non decreasing in a neighbourhood of −∞ when supp(J) ⊂ R+, respectively in a
neighbourhood of +∞ when supp(J) ⊂ R−.

• Or uτ > u.

Proof:

By assumption we have uτ ≥ u. Since u is continuous, either uτ > u in R or there exists
x0 ∈ R such that uτ (x0) = u(x0). In the later case, at this point the following w := uτ − u

achieves a global minimum and satisfies

0 ≤ J ⋆ w(x0)− w(x0) = 0.

Therefore uτ ≡ u in x0 − supp(J).
Assume for the moment that supp(J) ⊂ R+.
Using the above computation with any point of x0−supp(J) and iterating this process yields
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uτ ≡ u in some neighbourhood (−∞, R). By rewriting uτ ≡ u as u ≡ u−τ , we easily show
that u(R) = u(R − kτ) for any k ∈ N. Thus u(R) = 0 and u ≡ 0 in some neighbourhood
(−∞, R), which proves the monotonicity of u in some neighbourhood (−∞, R) of −∞.

In the other case, supp(J) ⊂ R−, we end up with uτ ≡ u in some neighbourhood (R1,+∞)
instead of (−∞, R). Then u(R1) = u(R1 + kτ∗) for any k ∈ N. Thus u(R1) = 1 and u ≡ 1 in
some neighbourhood (R1,+∞), which proves the monotonicity of u in some neighbourhood
+∞.

�

We are no in a position to prove Theorem 5.4.

Proof of Theorem 5.4:

The proof being similar in both cases, we only expose the case supp(J) ⊂ R+. Let (u, c) be
a continuous bounded solution of (5.1). Our proof follows three steps.

Step 1 – According to Theorem 5.5, since u is a sub and supersolution of problem (5.1) with
speed c, there exists τ > 0 such that uτ ≥ u. Moreover using Lemma 5.4, there exists
M > 0 such that

1− u(x) <
δ

2
∀x > M(5.38)

and u(x) <
δ

2
∀x < −M.(5.39)

Using Lemma 5.5 we also have that either u is monotone a neighbourhood of −∞
or uτ > u.

Step 2 – Now, let us show that for all τ ′ ≥ τ we have the following alternative:
– Either u is monotone a neighbourhood of −∞
– Or uτ ′ > u.

From the previous step, we are to reduce to analyse the case uτ > u. By the previous
step since u satisfies (5.38) and (5.39) we have for all ǫ > 0,

uτ+ǫ +
δ

2
≥ u in R \ [−M,M ].

Since u is continuous on [−M,M ], there exists ǫ0 > 0 such that for any ǫ ∈ [0, ǫ0], we
have

uτ+ǫ ≥ u in [−M,M ].

Therefore for all ǫ ∈ [0, ǫ0), uτ+ǫ and u satisfies the assumptions of Lemma 5.4 and it
follows that uτ+ǫ ≥ u for all ǫ ∈ [0, ǫ0]. Using now Lemma 5.5 it follows that for all
ǫ ∈ [0, ǫ0] either u is monotone a neighbourhood of −∞ or uτ+ǫ > u. Observe that
the only case to be dealt with is when for all ǫ ∈ [0, ǫ0] we have uτ+ǫ > u. Indeed,
otherwise u is monotone a neighbourhood of −∞ and there is nothing left to prove.
So let us assume that uτ+ǫ > u for all ǫ ∈ [0, ǫ0], then uτ+ǫ0 > u and by repeating the
above argument with uτ+ǫ0 instead of uτ the desired alternative follows by induction.

Step 3 – From the two previous step, we end up with the following alternative
(i) Either u is monotone a neighbourhood of −∞

(ii) Or for all τ such that uτ ≥ u, we have uτ ′ > u for all τ ′ ≥ τ .
As in the above step, the only case to analyse is (ii). Let us define the following
quantity

τ∗ := inf{τ > 0| ∀τ ′ ≥ τ uτ ′ ≥ τ}.
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This quantity is well defined from the above steps. Observe that if τ∗ = 0, we are
done, since it means that u is monotone in R. So let us assume that τ∗ > 0. From the
definition of τ∗, we see that there exists a point x0 such that uτ∗(x0) = u(x0). Indeed,
if not then we have uτ∗ > u and using the continuity of u it follows that for some
ǫ > 0,

uτ∗−ǫ ≥ u in [−M,M ]

and

uτ∗−ǫ +
δ

2
≥ u in R \ [−M,M ].

Using now Lemma 5.5 we have that uτ∗−ǫ ≥ u which using Step 2 leads to a contra-
diction of the definition of τ∗. Therefore, there exists a point x0 such that w := uτ∗ −u
achieves a global minimum and satisfies

0 = J ⋆ w(x0)− w(x0).

Arguing now as in the proof of Lemma 5.5, it follows that that u ≡ 0 in some neigh-
bourhood (−∞, R′), which proves the monotonicity of u in some neighbourhood
(−∞, R) of −∞.

�

Remark 5.5. A consequence of the above proofs is that we have the following characterization of a
continuous solution (u, c) of (5.1). More precisely we have

• Either u ≡ 0 in a neighbourhood of −∞ when supp(J) ⊂ R+, respectively u ≡ 1 in a
neighbourhood of +∞ when supp(J) ⊂ R−.

• Or u is monotone.

Remark 5.6. Observe that for a general probability measure µ Theorem 5.4 holds as well provided
we have supp(µ) ∩ R+ 6= ∅ and supp(µ) ∩ R− 6= ∅. Indeed, for a smooth solution (u, c), we have in
this case 0 < u < 1. Therefore in the above proof the cases u ≡ 0 or u ≡ 1 in some unbounded set are
always ruled out and we have uτ > u for any positive real τ .

Now let us show some a priori estimates on the speed c.

Lemma 5.6. Let (u, c) be a solution of (5.1). Then

• c ≤ 0 when supp(J) ⊂ R+ .
• c ≥ 0 when supp(J) ⊂ R−.

Remark 5.7. Observe that to obtain the sign of the speed, no regularity on u is required. Therefore,
the Lemma holds for solution which are only L∞.

Proof:

First observe that in both cases, it is sufficient to prove the above statement for speed c 6= 0.
Let us first start with the first case. In this situation u is smooth and an easy computation
shows that

(5.40) cu′(x) =

∫ x

−∞
J(x− y)[u(y) − u(x)] dy + f(u).

By Theorem 5.4 u is non-decreasing in a neighbourhood (−∞, R) of −∞. Therefore
∫ x

−∞
J(x− y)[u(y)− u(x)] dy ≤ 0 in (−∞, R).
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Since u is smooth and satisfies the boundary conditions u(+∞) = 1, there exists a point
x0 ∈ (−∞, R) such that u(x0) ≤ ρ and u′(x0) > 0. Using (5.40) at x0, it follows that c ≤ 0
since f(u(x0)) ≤ 0.

The proof in the second case is rather similar. Indeed, in this case we have

(5.41) cu′(x) =

∫ +∞

x

J(x− y)[u(y) − u(x)] dy + f(u),

and by Theorem 5.4 u is non-decreasing in a neighbourhood (R′,+∞) of +∞. Therefore
∫ x

−∞
J(x− y)[u(y) − u(x)] dy ≥ 0 in (R′,+∞).

Since u is smooth and satisfies the boundary conditions u(−∞) = 0, there exists a point
x1 ∈ (R′,+∞) such that u(x1) ≥ ρ and u′(x1) > 0. Using (5.41) at x1, it follows that c ≥ 0
since f(u(x1)) ≥ 0.

�

Finally, let us show the following result:

Theorem 5.6.
Let (u, c) be a bounded solution of (5.1) and assume that c 6= 0. Then u is monotone non decreasing.

Proof:

First observe that since c 6= 0, u is a smooth function. For convenience, let us first assume
that J satisfies (H1). In this situation, the operator M[u] = J ⋆ u − u satisfies a strong
maximum principle and the monotonicity of u immediately follows from the arguments
developed in [14, 15]. So we omit the proof here. Let us now treat the two other cases,
supp(J) ⊂ R+ and supp(J) ⊂ R−. Observe that in both cases, from Proposition 5.1 we have
0 < u < 1. The monotonicity of u then follows form Remark 5.5.

�

5.4. Uniqueness of the speed of the travelling wave . In this section we deal with the
uniqueness of the speed c of the travelling wave solutions of (5.1). More precisely, we show
the following

Theorem 5.7. Assume that J satisfies (H2). If there exists a non-decreasing travelling wave solution
(u, c) of (5.1), then c is unique. The uniqueness is understood as follow: Let (v, c′) be another solution
of (5.1), then c = c′.

The proof uses improved techniques and ideas developed in [14, 15] and especially the
nonlinear comparison principle established in [14], Theorem 5.5. For convenience we split
the proof in three parts, corresponding respectively to the following three possible cases :

(1) J satisfies (H1).
(2) supp(J) ⊂ R+.
(3) supp(J) ⊂ R−.

Let us first introduce the following notation :

Lc[u] := J ⋆ u− u− cu′.
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In the first case, the operator Lc satisfies a strong maximum principle and the uniqueness
of the speed immediately follows from the argument developed in [14, 15]. So we omit the
proof here. Since the proof in cases 2 and 3 are similar, we will only present the proof in the
second case.

Proof of Theorem 5.7:

We argue by contradiction. Let (u, c) and (v, c′) be two solutions of (5.1). Without loss of
generality we can assume that (u, c) is a non-decreasing solution. From Lemma 5.6, Remark
5.7 and Proposition 5.1, we have u < 1, c ≤ 0, c′ ≤ 0, and v < 1. Assume that for a moment
that c < 0, then u is smooth and we have

(5.42) Lc′ [u] + f(u) = (c− c′)u′.

Therefore u will be either a subsolution or supersolution of equation (5.42) according to the
sign of (c − c′). First assume by contradiction that c − c′ < 0. Then u is a supersolution of
(5.42) and according to Theorem 5.5 the following quantity is well defined:

(5.43) τ∗ := inf{τ ∈ R|uτ ≥ v}.
Using the boundary conditions, we easily check that τ∗ > −τ0 for some positive τ0. Argu-
ing as in the proof of Theorem 5.4 there exists a point x0 ∈ R, such that uτ∗(x0) = v(x0).
Therefore the function w := uτ∗ − v ≥ 0 achieves a non positive minimum at x0 and satisfies

0 ≤ Lc′ [w](x0) = J ⋆ w(x0)− w(x0)− c′w(x0) = (c− c′)u′(x0) ≤ 0.

Thus
J ⋆ w(x0)− w(x0) = 0

and uτ∗ ≡ v in x0 − supp(J). Arguing as in Theorem 5.5, we have uτ∗ ≡ v in (−∞, R) for
someR ∈ R. Since 1 > u > 0, we can choose x1 in (−∞, R) such that u′τ∗(x1) > 0 . Using the
above argument with x1 instead of x0 it yields uτ∗ ≡ v in x1 − supp(J). Since x1 ∈ (−∞, R),
by construction we also have v′(x1) = u′τ∗(x1). Using now that (v, c′) satisfies (5.1), at the
point x1 we have

J ⋆ v(x1)− v(x1)− c′v′(x1) + f(v(x1)) = 0,

⇔
∫

R

J(x1 − y)v(y) dy − uτ∗(x1)− c′u′τ∗(x1) + f(uτ∗(x1)) = 0,

⇔
∫

x1−supp(J)
J(x1 − y)v(y) dy − uτ∗(x1)− c′u′τ∗(x1) + f(uτ∗(x1)) = 0,

⇔
∫

x1−supp(J)
J(x1 − y)uτ∗(y) dy − uτ∗(x1)− c′u′τ∗(x1) + f(uτ∗(x1)) = 0,

⇔(c− c′)u′τ∗(x1) = 0,

which is a contradiction since u′τ∗(x1) > 0 and c 6= c′. Therefore, c − c′ ≥ 0. Let us now
assume that c − c′ > 0, then u is a subsolution of (5.42). As above according to Theorem 5.5
the following quantity is well defined :

(5.44) τ∗ := inf{τ ∈ R|v ≥ u−τ}.
Now following the a simillar argument as above yields the desired contradiction. Thus
c − c′ ≤ 0 and we achieve c′ ≤ c ≤ c′, which means c = c′. To finish the proof, it remains to
treat the case c = 0. In this situation, since c′ ≤ 0, the only case to treat is when c′ < 0. In
this situation, by Theorem 5.6 v is monotone increasing and we can interchange the role of
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u and v in the above analysis to obtain the desired contratiction. Hence, in all situation we
have c = c′.

�

Remark 5.8. Note that the argument to obtain the uniqueness of the speed only relies on the nonlin-
ear comparison principle and the maximum principle. Observe that a strong maximum principle is
satisfied for a Borel probability measure µ satisfying the conditions

• supp(µ) ∩ R+ 6= ∅ and supp(µ) ∩ R− 6= ∅.
• There exists two real numbers a, b ∈ supp(µ) such that a

b
∈ R \Q.

Therefore, following the above argument leads to the uniqueness of the speed of the front in this
context. Moreover, since the strong maximum is satisfied on R, we also have the uniqueness up to
translation of the profile u, i.e if (v, c) is another solution then u ≡ vτ for some real τ .
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APPENDIX A. Appendix

We present in this section a collection of basic results ranging from maximum principles
to existence of solutions for a nonlinear problem. For convienience we present only some of
the proofs and give references otherwise. The first two subsections recall several maximum
principles and comparison principles that we use throughout this paper. The last subsection
deals with the linear and nonlinear theory.

A.1. Maximum principles in bounded domains. We start this section with maximum prin-
ciples for operators L defined by (3.3):

Theorem A.1. Strong Maximum Principle
Let u ∈ C2(Ω) ∩C0(Ω̄) be such that

L[u] ≥ 0 in Ω (resp. L[u] ≤ 0 in Ω).

Then u cannot achieve a non-negative maximum (resp. non-positive minimum) in Ω without being
constant.

Similar theorems holds for the operators S and M defined by (3.10) and (1.5). Next we
present a comparison result.

Theorem A.2. Comparison Principle
Assume that J satisfies (H1),b, γ ∈ L∞(R) ∩ C(R) and γ ≥ 0.
Let u and v be two smooth functions (C1,α(R)) and ω be a connected subset of R. Assume that u and
v satisfy the following conditions :

• M[v]− b(x)v′ − γ(x)v ≥ 0 in ω ⊂ R,
• M[u]− b(x)u′ − γ(x)u ≤ 0 in ω ⊂ R,
• u ≥ 6≡ v in R− ω,
• if ω is an unbounded domain, assume also that lim±∞ u− v ≥ 0.

Then u ≥ v in R.
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A similar theorem holds for the operator S defined by (3.10). See [15] for a proof of Theo-
rems A.1 and A.2.

Let us now prove a useful maximum principle which holds forL∞ sub and supersolutions
of the following problem

J ⋆ u− u− cu′ − λu = 0 almost everywhere in R(A.1)

u(−∞) = 0(A.2)

u(+∞) = 0(A.3)

Theorem A.3. L∞ Maximum Principle
Assume that J satisfies (H1) and λ is nonnegative. Let u ∈ L∞ be such that

J ⋆ u− u− cu′ − λu ≤ 0 almost everywhere in R

u(−∞) ≥ 0

u(+∞) ≥ 0

Then u ≥ 0 in R.

Proof:

Let ǫn be a sequence of real numbers which tends to 0 and let ρǫn be a sequence of C∞

mollifier such that for all x ∈ R, ρǫn ⋆ u(x) → u(x). For a fixed ǫ let us define uǫ := ρǫ ⋆ u.
Since u satisfies

J ⋆ u− u− cu′ − λu ≤ 0 almost everywhere in R,

it follows that
J ⋆ uǫ − uǫ − cu′ǫ − λuǫ ≤ 0 in R.

Using now the classical maximum principle, we have that uǫ ≥ 0 in R. Letting ǫ goes to 0
along the sequence ǫn, it follows that for all x ∈ R

u(x) = lim
n→∞

uǫn(x) ≥ 0.

Hence, u ≥ 0 in R.
�

A.2. Linear Theory. Next we provide an elementary lemma to construct solutions to constant-
coefficient Dirichlet problems of the form





L[u]− λv = f in Ω = (−r,R),
u(R) = 0,
u(−r) = 0.

Lemma A.1. Let f ∈ C0(Ω) ∩ L2(Ω) and recall that L − λId is defined by

L[v]− λv = ǫv′′ +

∫ R

−r

J(x− y)v(y)dy − v − cv′ − λv,

where ǫ > 0, c, λ ∈ R, λ > 0. Assume furthermore that (|c| +
∫
R
J(z)|z| dz) <

√
λǫ. Then there

exists a unique solution v ∈ C0(R) ∩ L2(Ω) of

(A.4)





L[v]− λv = f in Ω,
v(−r) = 0,
v(R) = 0.
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Moreover, v ∈ C2(Ω).

Proof

Uniqueness follows from the maximum principle. Let X = H1
0 (Ω) and define the follow-

ing bilinear form A(u, v) for u, v ∈ X :

A(u, v) = ǫ

∫

Ω
u′v′−

∫

Ω

∫

Ω
J(x−y)[u(y)−u(x)]v(x) dy dx+c

∫

Ω
u′v+(λ+(1−h+1 −h−1 ))

∫

Ω
uv.

We will show that A is coercive and continuous in X. Existence will then be given by the
Lax-Milgram Lemma.

We start with the continuity of A. Observe that by a density argument, it is sufficient to
prove the continuity for smooth functions with compact support. Let φ and ψ be two smooth
functions with compact support in Ω. Let B the following bilinear form :

B(φ,ψ) =
∫

Ω

∫

Ω
J(x− y)[φ(y)− φ(x)]ψ(x) dy dx.

From basic computations and the Cauchy-Schwartz inequality we have

A(φ,ψ) ≤ ǫ‖φ′‖L2(Ω)‖ψ′‖L2(Ω) + |c|‖φ′‖L2(Ω)‖ψ‖L2(Ω) + (λ+ 3)‖φ‖L2(Ω)‖ψ‖L2(Ω) + B(φ,ψ)
≤ C‖φ‖H1

0
(Ω)‖ψ‖H1

0
(Ω) + |B(φ,ψ)|.

Therefore, to obtain the continuity of A, it remains to show that B is a continuous bilinear
form for the H1

0 norm.
From the Fundamental Theorem of Calculus, Fubini’s Theorem and the Cauchy-Schwartz

inequality we have:

|B(φ,ψ)| ≤
∫

Ω

∫

Ω
J(x− y)|φ(y) − φ(x)||ψ(x)| dy dx

≤
∫

Ω

∫

Ω
J(z)|z|

(∫ 1

0
|φ′(x+ tz)||ψ(x)| dt

)
dz dx

≤
∫

Ω

∫ 1

0
J(z)|z|

(∫

Ω
|φ′(x+ tz)||ψ(x)| dx

)
dz dt

≤
∫

Ω

∫ 1

0
J(z)|z| dzdt‖φ′‖L2(Ω)‖ψ‖L2(Ω)

≤
(∫

R

J(z)|z| dz
)
‖φ′‖L2(Ω)‖ψ‖L2(Ω).

Thus

(A.5) B(φ,ψ) ≤ (

∫

R

J(z)|z| dz)‖ψ‖L2(Ω)‖φ′‖L2(Ω) ≤ C‖φ‖H1
0
(Ω)‖ψ‖H1

0
(Ω),

which shows the continuity of B and therefore the continuity of A.
To complete the proof it remains to prove the coercivity of A. Again, by a density argu-

ment, it is sufficient to prove the coercivity for smooth functions with compact support. Let
u ∈ C∞

0 (Ω). Since (1− h+1 − h−1 ) ≥ 0, using Hölder’s inequality we observe that

(A.6) A(u, u) ≥ ǫ

∫

Ω
(u′)2 − |c|‖u′‖L2(Ω)‖u‖L2(Ω) + λ

∫

Ω
u2 − B(u, u).
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Now using (A.5) with u instead of φ and ψ yields

B(u, u) ≤ (

∫

R

J(z)|z| dz)‖u‖L2(Ω)‖u′‖L2(Ω).

Therefore we have

(A.7) A(u, u) ≥ ǫ‖u′‖2L2(Ω) − (

∫

R

J(z)|z| dz + |c|)‖u′‖L2(Ω)‖u‖L2(Ω) + λ‖u‖2L2(Ω).

Since (|c| +
∫
R
J(z)|z| dz) ≤

√
λǫ, we have

(A.8)
ǫ

2
‖u′‖2L2(Ω) − (|c|+

∫

R

J(z)|z| dz)‖u′‖L2(Ω)‖u‖L2(Ω) +
λ

2
‖u‖2L2(Ω) ≥ 0.

Combine (A.7) and (A.8) to find that

(A.9) A(u, u) ≥ ǫ

2
‖u′‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) ≥ c0‖u‖H1

0
(Ω),

with c0 =
min{ǫ,λ}

2 , which shows the coercivity of A.
�

Remark A.1.
A consequence of Lemma A.1 is the unique solvability of the following problem :

(A.10)





L[u]− λu = f in Ω,
u(−r) = α,

u(R) = β.

for λ large enough. Indeed, let g ∈ C∞
0 (R) with g(−r) = α, g(r) = β, and let v be the unique

solution of (A.4) with right handside f −L[g]−λg ∈ C0(Ω)∩L2(Ω). Then u = g+ v is the unique
solution of (A.10).

Since the maximum principle holds for equation (A.10), using standard sub and superso-
lution scheme, we can easily construct a solution for the following semilinear problem:

(A.11)





L[u] = f(u) in Ω,
u(−r) = α,

u(R) = β.

where f is a lipschitz continuous function. Namely, we have the following

Theorem A.4.
Let ū and u be respectively a supersolution and a subsolution of (A.11) and assume that u ≤ ū. Then
there exists a solution u of (A.11) such that u ≤ u ≤ ū.

The proof is rather standard and we leave it to the reader.
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[17] Jérôme Coville and Louis Dupaigne. Propagation speed of travelling fronts in non local reaction-diffusion
equations. Nonlinear Anal., 60(5):797–819, 2005.

[18] Jerome Coville and Louis Dupaigne. On a non-local equation arising in population dynamics. Proc. Roy.
Soc. Edinburgh Sect. A, 137(4):727–755, 2007.

[19] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[20] Michael G. Crandall and Pierre-Louis Lions. Hamilton-Jacobi equations in infinite dimensions. II. Existence
of viscosity solutions. J. Funct. Anal., 65(3):368–405, 1986.

[21] A. De Masi, T. Gobron, and E. Presutti. Travelling fronts in non-local evolution equations. Arch. Rational
Mech. Anal., 132(2):143–205, 1995.

[22] A. De Masi, E. Orlandi, E. Presutti, and L. Triolo. Uniqueness and global stability of the instanton in nonlocal
evolution equations. Rend. Mat. Appl. (7), 14(4):693–723, 1994.

[23] G. Bard Ermentrout and J. Bryce McLeod. Existence and uniqueness of travelling waves for a neural net-
work. Proc. Roy. Soc. Edinburgh Sect. A, 123(3):461–478, 1993.

[24] Paul C. Fife. Mathematical aspects of reacting and diffusing systems, volume 28 of Lecture Notes in Biomathematics.
Springer-Verlag, Berlin, 1979.

[25] Paul C. Fife and J. B. McLeod. The approach of solutions of nonlinear diffusion equations to travelling front
solutions. Arch. Ration. Mech. Anal., 65(4):335–361, 1977.

[26] R. A. Fisher. The genetical theory of natural selection. Oxford University Press, Oxford, variorum edition, 1999.
Revised reprint of the 1930 original, Edited, with a foreword and notes, by J. H. Bennett.

[27] G. Harris, W. Hudson, and B. Zinner. Traveling wavefronts for the discrete Fisher’s equation. J. Differential
Equations, 105(1):46–62, 1993.

[28] Ja. I. Kanel′. Certain problems on equations in the theory of burning. Soviet Math. Dokl., 2:48–51, 1961.
[29] Markos A. Katsoulakis and Panagiotis E. Souganidis. Generalized motion by mean curvature as a macro-

scopic limit of stochastic Ising models with long range interactions and Glauber dynamics. Comm. Math.
Phys., 169(1):61–97, 1995.

42



[30] A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov. étude de l’équation de la diffusion avec croissance

de la quantité de matière et son application à un problème biologique. Bulletin Université d’État à Moscow
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