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. Precisely we prove that, for any kernel and any slope at the origin, there do exist travelling wave solutions (actually those which are "rapid") of the nonlocal Fisher equation that connect the two homogeneous steady states 0 (dynamically unstable) and 1. In particular this allows situations where 1 is unstable in the sense of Turing. Our proof does not involve any maximum principle argument and applies to kernels with fat tails.

Introduction

In this work, we consider the nonlocal Fisher-KPP equation

∂ t u = ∂ xx u + µu(1 -φ * u) x ∈ R , t > 0 , (1) 
where φ * u(x) := R u(xy)φ(y) dy, φ is a given smooth kernel such that

φ ≥ 0 , φ(0) > 0 , R φ = 1 , R z 2 φ(z) dz < ∞ , (2) 
and µ > 0 is identified as the "slope at the origin". We are interested in travelling waves solutions supported by the integro-differential equation [START_REF] Apreutesei | Spatial structures and generalized travelling waves for an integro-differential equation[END_REF]. We are therefore looking after a speed c ∈ R and a smooth and bounded u(x) such that

-cu ′ = u ′′ + µu(1 -φ * u) x ∈ R , (3) 
supplemented with the expected boundary conditions

u(-∞) = 1 , u(+∞) = 0 , (4) 
or, when necessary, the weaker boundary conditions lim inf

x→-∞ u(x) > 0 , u(+∞) = 0 . (5) 
Local Fisher-KPP equation. If the kernel φ is replaced by the Dirac δ-function, then (1) reduces to

∂ t u = ∂ xx u + µu(1 -u) , (6) 
namely the classical Fisher-KPP equation [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], for which u ≡ 0 is unstable and u ≡ 1 is stable. It is commonly used in the literature to model phenomena arising in population genetics, or in biological invasions. It is well known that the classical Fisher-KPP equation admits monotonic travelling wave solutions with the expected boundary conditions (4), for some semi-infinite interval [c * := 2 √ µ, ∞) of admissible wave speeds. Moreover, these waves describe the long time behavior of solutions of ( 6) with compactly supported initial data or initial data with exponential decay. Nonlocal Fisher-KPP equation. Let us turn back to the integro-differential equation [START_REF] Apreutesei | Spatial structures and generalized travelling waves for an integro-differential equation[END_REF]. In population dynamics models, one can see the nonlinear term as the intra-specific competition for resources. Its nonlocal form indicates that individuals are competing with all other individuals, whatever their positions. For more details on nonlocal models, we refer to [START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF] and the references therein.

Again the uniform steady states of (1) are u ≡ 0 and u ≡ 1. Nevertheless, because of the nonlocal effect, the steady state 1 can be Turing unstable. In particular, this happens when the Fourier transform φ changes sign and µ is large [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], [START_REF] Apreutesei | Spatial structures and generalized travelling waves for an integro-differential equation[END_REF]. The situation is therefore in contrast with [START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF]. Hence, for travelling waves to be constructed, the authors in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] have to ask not for the the expected behavior u(-∞) = 1, but for the weaker condition lim inf -∞ u > 0. More precisely, they prove the following.

Lemma 1 (Travelling waves constructed in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]). For all c ≥ c * := 2 √ µ, there exists a travelling wave (c, u) ∈ R × C 2 b (R) solution of (3), with u > 0 and with the weak boundary conditions [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF].

Moreover, there is µ 0 > 0 such that, for all kernel φ, all 0 < µ < µ 0 , these waves actually satisfy u(-∞) = 1.

Also, if the Fourier transform φ is positive everywhere, then, for all µ > 0, these waves actually satisfy u(-∞) = 1.

When φ takes negative values and when µ > 0 is large, such results do not precise if the waves can approach the Turing unstable state 1 as x → -∞. By using numerical approximation, the authors in [START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF] observe such waves for the compactly supported kernel

1 2 1 [-1,1]
. It should be noted that for kernels with exponential decay one may use maximum principle arguments and then derive some monotonicity properties. Hence, it is proved in [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF] that waves which are rapid enough are monotone and then approach 1 as x → -∞. Here, we allow kernels with fat tails which are quite relevant in applications. Precisely, we only assume that the second moment of φ is finite. The result of this note is to prove that, even for such kernels, rapid waves always connect 1 in -∞. It reads as follows.

Theorem 2 (Rapid waves connect two unstable states). Define

c = c(φ, µ) := µ R z 2 φ(z) dz 1/2 R φ(z)(1 -µ z 2 2 ) + dz -1
.

Then the waves constructed in Lemma 1 with speed c > c actually satisfy u(-∞) = 1.

Our proof does not use any maximum principle argument neither any monotonicity property of the wave. Therefore, Theorem 2 allows the possibility of non monotonic waves. It leans on L 2 estimates proved in Section 2. In Section 3, we complete the proof of Theorem 2 and conclude with remarks on the bistable case.

Investigating the behavior in ±∞

This section contains the main contribution of the present note. By rather elementary L 2 estimates, we find a sufficient condition for a solution of (3) to converge to 0 or 1 in -∞ and +∞. In the sequel, for i = 1, 2, we define the i-th moment of the kernel φ by

m i := R |z| i φ(z) dz . ( 7 
) Lemma 3 (Sufficient condition for u ′ ∈ L 2 ). Let c ∈ R and u ∈ C 2 b (R) be a solution of (3). Assume µ √ m 2 u L ∞ < |c|. Then u ′ ∈ L 2 (R) and lim ±∞ u ′ = 0.
Proof. Let us define M := u L ∞ and M ′ := u ′ L ∞ . Denote by W a potential associated with the underlying (local) monostable nonlinearity i.e. W ′ (x) = x(1x).

We rewrite the equation as

cu ′ = -u ′′ -µu(1 -u) -µu(u -φ * u) ,
multiply it by u ′ , and then integrate from -A < 0 to B > 0 to get

c B -A u ′ 2 = - 1 2 u ′ 2 -µW (u) B -A -µ B -A u ′ u(u -φ * u) . (8) 
We denote by I A,B the last integral appearing above and use the Cauchy-Schwarz inequality to see

I A,B 2 ≤ B -A (u ′ u) 2 B -A (u -φ * u) 2 ≤ M 2 B -A u ′ 2 B -A (u -φ * u) 2 . (9) 
Now, for a given x, we write

(u -φ * u)(x) = R φ(x -y)(u(x) -u(y)) dy = R 1 0 φ(x -y)(x -y)u ′ (x + t(y -x)) dtdy ,
so that another application of the Cauchy-Schwarz inequality yields

(u -φ * u) 2 (x) ≤ R 1 0 φ(x -y)(x -y) 2 dtdy R 1 0 φ(x -y)u ′ 2 (x + t(y -x)) dtdy ≤ m 2 1 0 R φ(-z)u ′ 2 (x + tz) dzdt .
Integrating this we discover

B -A (u -φ * u) 2 ≤ m 2 1 0 R φ(-z) B+tz -A+tz
u ′ 2 (y) dydzdt .

Conclusion

Proof of Theorem 2

Let us consider a travelling wave (c, u) as in Lemma 1. In view of lim inf -∞ u > 0 and Lemma 4, for u(-∞) = 1 to hold it is enough to have (11). Therefore we need to investigate further the bound u L ∞ . To construct (c, u), the authors in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] first consider the problem in a finite box (-a, a). They prove a priori bounds for solutions in the box, use a Leray-Schauder degree argument to construct a solution (c a , u a ) in the box and then pass to the limit a → ∞ to construct (c, u) a solution on the line R. One of the crucial a priori estimate is the existence of a constant

K 0 = K 0 (φ, µ) := R φ(z)(1 -µ z 2 2 ) + dz -1
such that u L ∞ ≤ K 0 (see [2, Lemma 3.1 and Lemma 3.10]). Hence, any wave with speed c > c = µ √ m 2 K 0 will satisfy (11). This completes the proof of Theorem 2.

Comments on the bistable case

Let us conclude with a few comments concerning the bistable case. The local equation is given by ∂ t u = ∂ xx u + u(uα)(1u), where 0 < α < 1. It is well known that there is a unique (up to translation) monotonic travelling wave with the expected boundary conditions [START_REF] Fisher | The wave of advance of advantageous genes[END_REF].

A difficult issue is now to search for (nontrivial) travelling waves solutions supported by the integro-differential equation

∂ t u = ∂ xx u + u(u -α)(1 -φ * u) x ∈ R , t > 0 , (12) 
that is (c, u) such that

-cu ′ = u ′′ + u(u -α)(1 -φ * u) x ∈ R , (13) 
supplemented with ad hoc boundary conditions. As far as we know, no result exists for such waves. For instance, among other things, nonlinearities such as u(φ * u-α)(1-u) are treated in [START_REF] Wang | Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay[END_REF], but equation (12) does not fall into [9, equation (1.6)]. Indeed g(u, v) = u(uα)(1v) does not satisfy [9, hypotheses (H1)-(H2)] (which would ensure the stability of u ≡ 0 and ≡ 1). Moreover, the standard construction scheme used in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] for the nonlocal Fisher-KPP equation cannot be applied straightforwardly to the bistable case. More precisely, proceeding as in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], one can construct an approximated solution (c a , u a ) defined on a bounded box (-a, a) and then try to pass to the limit as a → ∞. However, the change of sign of the nonlinearity around α generates some difficulties in the establishment of sharp a priori estimates on (c a , u a ) and makes very delicate the comprehension of the behavior of a solution u in ±∞. In particular, the Harnack type arguments crucially used in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] fail in this situation. Nevertheless, even if the construction of travelling waves for the bistable case is still to be addressed, the L 2 estimates of Section 2 turn out to be of independent interest: it is straightforward to derive the following analogous of Lemma 4 for the bistable equation (13).

Lemma 5 (Sufficient condition for u(±∞) ∈ {0, α, 1}, bistable case). Let c ∈ R and u ∈ C 2 b (R) be a solution of (13). Assume

√ m 2 u 2 L ∞ < |c| . ( 14 
)
Then lim +∞ u and lim -∞ u exist and belong to {0, α, 1}.
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Since |u ′ | ≤ M ′ we get, by cutting into three pieces,

, ( 9) and (10) we see that

Then lim +∞ u and lim -∞ u exist and belong to {0, 1}.

Proof. Since the proof is similar on both sides we only work in +∞. Denote by A the set of accumulation points of u in +∞. Since u is bounded, A is not empty. Let θ ∈ A.

There is

Since the L ∞ norm of the right hand side member is uniformly bounded with respect to n, the interior elliptic estimates imply that, for all R > 0, all 1 < p < ∞, the sequence

Combining this with the fact that v solves

we collect v ≡ 0 or v ≡ 1. From v(0) = lim n u(x ϕ(n) ) = θ we deduce that θ ∈ {0, 1}. Since u is continuous, A is connected and therefore A = {0} or A = {1}. Therefore u(+∞) exists and is equal to 0 or 1.