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Testing means from sampling populations

with undefined labels

Florent AUTIN∗ (Aix-Marseille Université)
and Christophe POUET† (Ecole Centrale Marseille)

Abstract

We consider the problem of testing means from samples of two popu-

lations for which the labels are not defined with certainty. We show that

this problem is connected to another one that is testing expected values

of components of mixture-models from two data samples. The underly-

ing mixture-model is associated with known varying mixing-weights. We

provide a testing procedure that performs well. Then we point out the

loss of performance of our method due to the mixing-effect by comparing

its numerical performances to the Welch’s t-test on means which would

have been done if true labels were available.

Keywords: Asymptotic distribution, hypothesis testing, missing labels, mixture-
models.

AMS Subject Classification: 62D05, 62F03, 62F05.

1 Introduction

In many cases, researchers can be interested in gathering information about two
populations in order to compare them. In that setting, tests of significance are
useful statistical tools for detecting a difference between two population param-
eters. Related application fields are numerous. Some examples are genetics,
neuronal data analysis, medicine, biology, physics, chemistry, social sciences,
among other fields.

Consider the Gaussian setting, for which each data of the two populations under
study is assumed to follow a normal distribution. Let us recall that this assump-
tion can be tested beforehand using a normality test, such as the well-known
Shapiro-Wilk or Kolmogorov-Smirnov test, or it can be assessed graphically us-
ing a normal quantile plot. Comparisons between the means of the populations
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are usually carried out by using t-statistic and lead to the well known Student’s
t-test or Welch’s t-test (see Welch [9]).

These t-tests are popular because of their ease of use and their good perfor-
mances. Moreover they are robust in the sense that they still perform well when
the components are not really Gaussian, provided that the samples size are large
enough. Nevertheless, these testing methods require to know the label of each
data, that is the population each data is associated with. Unfortunately, re-
searchers do sometimes not get this information. Indeed, one can imagine some
cases where the labels of data are erroneous or uncertain, i.e. some data of each
population do not deal with the population we want to compare. To give an ex-
ample of such a situation with lack of information, we consider two populations
- New York and California people - reduced to people that take bus/trolley bus
or walk to go working. Focusing on working people that take bus/trolley bus,
suppose you are interested to know whether travel time of people from New
York is significantly different to the one from California from a sample of people
where the place they live - New York or California - is available but the way of
travel (the label) associated with each data in hand is not.
This kind of situation is the one we are interested in. Indeed, we want to ad-
dress the problem of testing means of (sub)populations when the labels of data
are uncertain. More precisely, we first propose to show that this testing prob-
lem can be reformulated as testing the expected values of components from two
samples of independent mixture variables. In our study of real data, we shall
assume that the mixing-weights are known. It means that proportions of people
walking or using bus/trolley bus for each population (New York and California)
are known, with respect to an auxiliary variable (age for instance). Then, we
provide a testing procedure that takes into account this information on popu-
lations - and we discuss about its performances.
The testing procedure we propose is directly inspired from ideas in Autin and
Pouet [1]. In this previous work, a nonparametric procedure has been proposed
to test whether the densities of two independent samples of independent ran-
dom variables result from the same mixture of components or not. The value
of the test statistic requires to invert in some sense the mixing-weights opera-
tors of samples (see Definition 1) as a preliminary step to be calculated. This
testing procedure was proved to be powerful since it is minimax over Besov
spaces (more details are given in paragraph 3.1 in Autin and Pouet [1]). More
focusing on practical purposes, we show that providing a testing procedure that
incorporates combinatory ideas - provided that the mixing-weights are known -
is quite relevant compared to a procedure usually used in classification.

Paper is organized as follows. In Section 2 we present the mixture-model we
are interested in. Connection between the testing problem for which the labels
of data are not certain and the problem of testing the expected value of the
components involved in the mixture-model is provided. In Section 3, we present
three testing procedures. The first one is the Oracle Procedure that uses Welch’s
t-test on data associated with the label of the components we want to test.
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Of course this procedure is not tractable for the testing problem with lack of
information about labels but it will be used as a benchmark to assess the loss
of performances of the other tractable testing procedures. The second testing
procedure we present is the Expert Procedure that uses Welch’s t-test on data
that are supposed to have, with probability larger than or equal to one half,
the label associated with the components we focus on. The third and last
procedure, namely the Mixing Procedure, uses combinatory properties leading
to a new performing test. Section 4 deals with numerical experiments to point
out the good performances of the Mixing Procedure - the one we suggest -
compared to the Expert Procedure and to assess the loss of performances due
to the mixing-effect compared to the Oracle Procedure. An application to real
data is also presented whereas a brief conclusion is postponed in Section 5.
Finally, the technical lemmas and the proposition we used to prove our main
theoretical result (see Theorem 1) together with their proofs can be found in
the appendix.

2 Model description and hypothesis testing prob-

lem

2.1 Mixture-models with varying mixing-weights

Let X1, . . . , Xn be independent random variables such that, for any 1 ≤ i ≤ n,
the density of Xi on R, denoted by f

Xi
, is a mixture density with components

p1 and p2 and mixing-weights ω1(i) and ω2(i), i.e.

f
Xi

= ω1(i)p1 + ω2(i)p2.

We also introduce labels attached to X1, . . . , Xn, denoted by u1, . . . , un. This
point of view is one interpretation of mixture-models among others (see Section
1.4 in McLachlan and Peel [4]). The main difference lies in considering vary-
ing mixing-weights in our model. This point is very important (see Autin and
Pouet[1]). Therefore our model cannot be described as a mixture-model in the
usual sense.

Similarly to the sample X1, . . . , Xn, we consider a sample of independent ran-
dom variables Y1, . . . , Yn′ such that, for any 1 ≤ i ≤ n the density of Yi on R,
denoted by f

Yi
, is a mixture density with components p′1 and p′2 and mixing-

weights ω′
1(i) and ω′

2(i), i.e.

f
Yi

= ω′
1(i)p

′
1 + ω′

2(i)p
′
2.

We also introduce labels attached to Y1, . . . , Yn, denoted by v1, . . . , vn and we
assume that this second sample is independent from the first one.

If t. denotes the transpose operator, the two mixture-models we have just
introduced can be rewritten in a simpler way as follows:

f
X
= Ω

X
p and f

Y
= Ω

Y
p′, (1)
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Table 1: Populations weights (and sizes) with respect to age
Bus/trolleybus Walk

New York over 21 y.o. 51.93% (4313) 48.07% (3993)
New York under 20 y.o. 34.65% (306) 65.35% (577)
California over 21 y.o. 57.4% (4479) 42.6% (3324)
California under 20 y.o. 42.77% (497) 57.23% (665)

with,

- f
X
= t(f

X1
, . . . , f

Xn
), f

Y
= t(f

Y1
, . . . , f

Yn
),

- p = t(p1, p2), p′ = t(p′1, p
′
2),

- Ω
X
= (ωl(i))i,l, Ω

Y
= (ω′

l(i))i,l.

Definition 1 The matrices Ω
X

and Ω
Y
involved in the model (1) are called the

mixing-weights operators.

Definition 2 Any mixture-model (1) such that Ω
X

and Ω
Y

are full rank ma-
trices is called mixture-model with varying mixing-weights.

2.2 Example of modeling with mixture-models

Let us illustrate this theoretical set-up with the example cited in the introduc-
tion. The random variables X1, . . . , Xn correspond to the travel times of people
in the state of New York and the random variables Y1, . . . , Yn to travel times in
the state of California. The labels are the ways of transportation to go working
and can be either Bus/trolley bus (label 1) or Walk (label 2) . The last step to
complete the mixture model is to describe the mixing-weights for each observa-
tion. In each state the mixing-weights strongly depend on the age (over 21 or
under 20 years old (y.o.)). Table 1 illustrates this fact.
This table leads to the following mixing-weights:

ω1(i) = 0.5193, ω2(i) = 0.4807

if the person i is over 21 y.o. and lives in New York,

ω1(i) = 0.3465, ω2(i) = 0.6535

if the person i is under 20 y.o. and lives in New York,

ω′
1(i) = 0.574, ω′

2(i) = 0.426

if the person i is over 21 y.o. and lives in California,

ω′
1(i) = 0.4277, ω′

2(i) = 0.5723

if the person i is over 21 y.o. and lives in California.

The reader can legitimatelly wonder why the age is assumed to be known and
not the ways of transportation to go working. One can think about at least
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two good reasons. The first one is an a priori reason. The survey would be
rather lengthy if all interesting variables were included. Therefore the survey
is restricted to a small set of informative variables strongly linked with the
interesting variables. Moreover these informative variables can be chosen as
objective as possible and easily recordable. This can be called planned missing
values (see Graham [3]). The other reason is an a posteriori one. During the
data analysis of a survey, researchers are often confronted with new hypotheses
to test. In many situations, the relevant variables have not been recorded and
researchers have to plan a new survey which includes these new variables in
order to check these hypotheses. This leads to a waste of time and money.
Our testing problem on means from data with undefined labels can be associated
with the testing problem (2) in the mixture-model (1). Indeed, it corresponds
to a testing problem on means for which labels of data are unavailable: the only
information on the Xi’s label (resp. Yi’s label) is the probability ωl(i) (resp.
ω′
l(i)) that it corresponds to l, for any l ∈ {1, 2}. In other words, the added

information on subpopulations we get is the knowledge of the mixing-weights
operators.

2.3 Hypothesis testing problem

We recall that two data samples X = t(X1, . . . , Xn) and Y = t(Y1, . . . , Yn) are
considered. For a chosen label l ∈ {1, 2}, we are interested in testing whether
components pl and p′l have the same expected value or not. We want to address

this problem in a general context that is: the parameters of variance σ2
k and σ

′2
k

of the components pk and p′k are unknown whatever k ∈ {1, 2}.

For a fixed l ∈ {1, 2}, when respectively denoting by ml and m′
l the expected

value of the components we focus on, the testing problem we consider is lying
on the two following hypotheses:

the null hypothesis H0 : ml = m′
l,

(2)

the alternative hypothesis H1 : ml 6= m′
l.

We recall that providing a procedure to solve the testing problem (2) means
giving a decision rule (or test) ∆ ∈ {0, 1} that relies on the value of a measur-
able function T (test statistic) of X1, . . . , Xn and Y1, . . . , Yn.

As usual, ∆ = 1 will mean deciding H1 whereas ∆ = 0 will mean deciding H0.

3 Description of testing procedures

In this section we introduce the testing procedures we are interested in.
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3.1 Oracle test: ∆
o

The first testing procedure we present is called the Oracle Procedure. This
is a two steps procedure. First step consists in recovering the true labels of
data. Second step lies on using the Welch’s t-test on data with label l in order
to know whether ml and m′

l can be judged as different. This test cannot be
used in our context where the true labels are unknown but it will be used as a
benchmark when comparing the performances of the other testing procedures.
It corresponds to the procedure proposed by the oracle: any statistician having
information on labels.

Here we describe into details the Oracle Procedure. Let us denote by

- nl =

n
∑

i=1

1{ui = l} and n′
l =

n
∑

i=1

1{vi = l},

- X̄(l) = 1
nl

n
∑

i=1

Xi1{ui = l} and Ȳ (l) = 1
n′

l

n
∑

i=1

Yi1{vi = l},

- σ̂2
l =

1

nl

n
∑

i=1

(Xi− X̄(l))21{ui = l} and σ̂
′2
l =

1

n′
l

n
∑

i=1

(Yi− Ȳ (l))21{vi = l}.

The Oracle test ∆o lies on the test statistic To defined as follows

To :=
|X̄(l) − Ȳ (l)|
√

σ̂2
l

nl
+

σ̂
′2
l

n′

l

.

Under the null hypothesis, the asymptotic law of To is known to be the Stan-
dard Gaussian one, namely N (0, 1). Hence, ∆o = 1{To > qr} is a test with
asymptotically type I error equal to r (0 < r < 1), where qr is the quantile of
order 1− r

2 of the Standard Gaussian law.

3.2 Expert test: ∆
e

The testing procedure we describe now is lying on a method used in classifica-
tion. It is a two steps procedure. The first step consists in allocating label l to
any data Xi such that ωl(i) ≥

1
2 and to any data Yj such that ω′

l(j) ≥
1
2 . The

second step consists in using the Welch’s t-test on the two subsamples of data
that have been assigned to label l to know whether ml and m′

l can be judged as
different. Notice that it means that the Welch’s t-test is done on data having
possible wrong labels.

Put

- n
l,e

=
n
∑

i=1

1{ωl(i) ≥
1

2
} and n′

l,e
=

n
∑

i=1

1{ω′
l(i) ≥

1

2
},
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- X̄
(l)
e = 1

n
l,e

n
∑

i=1

Xi.1

{

ωl(i) ≥
1

2

}

and Ȳ
(l)
e = 1

n′

l,e

n
∑

i=1

Yi.1

{

ω′
l(i) ≥

1

2

}

,

- σ̂2
l,e

=
1

n
l,e

n
∑

i=1

(Xi − X̄(l)
e )21

{

ωl(i) ≥
1

2

}

,

- σ̂
′2
l,e

=
1

n′
l,e

n
∑

i=1

(Yi − Ȳ (l)
e )21

{

ω′
l(i) ≥

1

2

}

.

The Expert test ∆e relies on the test statistic Te defined as follows

Te :=
|X̄

(l)
e − Ȳ

(l)
e |

√

σ̂2
l,e

n
l,e

+
σ̂
′2
l,e

n′

l,e

.

Then, the decision rule is done by putting ∆e = 1{Te > qr}.

3.3 Mixing test: ∆
m

The last testing procedure we propose is inspired from some ideas provided in
Autin and Pouet [1]. Using combinatory methods, it proposes to invert in some
sense the mixing-weights operators so as to provide a new test that will be
proved to perform well. Let us describe this new testing procedure into details.

Let us denote by A
X
and A

Y
the matrices with n lines and 2 columns satisfying

tΩ
X
A

X
=t Ω

Y
A

Y
=

(

n 0
0 n

)

. (3)

Notations: For any (i, l) ∈ {1, . . . , n} × {1, 2}, we denote respectively by al(i)
(resp. a′l(i)) the entries of A

X
(resp. A

Y
) associated with line i and column l.

Following Maiboroda [5] or Pokhyl’ko [7], solutions of equations (3) are given
by

al(i) =
n

det(tΩ
X
Ω

X
)

2
∑

k=1

(−1)l+kγ(X)
lk

ωk(i),

a′l(i) =
n

det(tΩ
Y
Ω

Y
)

2
∑

k=1

(−1)l+kγ(Y )
lk

ω′
k(i),

where γ(X)
lk

and γ(Y )
lk

are respectively the minor (l, k) of the matrix tΩ
X
Ω

X
and

of the matrix tΩ
Y
Ω

Y
.
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For any l ∈ {1, 2}, (ml,m
′
l) can be estimated by the method of moments when

using estimators (m̂l, m̂
′
l) defined as follows:

(m̂l, m̂
′
l) =

(

〈A(l)
X
, X〉n, 〈A

(l)
Y
, Y 〉n

)

:=

(

1

n

n
∑

i=1

al(i)Xi,
1

n

n
∑

i=1

a′l(i)Yi

)

,

provided that A(l)
X

and A(l)
Y

respectively denote the l-th column-vector of ma-
trices A

X
and A

Y
.

The Mixing test ∆m lies on the test statistic Tm defined by:

Tm :=
|m̂l − m̂′

l|
√

V̂
(l)
n

, (4)

where V̂
(l)
n is the estimated variance of m̂l − m̂′

l, that is

V̂
(l)
n =

1

n2

n
∑

i=1

[

a2l (i) (Xi − ω1(i)m̂l − ω2(i)m̂l)
2
+ a′l

2
(i) (Yi − ω′

1(i)m̂
′
l − ω′

2(i)m̂
′
l)
2
]

.

Remark 1 As discussed in Autin and Pouet [1], for any l ∈ {1, 2} the random
variable m̂l (resp. m̂′

l) is a good estimator for ml (resp. m′
l). Hence if the

distance between m̂l and m̂′
l is judged too large, the rejection of the null hypoth-

esis H0 looks better. This idea motivates the choice of the test statistic Tm we
defined above.

Under the null hypothesis H0, the asymptotic law of Tm is known, according to
the following Theorem.

Theorem 1 Let l ∈ {1, 2}. Assume that

• the components within the mixture-model (1) have moments with order 4,

• the mixing-weights of the mixture-model (1) are such that

lim
n→+∞

sup
i=1,...,n

a2l (i)

n
∑

i=1

a2l (i)

= lim
n→+∞

sup
i=1,...,n

a
′2
l (i)

n
∑

i=1

a
′2
l (i)

= 0. (5)

Then, under the null hypothesis H0, the law of Tm is asymptotically the Standard
Gaussian one, i.e.

Tm
L
→ N (0, 1). (6)
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Hence, ∆m = 1{Tm > qr} is a test with asymptotically type I error equal to r
(0 < r < 1).

Remark 2 A wide range of mixing-weights of the mixture-model (1) satisfy the
condition (5). Examples of such mixing-weights are given in (12) of Section 4.

Proof:

To prove Theorem 1, notice that it suffices to prove that for any l ∈ {1, 2}

1.

1

n

n
∑

i=1

al(i)Xi −ml

√

√

√

√

√

√

1

n2

n
∑

i=1

a2l (i) (Xi − ω1(i)m̂1 − ω2(i)m̂2)
2

L
→ N (0, 1),

2.

1

n

n
∑

j=1

a′l(i)Yj −m′
l

√

√

√

√

√

√

1

n2

n
∑

j=1

a′l
2
(i) (Yj − ω′

1(j)m̂
′
1 − ω′

2(i)m̂
′
2)

2

L
→ N (0, 1).

Because of the independence between the two samples and the fact that under
the null hypothesis H0, ml = m′

l. Since these two results of convergence can be
proved by an analogous way, we only focus on proving the first one that can be
rewritten as follows for any l ∈ {1, 2}:

n
∑

i=1

al(i) (Xi − ω1(i)m1 − ω2(i)m2)

√

√

√

√

n
∑

i=1

a2l (i) (Xi − ω1(i)m̂1 − ω2(i)m̂2)
2

L
→ N (0, 1).

Denote, for any n ∈ N
∗, any l ∈ {1, 2} and any 1 ≤ i ≤ n

B(l)
n =

n
∑

i=1

a2l (i)E
[

(Xi − ω1(i)m1 − ω2(i)m2)
2
]

, (7)

B̂(l)
n =

n
∑

i=1

a2l (i) (Xi − ω1(i)m̂1 − ω2(i)m̂2)
2
. (8)

From Proposition 1,

n
∑

i=1

al(i) (Xi − ω1(i)m1 − ω2(i)m2)

√

B
(l)
n

L
→ N (0, 1).
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In the sequel, we aim at proving that a same kind of result holds when replacing

parameterB
(l)
n by the estimator B̂

(l)
n . In other words, the result we want to prove

is the following:

n
∑

i=1

al(i) (Xi − ω1(i)m1 − ω2(i)m2)

√

B̂
(l)
n

L
→ N (0, 1). (9)

From Slutsky theorem, it suffices to prove that estimator B̂
(l)
n of B

(l)
n is consis-

tent. We propose to divide the proof of this consistency into two steps. First
we prove

n
∑

i=1

a2l (i) (Xi − ω1(i)m1 − ω2(i)m2)
2

B
(l)
n

Proba
→ 1. (10)

The second step consists in replacing m1 and m2 by their consistent estimators
m̂1 and m̂2 and in checking that the convergence in probability still holds.

From this point we need more assumptions, that is to say the existence of the
fourth order moment for p1 and p2.

Let us prove the first step. We apply Bienayme-Chebyshev inequality, for any
ǫ > 0:

P

(∣

∣

∣

∣

∣

n
∑

i=1

a2l (i) (Xi − ω1(i)m1 − ω2(i)m2)
2 −B(l)

n

∣

∣

∣

∣

∣

> B(l)
n ε

)

≤

n
∑

i=1

a4l (i)Var
(

(Xi − ω1(i)m1 − ω2(i)m2)
2
)

(B
(l)
n ε)2

≤

n
∑

i=1

a4l (i)E
[

(Xi − E(Xi))
4
]

(B
(l)
n ε)2

≤

sup
j=1,...,n

a2l (j)

B
(l)
n

n
∑

i=1

a2l (i)C(m1,m2, p1, p2)

B
(l)
n ε2

≤

sup
j=1,...,n

a2l (j)

B
(l)
n

(

min(σ2
1 , σ

2
2)
)−1

C(m1,m2, p1, p2)

ε2
.

Last inequalities are obtained by using Lemma 4 and Lemma 2. The right part
of the last inequality is the product of two terms. The left one tends to 0 when

10



n goes to infinity because of assumption (5). The right one is a constant that
only depends on ǫ and the parameters of p1 and p2. When considering the limit
in infinity with respect to n, we conclude that property (10) holds.

We end by proving the second step. We have

n
∑

i=1

a2l (i) (Xi − ω1(i)m̂1 − ω2(i)m̂2)
2

=

n
∑

i=1

a2l (i) (Xi − ω1(i)m1 − ω2(i)m2)
2

+2

n
∑

i=1

a2l (i)(Xi−ω1(i)m1−ω2(i)m2)(ω1(i)(m1−m̂1) + ω2(i)(m2−m̂2))

+

n
∑

i=1

a2l (i) (ω1(i)(m1 − m̂1) + ω2(i)(m2 − m̂2))
2
.

The first term is exactly the one appearing in the first step and also converges

to 1 in probability when divided by B
(l)
n . We turn to the second term. Cauchy-

Schwarz inequality entails that
∣

∣

∣

∣

∣

n
∑

i=1

a2l (i) (Xi−ω1(i)m1−ω2(i)m2) (ω1(i)(m1−m̂1) + ω2(i)(m2−m̂2))

∣

∣

∣

∣

∣

≤

√

√

√

√

n
∑

i=1

a2l (i) (Xi − ω1(i)m1 − ω2(i)m2)
2

×

√

√

√

√2(m1 − m̂1)2
n
∑

i=1

a2l (i)ω
2
1(i) + 2(m2 − m̂2)2

n
∑

i=1

a2l (i)ω
2
2(i).

When divided by B
(l)
n , the first term of the righthand-side converges to 1 in

probability: it is the result of the first step. By using Lemma 2, one gets

max

(

n
∑

i=1

a2l (i)ω
2
1(i),

n
∑

i=1

a2l (i)ω
2
2(i)

)

≤ B(l)
n

(

min(σ2
1 , σ

2
2)
)−1

.

Hence the second term of the right-hand side of the inequality converges to 0

in probability when divided by B
(l)
n because of the consistency of estimators m̂l

(see Lemma 5). Hence second the term we are interested in converges to 0 in

probability when divided by B
(l)
n . We can proceed in the same way in order to

prove that the third term converges to 0 in probability when divided by B
(l)
n .

So, we have just proved that

B̂
(l)
n

B
(l)
n

Proba
→ 1. (11)
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We conclude that the exact variance B
(l)
n can be replaced by the consistent es-

timator B̂
(l)
n for the result of convergence. In other words, the property (9) holds.

4 Numerical experiments

4.1 Numerical performances of the Mixing-test

In this section we provide numerical experiments and we discuss about the
performances of our testing procedure. What we often expect is a gain of per-
formance of the test ∆m - that is to say a smaller type II error when the type
I error is chosen to be r = 0.05 - comparatively to the test ∆e. Without loss of
generality, we suppose that n is even.
We consider the Gaussian setting and we assume in this section that the mixing-
weights operators Ω

X
and Ω

Y
have the following form:

Ω
X
=

















α 1− α
. . . . . .
α 1− α

1− β β
. . . . . .

1− β β

















and Ω
Y
=

















α′ 1− α′

. . . . . .
α′ 1− α′

1− β′ β′

. . . . . .
1− β′ β′

















, (12)

where n
2 data from X (resp. Y) deal with the couple of mixing-weights (α, 1−α)

(resp. (α′, 1−α′)) and the other n
2 data from X (resp. Y) deal with the couple

of mixing-weights (1 − β, β) (resp. (1 − β′, β′)). Suppose now that our testing
problem is dealing with the first component, i.e. l = 1 and that Ω

X
and Ω

Y
are

full rank matrices, i.e. α+ β 6= 1 and α′ + β′ 6= 1.

4.1.1 Mixing-test versus Expert-test

In this paragraph we provide a motivation for the use our testing procedure
∆m. For the sake of simplicity we suppose that α = β and that α′ = β′. For
any value of (α, α′) ∈] 12 , 1[

2, there are many situations where the performance
of the Expert test is quite bad even if the numbers of observations n is large.

• Dealing with two components with equal expected value, ∆e can most
of time detect a difference between these components (wrong decision)
whereas our test doesn’t. For instance, suppose that m1 = m′

1 and that

m′
2 is large away from m2 as α = α′. Since E

(

X̄
(1)
e

)

6= E

(

Ȳ
(1)
e

)

, using

∆e to detect equality between componentsm1 andm′
1 would be a very bad

choice in that context. For n large enough, it would imply that Te > tr
with high probability. Hence, the wrong decision H1 may often be done.

An example of such a situation is given here in the case where α = α′ = 0.9.
Consider the testing problem (2) and suppose σ1 = σ′

1 = σ2 = σ′
2 = 1 and

12



Table 2: Percentage of wrong decisions by ∆e

δ / n 100 200 500 1000 2000
0.5 0.057 0.064 0.086 0.121 0.191
1 0.074 0.098 0.172 0.302 0.521
2 0.126 0.210 0.462 0.749 0.963
3 0.188 0.350 0.722 0.950 0.999

Table 3: Percentage of correct decisions by ∆m

n 500 1000 2000 3000 4000 5000 6000
∆m 0.146 0.242 0.438 0.595 0.718 0.810 0.879

that m1 = m′
1 = 0, m2 = 1 and m′

2 = m2 + δ. For varying values of n,
δ and 40 000 repetitions of ∆e with r = 0.05, we give the percentage of
wrong decisions H1 in Table 2.

Notice that the percentage of wrong decisions by ∆e turns up as n grows
up and can be quite important if m′

2 is sufficiently far away from m2.
Most of time, the expert detects a difference between the components m1

and m′
1 but there is not in that context. Comparatively speaking, the

percentage of wrong decisions by ∆m is around 0.05.

• Most of time ∆e fails to detect a difference between two components with
different expected value whereas our test doesn’t. For instance, suppose
that m1 6= m′

1 and that

m2 ≈ (1 − α)−1 (α′m′
1 + (1− α′)m′

2 − αm1) .

Since
E(Xi) ≈ E(Yi), for any 1 ≤ i ≤

n

2
,

using ∆e to detect the difference between m1 and m′
1 would be a very

bad choice in that context. Indeed, according to the law of large numbers,

with high probability - that increases as n goes up - X̄
(1)
e and Ȳ

(1)
e would

be very close to each other. It would imply that Te ≤ 1.96 with high
probability. True decision H1 would be taken only in 5 % of cases.

An example of such a situation is given here in the case α = α′ = 0.9.
Consider the testing problem (2) and suppose that σ1 = σ′

1 = σ2 = σ′
2 = 1

and that m1 = 0, m′
1 = 0.1, m2 = 1 and m′

2 = 2. For varying values of
n and 40 000 repetitions of ∆m with r = 0.05, we give the percentage of
correct decisions from ∆m in Table 3.

As expected, the percentage of correct decisions by ∆m goes up as n grows
up. But it is not the case for the percentage of correct decisions by ∆e

13



Table 4: Empirical Power of ∆o and ∆m

Test / n 500 1000 2000 3000 4000 5000 6000
∆o 0.200 0.349 0.609 0.783 0.886 0.942 0.973
∆m 0.149 0.245 0.427 0.585 0.704 0.798 0.868

Table 5: Empirical Power Pm of ∆m for varying α = α′

δ̄ / α 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.1 0.071 0.092 0.125 0.161 0.196 0.239 0.275 0.317 0.353
0.2 0.130 0.226 0.353 0.484 0.603 0.700 0.780 0.837 0.883
0.3 0.238 0.446 0.659 0.816 0.912 0.960 0.983 0.999 1
0.4 0.374 0.671 0.882 0.938 0.993 1 1 1 1

which are always around 0.05. Most of time, the expert is unable to detect
the difference between the components in that context.

Finally we conclude that it is better to choose ∆m for the problem we are
interested in.

4.1.2 Mixing-test versus Oracle-test

In this paragraph we compare the empirical powers of ∆m to the Oracle test
∆o ones, when taking r = 0.05 and the same parameters as the last example.
We recall that the empirical power of any test ∆ corresponds to the numerical
evaluation of the probability to correctly decide H1, according to ∆.

According to Table 4 we remark that the bigger n the better the powers of ∆o

and of ∆m. Moreover we note that the empirical power of the Mixing test is
not bad when comparing to the Oracle test.

In Table 5 we give the empirical power Pm of ∆m measured in samplings of size
n = 1000 in the case where m1 = 0, m′

1 = δ̄, m2 = 1 and m′
2 = 0.

As expected, looking at Table 5,

• quantity Pm depends on the intrinsic difficulty of the problem. Indeed the
larger the absolute value of quantity δ̄ := m′

1−m1, the easier the problem
of detection and so the more powerful the test,

• the larger the degree of certainty α the better the power of ∆m. This is due
to the fact that the expectation of the number of wrong labels considered
by the Expert Procedure grows up as α goes down.

14



Table 6: Percentage of correct decisions by ∆m

(α, α′), / n 100 200 500
(0.90, 0.60) 0.153 0.254 0.533
(0.80, 0.70) 0.311 0.536 0.896
(0.75, 0.75) 0.332 0.564 0.918

4.1.3 Comparisons on performances of ∆m for varying values of

(α, α′)

As previously discussed, we expect that the better the degree of certainties
of the expert, the better the performance of the test ∆m. This statement is
highlighted here when considering the same parameters as before, δ̄ = 0.5 and
many choices of couple (α, α′). For each choice of (α, α′) done, we provide in
Table 6 the empirical power Pm of our test ∆m that is the percentage of correct
detection of a difference between m1 and m′

1.
Interpretation of the results presented in Table 6 goes in the same way as Autin
and Pouet [1]: the bigger the smallest eigenvalue of both operators tΩ

X
Ω

X
and

tΩ
Y
Ω

Y
that is λ

min
= 1

2 (1− 2min(α, α′)(1 −min(α, α′))) the better the power
of our test ∆m. Note that, the larger the minimum value between α ∈] 12 , 1[ and
α′ ∈] 12 , 1[ the bigger λ

min
.

4.1.4 Brief conclusion

Let us summarize the main facts. First, in some cases experts can be completely
wrong because of the overall design, that is to say the link between the means of
the components and the mixing-weights. This is a serious issue for the Expert
test. The results become worse and worse as the sample size increases. The test
adapted to the varying mixing-weights that we propose does not suffer from
this drawback. The second fact is the good behavior of our test compared to
the Oracle test. Although it is behind, the power is quite acceptable. The
last important fact which has already been stressed by Autin and Pouet [1] is
the effect of the mixing-weights. It is known a priori thanks to the smallest
eigenvalue of the operators tΩ

X
Ω

X
and tΩ

Y
Ω

Y
. This point is important as the

statistician can act in order to counter to this effect, e.g. he can improve the
accuracy of the expert system giving the mixing-weights or increase the sample
sizes.

4.2 Application to real data

In this section we apply our methodology to real data and we discuss about the
results.
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Table 7: Description of the population
NY CA

Total 9189 8935
Over 21 90.39% (8306) 87.04% (7803)
Under 20 9.61% (883) 12.96% (1162)
Walk 49.73% (4570) 44.5% (3989)

Bus/trolley bus 50.27% (4619) 55.5% (4979)

Table 8: One-way analysis of travel time (in minutes)
Walk Bus/trolley bus Walk and Bus/trolley bus

NY 12.25 (12.18) 47.26 (28.79) 29.85 (28.23)
CA 11.23 (12.23) 45.12 (28.84) 30.04 (28.49)

4.2.1 Description of the data

We have selected data from U.S. Census Bureau website, more precisely PUMS
2006 (see [8]). We are interested in comparing travel time of people living either
in the state of New York (abbreviated in NY) or either in the state of California
(abbreviated in CA). Two ways of transportation have been kept: Bus/trolley
bus and Walk. We have also kept a variable linked to age as it will be useful for
the mixture-model with varying mixing weights. This variable records the fact
that a person is over 21 years old or under 20 years old.

Here are few facts to roughly describe the PUMS sample. Table 7 gives one-level
information.
In Table 8 we compute the mean and the standard deviation (in parentheses)
of the travel time according to the categorical variable means of transportation
to go working.
As it can be seen in Table 8 there might be no difference between New York
and California. Nevertheless if the means of transportation is unavailable, it
will be perilous to decide when considering the whole sample without any other
information. Indeed as shown in Table 7, the difference between New York and
California is decreased because of the structure of the population (less people
under 20 years old in New York).

4.2.2 Methodology

We assume in the sequel that the information about the way of transport (la-
bels) are unavailable at the microdata level. We are going to apply the test ∆m

adapted to the varying mixing-weights mixture-model. The age variable is the
only auxiliary information available at the microdata level that permits to get
the mixing-weights to our mixture-model (1).
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Table 9: Bus/trolleybus decisions
Decision n = 1000 p-value

Oracle test not rejected 0.24
Expert test not rejected 0.42
Mixing test not rejected 0.11

Table 10: Walk decisions
Decision n = 1000 p-value

Oracle test not rejected 0.23
Expert test rejected 0.04
Mixing test not rejected 0.48

For comparison purpose we have also applied the so-called Expert test. The
type I error is chosen to be 0.1.

According to the notations we introduced in (12) and to Table 1,

(α, β) = (0.5193, 0.6535) (α′, β′) = (0.574, 0.5723). (13)

We consider the following sample: 500 persons over 21 and 500 persons under
20 were randomly sampled in each state (n = 1000).

We applied three testing procedures:

1. Oracle test,

2. Expert test,

3. Mixing test.

First we test the equality of the averages when the ways of transportation to
work is Bus/trolley bus (label 1) in Table 9. In this case, the other means of
transportation to work is considered as a nuisance parameter.
Next we reverse the set-up. We test the equality of the averages when the means
of transportation to work is Walk (label 2) in Table 10. Bus/trolley bus is now
a nuisance parameter.

4.2.3 A tough situation

Here we are also interested in comparing travel time of people living either in the
state of New York or either in the state of Illinois (abbreviated in IL). Data come
from U.S. Census Bureau [8]. Two ways of transportation to work have been
kept: Bus/trolley bus or Railroad. We have also kept the gender variable as it
will be useful for the varying mixing-weights mixture-model. As it will be seen,
the situation is much more involved compared to the one in the previous section.
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Table 11: Description of the population
NY IL

Total 6974 2899
Men 46.5% (3247) 48.2% (1398)

Women 53.5% (3727) 51.8% (1501)
Bus/trolley bus 66.2 % (4619) 58.4% (1692)

Railroad 33.8% (2355) 41.6% (1207)

Table 12: Mixing-weights
Bus/trolley bus Railroad

NY men 55.8 % (1813) 44.2% (1434)
NY women 75.3 % (2806) 24.7% (921)
IL men 50.8 % (710) 49.2% (688)

IL women 65.4 % (982) 34.6% (519)

Here are few facts to roughly describe the PUMS sample. Table 11 gives one-
level information.
The mixing-weights depend on the gender as illustrated in Table 12.
According to the notations we introduced in (12) and Table 12,

(α, β) = (0.558, 0.247) (α′, β′) = (0.508, 0.346). (14)

In Table 13 we compute the mean and standard deviation (in parentheses) of
the travel time according to the categorical variable way of transportation to
work.
Once again the difference in travel time is decreased if we consider the entire
population. This is due to its structure. As there are more men and women
who use railroad in Illinois, the general average of travel time is increased. This
is reverse in New York.

In Table 14 we test the equality of the averages when the ways of transportation
to work is Bus/trolley bus.
In Table 15 we reverse the set-up and we test the equality of the averages when
the way of transportation to work is Walk.

Table 13: One-way analysis of travel time
Bus/trolley bus Railroad Bus/trolley bus and Railroad

New York 47.3 (28.8) 71 (30) 55.3 (31.3)
Illinois 41.8 (26.4) 63.1 (25.7) 50.7 (28.2)
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Table 14: Bus/trolleybus decision
Decision n = 1000 p-value

Oracle test not rejected 0.19
Expert test not rejected 0.13
Mixing test not rejected 0.75

Table 15: Walk decision
Decision n = 1000 p-value

Oracle test rejected 0.05
Expert test non-available non-available
Mixing test not rejected 0.12

5 Conclusion

From our point of view, one of the most interesting point is the usefulness of the
varying mixing-weights model. It is a versatile model that can be used in many
situations with missing microdata but aggregated information. The application
treated exemplifies the modeling.
The second take-away message is the excellent performances of the Mixing test
we propose. They can be guessed a priori thanks to the smallest eigenvalue
of operators involved within the mixture-model. These nice performances were
showed both theoretically and numerically.
To conclude let us precise that this work can be easily extended to mixture-
models with more than two components and can be done in a nonparametric
setting when using the testing procedure proposed by Butucea and Tribouley
[2] as the Oracle test and the one given by Autin and Pouet [1] as the Mixing
test.
An interesting extension that should really be considered is the case of mixing-
weigths with errors. This arises when mixing-weigths are computed from a
model with estimated parameters or from experts’ evaluation. In this case the
solution of (3) is no longer exact as the matrices ΩX and ΩY are random.
Preliminary simulation results tend to prove that moderate errors have a small
effect.

6 Appendix

In this section we provide the technical lemmas and the proposition required to
prove the asymptotic normality under interest. For the sake of simplicity, we
present them with respect to X1, . . . , Xn whereas an analogous version of them
does exist for Y1, . . . , Yn. We recall that we assume that, for any l ∈ {1, 2} the
mixing-weights of the model satisfy (5).
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Denote, for any n ∈ N
∗, any l ∈ {1, 2} and any 1 ≤ i ≤ n

W
(l)
ni =

al(i)
√

B
(l)
n

(Xi − ω1(i)m1 − ω2(i)m2) . (15)

Lemma 1 For any 1 ≤ i ≤ n

Var(Xi) =
2
∑

l=1

(∫

ωl(i)(x−ml)
2pl(x)dx

)

+ ω1(i)ω2(i)(m1 +m2)
2.
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Proof:

For any 1 ≤ i ≤ n,

Var(Xi) =

∫

(x− ω1(i)m1 + ω2(i)m2)
2(ω1p1(x) + ω2p2(x))dx

=

2
∑

l=1

(∫

ωl(i)(x−ml)
2pl(x)dx

)

+ ω1(i)ω2(i)(m1 +m2)
2.

From Lemma 1, we immediately derive:

Lemma 2 For any l ∈ {1, 2}, let B
(l)
n be defined as in (7).

B(l)
n ≥ min

(

σ2
1 , σ

2
2

)

n
∑

i=1

a2l (i).

Proof:
For any l ∈ {1, 2}, by using Lemma 1 and the fact that, for any 1 ≤ i ≤ n
ω1(i) + ω2(i) = 1,

B(l)
n =

n
∑

i=1

a2l (i)Var(Xi)

=

n
∑

i=1

[

a2l (i)

(

2
∑

l=1

∫

ωl(i)(x −ml)
2pl(x)dx

)

+ ω1(i)ω2(i)(m1 +m2)
2

]

≥
n
∑

i=1

[

a2l (i)

(

2
∑

l=1

ωl(i)

)]

min

(∫

(x−m1)
2p1(x)dx,

∫

(x −m2)
2p2(x)dx

)

= min
(

σ2
1 , σ

2
2

)

n
∑

i=1

a2l (i).

Lemma 3 For any l ∈ {1, 2}Let B
(l)
n and W

(l)
ni (1 ≤ i ≤ n) be defined as in (7)

and (15). Then, for any ǫ > 0

lim
n−→∞

n
∑

i=1

E

[

(

W
(l)
ni

)2

1
{

|W
(l)
ni | ≥ ǫ

}

]

= 0.

Proof:

Fix l ∈ {1, 2}. Let us define for any n ∈ N
∗

κn = min{m1,m2}+
ε

√

B
(l)
n

supi{|al(i)|}
,

κ′
n = max{m1,m2} −

ε

√

B
(l)
n

supi{|al(i)|}
.
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n
∑

i=1

E

[

(

W
(l)
ni

)2

1
{

|W
(l)
ni | ≥ ǫ

}

]

=

n
∑

i=1

∫

|y|≥ǫ

y2 dF
W

(l)
ni

(x)

≤
n
∑

i=1

a2l (i)

B
(l)
n

∫

x>κn,x<κ′

n

(x− ω1(i)m1 − ω2(i)m2)
2 dF

Xi
(x)

≤ 2

n
∑

i=1

a2l (i)

B
(l)
n





∑

l∈{1,2}

ωl(i)
3

∫

x>κn,x<κ′

n

(x−ml)
2pl(x) dx

+ω2
2(i)ω1(i)

∫

x>κn,x<κ′

n

(x−m2)
2p1(x) dx+ ω2

1(i)ω2(i)

∫

x>κn,x<κ′

n

(x −m1)
2p2(x) dx

]

≤ 2

(

n
∑

i=1

a2l (i)

B
(l)
n

)

sup
n∈N∗





∑

(k,l)∈{1,2}2

∫

x>κn,x<κ′

n

(x−mk)
2pl(x) dx



 .

Using Lemma 2, for any n ∈ N
∗,

n
∑

i=1

a2l (i)

B
(l)
n

≤
(

min(σ2
1 , σ

2
2)
)−1

.

Then, since variances under p1 and p2 are finite, the supremum over n tends to 0
in the integrals above, according to Lebesgue dominated convergence theorem.

Lemma 4 For any 1 ≤ i ≤ n,

E
[

(Xi − E(Xi))
4
]

≤ C(m1,m2, p1, p2),

where C(m1,m2, p1, p2) := 32 max
(k,l)∈{1,2}2

∫

(x−mk)
4pl(x)dx.

Proof:
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We have

E
[

(Xi − E(Xi))
4
]

= E

[

(Xi − ω1(i)m1 − ω2(i)m2)
4
]

≤ 8 ω1(i)
4
E

(

(Xi −m1)
4
)

+ 8 ω2(i)
4
E

(

(Xi −m2)
4
)

= 8

[

ω1(i)
5

∫

(x−m1)
4p1(x) dx+ ω1(i)

4ω2(i)

∫

(x−m1)
4p2(x) dx

+ ω2(i)
4ω1(i)

∫

(x−m2)
4p1(x) dx+ ω2(i)

5

∫

(x−m2)
4p2(x) dx

]

≤ 32 max
(k,l)∈{1,2}2

∫

(x−mk)
4pl(x)dx.

Lemma 5 For any 1 ≤ l ≤ 2, the estimator m̂l =
1

n

n
∑

i=1

al(i)Xi of ml is

consistent, that is

m̂l
Proba
→ ml.

Proof:

Let ǫ > 0 and l ∈ {1, 2}. We have, using Bienayme-Chebyshev inequality and
Lemma 1

P (|m̂l −ml| > ε)

≤
1

n2ǫ2

n
∑

i=1

a2l (i)Var(Xi)

=
1

n2ε2

n
∑

i=1

a2l (i)





∑

l∈{1,2}

(

ωl(i)σ
2
l + ωl(i)(1− ωl(i))

(m1 +m2)
2

2

)





≤
2

nε2K





∑

l∈{1,2}

σ2
l +

(m1 +m2)
2

4



 .

Last inequality is obtained by using assumption on the smallest eigenvalue of
Ω′Ω, that is larger than Kn (with K > 0) and the fact that the supremum value
for x ∈ [0, 1] of x → x(1− x) is equal to 1

4 . The right-hand side clearly tends to
0 when n goes to infinity. We conclude that m̂l is consistent.

Proposition 1 For any l ∈ {1, 2}, any n ∈ N
∗ and any 1 ≤ i ≤ n consider

W
(l)
ni , defined as in (15).

n
∑

i=1

W
(l)
ni

L
→ N (0, 1).
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Proof:

We apply Theorem 4.2 in Petrov [6]. It is the general setup for the Central
Limit Theorem, for the triangular array of series (Wni)i,n of independent ran-
dom variables Xi (that are not identically distributed).

If the three conditions are satisfied for any ǫ > 0 and any τ > 0

1. lim
n→∞

n
∑

i=1

P

(

|W
(l)
ni | ≥ ε

)

= 0,

2. lim
n→∞

n
∑

i=1

∫

|y|<τ

ydF
W

(l)
ni

(y) = 0,

3. lim
n→∞

n
∑

i=1







∫

|y|<τ

y2dF
W

(l)
ni

(y)−

(

∫

|y|<τ

ydF
W

(l)
ni

(y)

)2






= 1,

then

n
∑

i=1

W
(l)
ni

L
→ N (0, 1).

Let us prove that the three conditions are satisfied. Let ǫ > 0. Using Bienayme-
Chebyshev inequality,

n
∑

i=1

P

(

|W
(l)
ni | ≥ ε

)

≤ ǫ−2
n
∑

i=1

E

[

(

W
(l)
ni

)2

1
{

|W
(l)
ni | ≥ ǫ

}

]

.

Hence, condition 1 is clearly satisfied by using Lemma 3.

Let us move to condition 2. We use the same trick as above. For any τ > 0

n
∑

i=1

∫

|y|<τ

ydF
W

(l)
ni

(y) =

n
∑

i=1

[

∫

ydF
W

(l)
ni

(y)−

∫

|y|≥τ

ydF
W

(l)
ni

(y)

]

.

The first summand is equal to 0 as the variables W
(l)
ni are centered.

n
∑

i=1

∣

∣

∣

∣

∣

∫

|y|≥τ

ydF
W

(l)
ni

(y)

∣

∣

∣

∣

∣

≤
n
∑

i=1

∫

|y|≥τ

|y|dF
W

(l)
ni

(y)

≤ τ−1
n
∑

i=1

E

[

(

W
(l)
ni

)2

1
{

|W
(l)
ni | ≥ τ

}

]

.

Condition 2 is clearly satisfied by using Lemma 3.

We end the proof with condition 3. There are two parts (because of two sum-
mands) in this condition. For the first part we proceed exactly as in condition
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2. Indeed we have

n
∑

i=1

∫

|y|<τ

y2dF
W

(l)
ni

(y) =

n
∑

i=1

∫

y2dF
W

(l)
ni

(y)−
n
∑

i=1

∫

|y|≥τ

y2dF
W

(l)
ni

(y).

The first summand is exactly equal to 1 and the second one tends to 0 as n
goes to infinity, according to Lemma 3. Therefore it remains to prove that the

second part tends to 0 when n goes to infinity. Because the variables W
(l)
ni are

centered and according to Cauchy-Schwarz inequality:

n
∑

i=1

(

∫

|y|<τ

ydF
W

(l)
ni

(y)

)2

=

n
∑

i=1

(

∫

|y|≥τ

ydF
W

(l)
ni

(y)

)2

≤
n
∑

i=1

∫

|y|≥τ

y2dF
W

(l)
ni

(y)

=
n
∑

i=1

E

[

(

W
(l)
ni

)2

1
{

|W
(l)
ni | ≥ τ

}

]

.

Still using Lemma 3, we conclude that the second part we are interested in tends
to 0 when n goes to infinity, as expected.
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