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Abstract

We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP) theory and investigate
the properties of the ground state of the theory for rotational speeds close to the critical speed for
vortex nucleation. While one could expect that the vortex distribution should be homogeneous within
the condensate we prove by means of an asymptotic analysis in the strongly interacting (Thomas-
Fermi) regime that it is not. More precisely we rigorously derive a formula due to Sheehy and
Radzihovsky [Phys. Rev. A 70, 063620(R) (2004)] for the vortex distribution, a consequence of which
is that the vortex distribution is strongly inhomogeneous close to the critical speed and gradually
homogenizes when the rotation speed is increased.

From the mathematical point of view, a novelty of our approach is that we do not use any
compactness argument in the proof, but instead provide explicit estimates on the difference between
the vorticity measure of the GP ground state and the minimizer of a certain renormalized energy
functional.

MSC: 35Q55,47J30,76M23. PACS: 03.75.Hh, 47.32.-y, 47.37.+q.

Keywords: Bose-Einstein condensates, quantized vortices, Gross-Pitaevskii energy, renormalized
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1 Introduction

Vortex nucleation in equilibrium states of rotating fluids is a hallmark of superfluidity and its experimental
observation in rotating Bose gases was a key step in the understanding of the properties of Bose-Einstein
Condensates (BECs). Among other spectacular observations, that of triangular lattices1 containing up to
hundreds of vortices (see, e.g., [BSSD, ARVK, MCWD, RAVXK, CHES]) gave a new strong motivation
for theoretical studies.

A rather natural question, that has not been addressed immediately after the observation of vortex
lattices, can be formulated as follows. The BECs that are produced in laboratories are trapped gases,
meaning that the confinement against centrifugal forces is provided by a magneto-optical potential. As
a consequence the matter density profile of the condensate is not homogeneous and depends strongly on
the type of trap that is being used. In this respect, it is rather striking that the vortex lattices observed
in experiments seem to be perfectly homogeneous with a uniform mean distribution of vortices in the
samples. Indeed, the vortex density could depend on the underlying matter density in various ways, for
example regions of low matter density such as the boundary of the fluid could attract and pin the vortices.
How come that such effects do not seem to be observed and that the vortex lattices are homogeneous, at
least to a very good approximation?

To our knowledge, this question has been formulated and answered first by Sheehy and Radzihovsky
in [SR1, SR2]. More precisely, the relation between the matter density and the vortex density has been
elucidated based on formal arguments (see also [BPGW]), leading to a formula whose efficiency has
been favorably compared to experimental data [CHES] and to numerical simulations [Dan]. Among the
findings of [SR1, SR2] is the fact that the vortex density does depend on the matter density, but in a
subtle way that has leading order effect only close to the critical speed for vortex nucleation. It is thus
not surprising that the vortex lattices seem completely homogeneous in experimental situations since,
in order to observe many vortices, the rotational velocity is taken well above the first critical speed.
However, some slight inhomogeneity of the vortex lattice survives for these large angular velocities, as
predicted by [SR1, SR2], and it can in fact be observed as a small correction to almost uniform vortex
densities [CHES, Dan].

Although it is experimentally difficult to observe the transition regime where the vortex lattice is
expected to be inhomogeneous, the theoretical question remains of interest. The main model used for
the description of rotating BECs is the so-called Gross-Pitaevskii theory, which can be rigorously derived
from the underlying many-body problem (see [LSSY, LS] and references therein) in a suitable limit. It
is of importance to be able to rigorously derive a formula for the vortex density from GP theory.

In this context, the critical speed for vortex nucleation has been rigorously computed in [IM1, AJR]
and the distribution of the first few vortices to appear in the condensate studied in [IM2]. On the other
hand, the regime well above the first critical speed has been treated in [CY, CPRY1, CPRY3] where it
has been shown that the vortex density is homogeneous to leading order, in the sense that many vortices
are packed in the condensate and their average distribution is uniform. Note that the latter contributions

1‘Abrikosov lattices’ of vortices analogous to those occurring in type-II superconductors.
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concern the average distribution of vortices in a regime where they are densely packed in the fluid, it does
not give access to the precise pattern formed by the vortices. A rigorous proof starting from GP theory
that the vortices arrange on a triangular lattice seems to be still out of reach, despite recent advances in
the related Ginzburg-Landau (GL) theory [SS4].

Summing up, there is still a gap in the rigorous theory of BECs between [IM1, IM2, AJR] and
[CY, CPRY1, CPRY3]. This gap corresponds to the regime where the rotation speed is larger than
the first critical speed but of the same order of magnitude and this is precisely the regime where the
inhomogeneity of the (average) vortex distribution should come into play. The present paper aims at
filling this gap by rigorously deriving from GP theory the formula for the vortex distribution of [SR1, SR2].

Our mathematical setting is the following: we consider a two-dimensional rotating BEC confined by a
trapping potential V (r) = rs (with2 r = |r|), in the framework of the GP theory. After a suitable scaling
of length units (see [CPRY3, Section 1.1]), the GP energy functional can be written

EGP[Ψ] :=

∫

R2

dr

{

1

2
|∇Ψ|2 − ΩΨ∗LΨ+

V (r)

ε2
|Ψ|2 + |Ψ|4

ε2

}

, (1.1)

where Ω is the angular velocity,
V (r) := rs, s ≥ 2, (1.2)

L stands for the third component of the angular momentum, i.e., in polar coordinates r = (r, ϑ), L = −i∂ϑ
or equivalently L = r · ∇⊥, ∇⊥ := (−∂y, ∂x), and the coupling parameter ε > 0 is going to be assumed
small (ε ≪ 1), i.e., we study the so called Thomas-Fermi (TF) limit of strong interactions. The wave
function Ψ : R2 7→ C belongs to the domain

D
GP :=

{

Ψ ∈ H1(R2) ∩ L4(R2) : rs|Ψ|2 ∈ L1(R2), ‖Ψ‖L2(R2) = 1
}

(1.3)

and the ground state energy of the system is obtained by the minimization of EGP:

EGP := inf
Ψ∈DGP

EGP[Ψ]. (1.4)

We denote by ΨGP any associated minimizer (there is no uniqueness in general).
We will mostly be interested in spotting the vortices of ΨGP, that is its zeros that carry a non-zero

phase circulation (i.e., non-trivial topological degree or winding number). In particular, connecting to
the preceding discussion, we would like to derive a relation between the distribution of vortices and the
matter density of the system. The latter, given by |ΨGP|2, can be approximated by minimizing the
simplified TF functional

ETF[ρ] := ε−2

∫

R2

dr [rs + ρ] ρ, (1.5)

obtained by dropping the kinetic terms in (1.1). Here ρ ≥ 0 plays the role of the matter density,
normalized such that

∫

R2 ρ = 1. The minimizer of (1.5) is the explicit radial function

ρTF(r) =
1

2

[

λTF − rs
]

+
, (1.6)

where [ · ]+ stands for the positive part and λTF is a normalization parameter that ensures
∥

∥ρTF
∥

∥

1
= 1.

Note that ρTF has compact support in the ball of radius RTF and a rather simple computation yields

ETF =
πs

4(s+ 1)ε2
(

λTF
)2(s+1)/s

, RTF =
(

λTF
)1/s

, λTF =

(

2(s+ 2)

πs

)s/(s+2)

, (1.7)

2Throughout the paper we use the following convention: a vector will be denoted in bold fonts (e.g., r), whereas normal
fonts will always denote scalars (e.g., r = |r|), which might also be the modulus of a vector.
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with ETF standing for the TF ground state energy. Essentially, DTF is the region occupied by the
condensate: we are able to prove that the mass contained in R2 \ DTF is extremely small, the reason
being that ΨGP decays exponentially (both as a function of r and ε) in this region.

To spot the vortices of ΨGP in the bulk DTF of the condensate, it is standard to consider the so-called
vorticity measure µ associated with ΨGP. As we are dealing with a regime where the condensate contains
a large (actually ∝ | log ε|) number of vortices, µ should be interpreted as giving the mean distribution
of vortices. With the definition we will adopt below (see (2.13)), one can actually prove that, if ΨGP

contains J vortices of degrees d1, . . . , dJ and locations a1, . . . , aJ

µ ≈ 2π| log ε|−1
J
∑

j=1

djδaj (1.8)

in the (C1
c )

∗ topology, where δaj stands for the Dirac mass at aj . Note the scaling factor | log ε|−1 in
(1.8): since the condensate contains O(| log ε|) vortices, µ will be a quantity of order 1.

The mechanism for vortex nucleation in rotating superfluids is now well understood, see, e.g., [AAB,
IM1, IM2, CRY]. A vortex becomes favorable in the system if it can lower the energy by interacting with
the rotation field. More precisely, the interaction with the rotation field should overcome the energetic
cost for vortex nucleation, given by

π| log ε||dj |ρTF(aj) (1.9)

with dj the degree of the vortex and aj its location. To evaluate the energy gain brought by the vortex
compensating the rotation, it is convenient to introduce the potential function

FTF(r) = − Ω

| log ε|

∫ RTF

r

dt t ρTF(t). (1.10)

The energetic gain of a vortex is then
2π| log ε|djF (aj). (1.11)

By comparing the cost and gain of vortex nucleation it is obvious that in order to be energetically
favorable, vortices should have positive degrees dj , because F

TF is clearly negative. These considerations
lead to the definition of a radial function giving the energetic cost of a vortex of degree 1 located at aj
with |aj | = r:

HTF(r) =
1

2
ρTF(r) + FTF(r). (1.12)

Looking for its minimum, one finds that it lies at r = 0, indicating that this is where a vortex is most
favorable. Equating gain and cost of a vortex at the origin, one can see that the critical speed for vortex
nucleation is given by

Ωc1 = Ω1| log ε|, Ω1 :=
π

2

(

2(s+ 2)

πs

)s/(s+2)

, (1.13)

namely HTF(0) > 0 for Ω < Ωc1 and HTF(0) < 0 for Ω > Ωc1 . Note that the above value is that one
finds by applying the rigorous analysis of [IM1, AJR].

The question we address in this paper is what happens when Ω is chosen of the form

Ω = Ω0| log ε|, Ω0 > Ω1, Ω0 = O(1), (1.14)

i.e., when Ω is strictly larger than the first critical speed but of the same order of magnitude when ε → 0.
We prove that in this regime the vorticity measure µ is to leading order3

µ ≈
[

∇
(

1

ρTF
∇HTF

)]

+

1{HTF≤0} (1.15)

3We denote by 1S the characteristic function of the set S.
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in a sense to be made precise in the next section. Computing the term ∇ 1
ρTF∇HTF this can be rewritten

as

µ(r) ≈
[

1

2
∂2
r log

(

ρTF(r)
)

+ 2Ω0

]

+

1{HTF≤0}, (1.16)

which is the formula found by Sheehy and Radzihovsky, except that our analysis shows that vortices
should lie only where the cost function is negative, which was not clearly mentioned in [SR2]. Note that
vortices are also confined to the region where

1

2
∂2
r log

(

ρTF(r)
)

+ 2Ω0 ≥ 0,

which is far from obvious if only the cost and gain considerations sketched above are taken into account.
Indeed, the particular form (1.16) is to a large extent due to the interaction between vortices.

Several interesting properties of the (average) vortex distribution as a function of Ω can be read off
from (1.16):

• When Ω0 < Ω1 in (1.13), a straightforward computation reveals that the cost function HTF is
positive everywhere. Vortices are thus not favorable and the vortex distribution vanishes identically.
We thus recover the expression of [IM1, AJR] for the first critical speed.

• In the regime (1.14), one can compute (see Section 3) that there is a non-empty region where
HTF < 0 and ∇ 1

ρTF∇HTF > 0, whose size increases with increasing Ω0 until it finally fills the

whole sample in the limit Ω0 → ∞. This region is, according to (1.15), filled with vortices, a
behavior that is reminiscent of the ‘obstacle problem regime’ in GL theory [SS1].

• The first term in the right-hand side of (1.16) can not be constant, except when ρTF is constant
itself, which can only happen in the somewhat unrealistic case of the flat trap considered, e.g., in
[CPRY1]. This term is thus responsible for an inhomogeneity of the vortex distribution, whereas the
second term yields a constant contribution of 2Ω0 (2Ω in the physical variables) units of vorticity
per unit area.

• The first term in (1.16), responsible for the inhomogeneity, is independent of Ω0. Its importance
relative to the second one thus diminishes with increasing Ω0. The inhomogeneity then becomes
a second order correction in the limit Ω0 → ∞, which corresponds to Ω ≫ | log ε|. As discussed
above, this is observed in experiments and numerical simulations. This also bridges with the
situation considered in [CPRY3], where we proved that, if Ω ≫ | log ε|, the vortex density is to
leading order constant and proportional to 2Ω.

The next section is devoted to a more precise statement and discussion of our results. Proofs are
given in Sections 3, 4 and 5.

Acknowledgements. It is always a pleasure to acknowledge the hospitality of the Erwin Schrödinger
Institute for Mathematical Physics where part of this research has been carried out. M.C. acknowledges
the support of the European Research Council under the European Community Seventh Framework
Program (FP7/2007-2013 Grant Agreement CoMBos No. 239694). N.R wishes to thank Alessandro
Giuliani and Weizhu Bao for hospitality, respectively at the Università di Roma Tre and at the Institute
for Mathematical Sciences in Singapore. Stimulating discussions with Jakob Yngvason were also much
appreciated.
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2 Statement of the Main Results

We now turn to a more precise description of our results. Recall that we consider the asymptotic behavior
of the ground state energy and minimizer of the functional (1.1) when ε → 0 with the scaling

Ω = Ω0| log ε|, Ω0 > Ω1, (2.1)

where Ω0 is assumed to be constant for the sake of simplicity and Ω1 is defined in (1.13). The regime
Ω0 ≫ 1 corresponds to what we have considered in [CPRY3], while in [IM1, IM2] it was studied the case
Ω = Ω1| log ε|+O(log | log ε|).

To take into account the inhomogeneous density profile it is convenient to introduce the following
energy functional

ÊGP[f ] :=

∫

R2

dr

{

1

2
|∇f |2 + ε−2

[

rs + f2
]

f2

}

(2.2)

with ground state energy

ÊGP := min
f∈D̂GP

ÊGP[f ], D̂
GP :=

{

f ∈ D
GP : f = f∗

}

. (2.3)

Standard arguments show that there is a unique strictly positive radial minimizer which will be denoted
by g. Note that ÊGP coincides with EGP restricted to real functions. In this sense, its minimization
corresponds to the search for a vortex-free profile. The main difference between ÊGP and ETF is that the
former includes the contribution of the radial kinetic energy due to the bending of the density profile.
We will prove in the Appendix that g2 ≈ ρTF in a suitable sense.

The expression (1.15) enters our problem through the minimization of a ‘renormalized energy’ (we
employ the consecrated terminology of GL theory [BBH, SS2]) expressing the energy of a given vorticity
measure ν in terms of the TF density ρTF in units of | log ε|2

ITF[ν] =

∫

DTF

{

1

2ρTF
|∇hν |2 +

1

2
ρTF|ν|+ FTFν

}

, (2.4)

where4

DTF := supp(ρTF) = B(RTF), (2.5)

and
{

−∇
(

1
ρTF∇hν

)

= ν in DTF,

hν = 0 on ∂DTF.
(2.6)

Recall that FTF is defined in (1.10). The minimization of the renormalized energy in its natural energy
space

MρTF(DTF) =

{

ν ∈
(

C0
c (DTF)

)∗
,

∫

DTF

{

1

ρTF
|∇hν |2 + ρTF|ν|

}

< +∞
}

(2.7)

is discussed in details in Section 3. We prove (see Theorem 3.1) that ITF has a unique minimizer µ⋆

among the measures in MρTF(DTF). It is explicitly given by

µ⋆ =

[

∇
(

1

ρTF
∇HTF

)]

+

1{HTF≤0}, (2.8)

4In all the paper, B(̺) denotes the disc centered at the origin with radius ̺, while B(r, ̺) is the same disc but centered
at r ∈ R2. Also we will sometimes omit the measure in the integral (as, e.g., in the first term of (2.4)), when it is the usual
two-dimensional Lebesgue measure dr.
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i.e., it is exactly the measure appearing in the right-hand side of (1.15). We also set

ITF := ITF[µ⋆] =
1

2

∫

supp(µ⋆)

HTFµ⋆ (2.9)

where the second equality is proved in Section 3 below. Note that by (2.8) one easily has

ITF ≤ 0, (2.10)

since µ⋆ ≥ 0 and HTF ≤ 0 on the support of µ⋆. Moreover both the renormalized energy as well as its
minimizer µ⋆ are fixed when ε → 0, thanks to the extraction of a scaling factor | log ε|2.

We can now formulate our first result about the GP ground state energy asymptotics:

Theorem 2.1 (Ground state energy asymptotics).
If Ω = Ω0| log ε|, with Ω0 > Ω1, then

EGP = ÊGP + ITF| log ε|2
(

1 +O
(

log | log ε|
| log ε|1/2

))

(2.11)

in the limit ε → 0.

Remark 2.1 (Composition of the ground state energy)
The leading order contribution to EGP is given by ÊGP, which in turn contains ETF of order ε−2 (see
(1.7)) and a remainder due to the radial kinetic energy of the vortex-free profile. Such a correction can
be shown to be of order | log ε| [CPRY3, Proposition 2.1], i.e., much smaller than the contribution of
vortices ITF| log ε|2, which on the other hand is a rather small correction to the main term ETF.

Remark 2.2 (The renormalized energy)
Note that the functional (2.4) is defined for the ‘reasonable’ vorticity measures in MρTF(DTF), in par-
ticular those arising from wave functions in the manner of (2.13) below. It is not well-defined for sums
of Dirac masses, which is a significant difficulty in the analysis, in particular in view of (1.8). The first
term in (2.4) corresponds to the interaction between vortices, it is computed in a way reminiscent of
electrostatics: hν is similar to a potential generated by individual electric charges distributed according
to the charge density ν and the first term in (2.4) is the corresponding electrostatic energy. The other two
terms can be understood as the sum of the cost and gain due to each individual vortex, in view of (1.8),
(1.9) and (1.11). Note that, if it was a priori known that the minimization could be restricted to positive
measures and the density ρTF was constant, (2.4) would reduce exactly to the electrostatic energy of a
positive charge distribution in the potential 1

2ρ
TF + FTF. In this case (2.6) would become the Poisson

equation for the charge distribution ν: hν could then be interpreted as an electrostatic potential and its
gradient as the corresponding field. In this analogy, the non-constant weight 1/ρTF can be thought of as
modeling a sample with non-homogeneous conductivity.

As we will prove below, the minimization of ÊGP gives the matter density of the system to a very
good approximation, i.e., |ΨGP|2 ≈ g2. It is thus natural to write ΨGP in the form

ΨGP = gu, (2.12)

where u is essentially a phase factor accounting for the vortices of ΨGP, times a profile vanishing close
to the vortex cores and almost equal to 1 elsewhere. A convenient way of spotting the vortices contained
in u is to use the so-called vorticity measure

µ := | log ε|−1curl

[

i

2
(u∇u∗ − u∗∇u)

]

(2.13)
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which is (up to the | log ε|−1 factor) nothing but the curl of the superfluid current

j :=
i

2
(u∇u∗ − u∗∇u) (2.14)

and thus (in analogy with fluid mechanics) a good candidate to count the vortices of u.
As usual [AAB, IM2, R], energy methods do not allow to spot vortices lying too close to the boundary

of the domain. Indeed, ρTF vanishes on ∂DTF and thus, according to (1.9), a vortex lying close to the
boundary carries very little energy. We will thus limit ourselves to analyze the behavior of µ in the
smaller ball B(Rbulk) with Rbulk satisfying

Rbulk < RTF,
∣

∣Rbulk −RTF
∣

∣ = O(Ω−1). (2.15)

In fact in (5.11) below we will make the precise choice Rbulk = RTF − CΩ−1 for some given explicit
constant C. However our proof works just the same provided the fixed constant C is chosen small
enough.

Note that by restricting ourselves to B(Rbulk) we are only neglecting a small part of DTF and the
domain B(Rbulk) contains the bulk of the mass of the condensate, in the sense that5

∫

B(Rbulk)

dr |ΨGP|2 = 1− o(1) (2.16)

in the limit ε → 0.
We prove that µ is close to µ⋆ in B(Rbulk), with the meaning of ‘close to’ specified by the following

norm, which is defined for measures ν:

‖ν‖ρTF := sup
φ∈C1

c (B(Rbulk))

∣

∣

∣

∣

∫

B(Rbulk)

νφ

∣

∣

∣

∣

(

∫

B(Rbulk)

dr
1

ρTF
|∇φ|2

)1/2

+ ‖∇φ‖L∞(B(Rbulk))

. (2.17)

Theorem 2.2 (Asymptotics for the vorticity measure).
Let µ and µ⋆ be defined respectively in (2.13) and (2.8). Then we have

‖µ− µ⋆‖ρTF ≤ O
(

log | log ε|1/2
| log ε|1/4

)

(2.18)

in the limit ε → 0.

Remark 2.3 (The norm ‖ · ‖ρTF)
The expression (2.17) is a rather natural definition for the norm of a measure. The norm of the test
function φ appearing in the denominator contains two parts. The first is naturally associated with the
energy functional (2.9), so an optimal statement must necessarily include this term. The second term
‖∇φ‖L∞(B(Rbulk)) appears when regularizing µ in the course of the proof. Without this term, the norm
‖·‖ρTF would not be well-defined for a Dirac mass, and in view of (1.8) this would be rather problematic
in our setting. As we will see in the proof, a suitable regularization of µ can be estimated in the norm
where the term ‖∇φ‖L∞(B(Rbulk)) is removed in the denominator of (2.17). We still believe that it is
necessary to include that term to state a result on the asymptotics of µ.

Note finally that if ρTF was uniformly bounded below by a positive constant independent of ε in
B(Rbulk) (which is not the case), the norm (2.17) would be equivalent to the

(

C1
c (B(Rbulk))

)∗
norm. In

5This is an easy consequence of the fact that |ΨGP| is uniformly bounded (see Appendix).
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particular, this means that for any fixed R < RTF and ε small enough, (2.18) yields an estimate on the
(

C1
c (B(R))

)∗
norm of µ− µ⋆. Indeed, for ε small enough, B(R) ⊂ B(Rbulk) and ρTF is bounded below in

B(R). We can thus deduce from Theorem 2.2 that for any fixed R < RTF

µ → µ⋆

strongly in
(

C1
c (B(R))

)∗
as ε → 0. The reason why we consider the approximation of µ by µ⋆ in the

larger ball B(Rbulk) has already been explained: such a ball contains the bulk of the mass in the ε → 0
limit, whereas B(R) does not.

Remark 2.4 (Asymptotics for an explicit vorticity measure)
It is also possible to state the result in terms of an ‘explicit’ vorticity measure of the form of the right-
hand side of (1.8), in the spirit of, e.g., [R, Theorem 1.2] or [CPRY1, Theorem 1.1]. Indeed, the proof of
Theorem 2.2 requires to localize the possible vortices in small balls of centers aj and radii ̺j , j = 1 . . . J ,
and any statement on the vorticity measure µ translates into one on the measure

2π| log ε|−1
J
∑

j=1

djδaj ,

thanks to the so-called Jacobian estimate (see Proposition 5.3 below). Note however that the norm in
which the estimates hold in this case is necessarily weaker since Dirac masses are less regular than µ.

We will comment further on these results below. Section 2.1 presents a sketch of our proofs and
Section 2.2 contains a comparison to earlier results and discusses a possible extension of our method to
a different setting, namely that of the third critical speed in a flat trap, studied before in [CRY, R].

2.1 Sketch of Proofs

For the convenience of the reader we now sketch the main ideas of our proofs. Several standard techniques
will be employed and some of the ideas we use originate in [ABM] and [R] (one can in particular compare
the following sketch to [R, Section 1.2]). We focus on the way the energy lower bound is obtained because
we believe this is more helpful in explaining the origin of the renormalized energy (2.4). We also slightly
deviate from the actual proof procedure in several places when this serves the purpose of our heuristic
considerations.

As is standard, the proof starts with an energy decoupling:

EGP = ÊGP +

∫

R2

dr

{

1

2
g2|∇u|2 − g2Ωr⊥ · (iu,∇u) +

g4

ε2
(1− |u|2)2

}

, (2.19)

where (iu,∇u) = j is the superfluid current defined in (2.14). The only input in (2.19) is the variational
equation for g. Then, as already mentioned, the bulk of the mass is contained in DTF, so that we make
a very small error by restricting the integration to this domain. Also, since g2 ≈ ρTF, we can, at least at
the level of heuristics, consider the reduced functional

E [u] =
∫

DTF

dr

{

1

2
ρTF|∇u|2 − ρTFΩr⊥ · (iu,∇u) +

ρTF2

ε2
(1 − |u|2)2

}

(2.20)

and we essentially have to understand why its minimization reduces to that of ITF, once a scaling factor
O(| log ε|2) has been extracted. It is fairly easy to obtain from the rough upper bound (trial state v ≡ 1)

E [u] ≤ 0,
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that the sum of the first and the last term in (2.20) are suitably bounded above. Using the vortex balls
method introduced independently in [Je, Sa], this allows to control the area of the set where |u| differs
significantly from 1 and enclose it in a finite collection of disjoint small balls Bj , j = 1, . . . , J that serve
as ‘approximate vortices’. One also proves that each ball contains a kinetic energy whose leading order
is precisely the energetic cost we have been alluding to in (1.9):

∫

Bj

dr
1

2
ρTF|∇u|2 ' π|dj |ρTF(aj) |log ε| , (2.21)

where dj is the degree of u on ∂Bj and aj the center of Bj.
To evaluate the energetic gain of vortices it is convenient to integrate by parts the second term of

(2.20) using the potential defined in (1.10):

− Ω

∫

DTF

dr ρTFr⊥ · (iu,∇u) = | log ε|
∫

DTF

dr FTFcurl(iu,∇u). (2.22)

Then according to (2.13) and (1.8) (which can be put on a rigorous basis thanks to the Jacobian estimate
method [JS2])

| log ε|
∫

DTF

dr FTFcurl(iu,∇u) ≈ 2π| log ε|
∑

j

djF
TF(aj). (2.23)

Note that the expressions for the energetic cost and gain of vortices can be motivated by a simple
computation involving an ansatz of the form

u(z) = ξ(z)
J
∏

j=1

(

z − zj
|z − zj |

)dj

where we have used complex notation z := x+ iy for a point r = (x, y) ∈ R2 and zj are the positions of
the vortices. The real-valued function ξ is a cut-off ensuring that u vanishes close to the vortices. What
actually comes out of such a computation is a factor d2j instead of |dj | in (2.21) but rigorous analysis has
so far been limited to the obtention of the smaller |dj | factor (recall that dj is an integer), except when
a priori information is available on the vortex distribution. The difference is anyway of no concern to us
because it is always favorable for the vortices to be singly-quantized, i.e., dj = 1.

There now remains to bound from below the part of the kinetic energy contained outside the vortex
balls. To this end we note that, since outside ∪jBj we have |u| ≈ 1,

∫

DTF\∪jBj

dr
1

2
ρTF|∇u|2 ≈

∫

DTF\∪jBj

dr
1

2
ρTF|j|2

with j defined in (2.14). Now comes the procedure of regularization of the vorticity measure we have been
alluding to in Remark 2.2: since the vortex balls contain vortices, i.e., phase singularities, the gradient
of the phase of u is expected not to be very well behaved inside them. We thus exclude these regions by
setting

̃ :=

{

j, in DTF \ ∪jBj

0, in ∪j Bj ,
(2.24)

and write
∫

DTF\∪jBj

dr
1

2
ρTF|∇u|2 ≈

∫

DTF

dr
1

2
ρTF |̃|2.

With ̃ is associated the vorticity measure (rescaled as µ)

µ̃ := | log ε|−1curl ̃
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and in turn we can associate with µ̃ the potential hµ̃ defined as in (2.6). We then have by definition

curl

(

̃+ | log ε| 1

ρTF
∇⊥hµ̃

)

= 0, (2.25)

which implies that ̃ and | log ε| 1
ρTF∇⊥hµ̃ differ by the gradient of an H1 function. Then we conclude (see

Lemma 5.2 for details)
∫

DTF\∪jBj

dr
1

2
ρTF|∇u|2 '

1

2
| log ε|2

∫

DTF

dr
1

ρTF
|∇hµ̃|2 (2.26)

and this term has to be interpreted as the energy due to the interaction between vortices via the potential
hµ̃ they create.

Now, as the term ‘regularization’ suggests, one can actually prove that µ̃ ≈ µ in a suitable sense akin
to that in which (1.8) can be made rigorous. Gathering (2.21), (2.22), (2.23) and (2.26) and dropping
the last term in (2.20) we may thus write (neglecting all remainder terms for simplicity)

E [u] ' | log ε|2
∫

DTF

{

1

2ρTF
|∇hµ̃|2 +

1

2
ρTF|µ̃|+ FTFµ̃

}

, (2.27)

where we have again used the informal relation (1.8). This is of course the desired lower bound, since
one can recognize in the right-hand side our renormalized energy functional.

Now come the main technical novelties of the paper. Observe first that we do not prove a priori as
is often done [AAB, ABM, IM2, R] that most vortices carry a positive degree. This fact follows directly
from the minimization of ITF. In other words, the minimizer of ITF is automatically positive and there
is no need to restrict the minimization to positive measures. Indeed, although the problem of minimizing
ITF bears some resemblance with the obstacle problem in GL theory [SS2, Chapter 7], it is in fact a bit
simpler and its explicit unique minimizer is given by (2.8). Contrary to the GL case we do not obtain
a free boundary problem: the region where vortices should lie is directly encoded in the cost function
(1.12).

Moreover, ITF has the following very nice stability property (see Section 3 for the proof): for any
measure ν

ITF[ν] ≥ ITF +

∫

DTF

1

2ρTF
|∇hν−µ⋆ |2. (2.28)

We can thus conclude from the above that

EGP ' ÊGP + ITF| log ε|2 + | log ε|2
∫

DTF

1

2ρTF
|∇hµ̃−µ⋆ |2

and the last term is a norm squared of µ̃, corresponding to ‖ .‖ 2
ρTF but with the ‖∇φ‖L∞ term dropped

in (2.17), as one case easily see by a simple duality argument.
What remains to be done is the construction of a trial state giving an energy upper bound confirming

that the above lower bound is optimal. We adapt a well-established technique (see, e.g., [AAB, ABM,
SS2, R]) based on a Green representation of the potentials defined as in (2.6) to out setting. We use a
Riemann approximation of µ⋆ by a measure located in small balls that mimic vortices and the suitable
definition of a phase factor whose curl is this approximation of µ⋆. We refer to Section 4 for details and
simply state the result, again without making the remainder terms precise

ÊGP + ITF| log ε|2 ' EGP ' ÊGP + ITF| log ε|2 + | log ε|2
∫

DTF

1

2ρTF
|∇hµ̃−µ⋆ |2. (2.29)

Now an important advantage of our approach becomes apparent, since with such an estimate there is
no need to rely on compactness arguments to prove vorticity asymptotics. We obtain from (the rigorous
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version of) (2.29) an estimate of the norm of the difference µ̃−µ⋆ and there only remains to use the fact
that only a small part of the current is removed in the definition (2.24) to estimate the difference between
µ and µ̃ (see Lemma 5.1) and thus conclude the proof of Theorem 2.2. Note again that, since we expect
that µ contains singularities approaching Dirac masses, the regularization procedure leading to µ̃ seems
unavoidable in order to properly define the renormalized energy. This justifies the claim in Remark 2.3
that µ̃− µ⋆ can be estimated in a better norm than µ− µ⋆.

To our knowledge this is the first time in the literature that explicit estimates on the rate of convergence
of a vorticity measure to the minimizer of a renormalized energy are provided. There is the exception of
[R] but the limit problem was simpler there and its properties not exploited fully as we do here. Common
to both papers however is the regularization procedure of the vorticity measure that allows to prove
explicit estimates without using any compactness argument.

Remark 2.5 (Boundary conditions in (2.6))
The reader might wonder why it is natural to use Dirichlet boundary conditions in (2.6), i.e., set hν = 0
on ∂B(RTF). A first answer is that this is essential to be able to go from (2.25) to (2.26) (see the proof
of Lemma 5.1). A more physical answer can be provided however: j and ̃ are superfluid currents, so
they must be thought of as velocity fields. In fact they correspond to phase gradients: where one can
write u = |u|eiϕ, then j = |u|2∇ϕ and one should remember that essentially |u| ≈ 1 except in the small
region covered by vortex balls. The potential hµ̃ is therefore defined modulo a constant and the Dirichlet
boundary condition should rather be thought of as the constraint that hµ̃ is constant on ∂B(RTF), i.e.,
∂τhµ̃ = 0 on ∂B(RTF), where τ is the tangent vector. Since ̃ ≈ j should be thought of as 1/ρTF∇hµ̃

rotated by π/2 (see (2.25)), this means that we are actually imposing ∂n̃ = 0 on ∂B(RTF), a rather
natural condition if we think of B(RTF) as the support of the condensate from which the fluid should not
escape: the superfluid current must be tangent to the boundary of the sample.

2.2 Discussion and Extensions

In many respects, the regime we study here for the GP theory is the analogue of the ‘obstacle problem
regime’ of GL theory studied in [SS1] and [SS2, Chapter 7] (see also [JS1]). Common to both settings
is the fact that vortices occupy a region whose size grows when increasing Ω (respectively the external
magnetic field hex in GL theory) until it fills the whole sample. The limit problem we obtain is related to
that of GL theory but has significant differences, mostly due to the inhomogeneous matter density profile
of GP theory. It is in some sense simpler because it has an explicit solution, but it leads to richer physics:
the inhomogeneity of the vortex distribution and its progressive homogenization we have discussed before
are indeed absent in GL theory.

An analogue of the stability estimate (2.28) also holds for the limit problem of GL theory, although it
does not seem to have been noticed before (see Remark 3.1 below). It can be used in the manner we do
in this paper to obtain slight improvements of the classical results of [SS2, Chapter 7], like convergence
of the vorticity measure in better norms and explicit error estimates.

Our method can also be adapted to treat variations of the physical setting: for instance it is a rather
simple adaptation to prove the results corresponding to our Theorems 2.1 and 2.2 in the case of an
annular condensate. Modulo slight modifications one can thus treat the setting of [AAB] in the regime
where the rotation is above the critical speed for vortex nucleation but of the same order of magnitude.

Heavier modifications are on the other hand needed in order to extend the results to a regime close
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to the third critical speed6 in a flat traps: The GP functional in this case reads7

EGP[Ψ] =

∫

B(1)

dr

{

|∇Ψ|2 − 2ΩΨ∗LΨ+
|Ψ|4
ε2

}

, (2.30)

where B(1) is the unit disc, the minimization is performed under a unit mass constraint (that one can
supplement with a Dirichlet boundary condition) and the regime of interest is Ω ∝ ε−2| log ε|−1 with
ε ≪ 1. We refer to [CRY, R, CPRY1] for a more thorough discussion of this model, but only mention
that if

Ω =
Ω0

ε2| log ε| , Ω0 >
2

3π
,

one reaches a giant vortex phase where the mass is confined to a thin annulus along the boundary ∂B of
the trap by centrifugal forces and no vortex is present in the annulus. If

Ω0 <
2

3π
,

the present analysis applies and yields the conclusion that vortices are densely packed in an annulus
included in the bulk of the condensate. This annulus progressively fills the bulk in the limit Ω0 → 0
(that is when Ω decreases) while the vortex density, highly inhomogeneous due to a non-constant density
profile when Ω0 is not too small, gradually homogenizes. The precise expression of the vortex density
as a function of the matter density is exactly analogue to (1.15), with the appropriate density ρTF and
cost function FTF (see [CRY]). This bridges between [CRY] and [CY, CPRY1] where we have proved
that the vortex distribution is homogeneous when | log ε| ≪ Ω ≪ ε−2| log ε|−1. The borderline case of
Ω0 = 2(3π)−1(1− o(1)) is considered in [R].

As discussed in the introduction of [CRY], the analysis of the third critical speed in a flat trap is more
involved than that of the first critical speed treated here. Our method thus needs to be supplemented
with the tools developed in [CRY, R] to adapt to this setting. What makes the application possible is
that the phase transition happening at the third critical speed can be seen as a Ωc1 type transition but
backwards (vortices disappear when Ω is increased).

Let us also emphasize that the regime corresponding to the third critical speed in a ‘soft’ trap given
by a potential such as (1.2) is quite different from that in a flat trap (see [CPRY2, CPRY3]) and shares
much less features with the Ωc1 regime. It is thus unlikely that the methods we develop here can apply
in this case.

During the completion of this paper we learned of the recent work [BJOS2] where (among other
things) the regime we are dealing with has been studied for a 3D condensate. A limit problem is
derived, formulated in terms of the current (2.14) instead of the vorticity (2.13). The situation seems
more complicated in 3D, and nothing as explicit as formula (1.15) appears to be derivable from this
limit problem. The fact that, when Ω ≫ | log ε|, the vortex distribution becomes homogeneous (in fact
constituted of many densely packed and uniformly distributed straight vortex lines parallel to the axis of
rotation) is proved however, confirming our results in the regime where the rotation speed largely exceeds
the critical one. Whether our approach, supplemented with the tools of [BJOS1], can be generalized to
three space dimensions and complete the results of [BJOS2] remains a question for future investigations.

We finally remark that vortex patterns inhomogeneities play a crucial role in a very different regime
than that under consideration here, namely in the vicinity of the maximum rotation speed attainable
in a condensate confined by a purely quadratic trap [AB, ABD]. In that case the inhomogeneity only
manifests itself close to the boundary of the condensate and is thus hardly observable, but it has the
important effect of modifying the density profile of the fluid.

6For a description of the physics of the three critical speeds of GP theory, the reader may want to refer to [CPRY1,
CPRY2].

7Note the slightly different units as in [CRY, CPRY1], i.e., mass equal to 1/2 and angular velocity 2Ω.
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2.3 Plan of the Paper

The rest of the paper presents the proofs of our main results. We start by analyzing in Section 3 the
properties of the renormalized energy. Section 4 contains the construction of our trial state and the
evaluation of its energy. The general technique is not new but, since our method allows to deduce from
energy bounds a quantitative estimate of the rate of convergence of µ to µ⋆, we make an effort to obtain
precise estimates of the remainders in the energy upper bound. Section 5 is then concerned with the
energy lower bound and the proof of Theorem 2.2. An appendix gathers technical results used in several
places of the proofs.

3 The Renormalized Energy

In this section we focus on the study of the renormalized energy of vortices. For further convenience we
define the limit functional for a slightly larger class of densities ρ and measures ν as

Iρ[ν] =
∫

D

{

1

2ρ
|∇hν |2 +

1

2
ρ|ν|+ Fν

}

, (3.1)

where
{

−∇
(

1
ρ∇hν

)

= ν, in D,

hν = 0, on ∂D.
(3.2)

We will not strive for the most general assumptions allowing the study of such an energy functional, but
instead state a theorem that is sufficient for the purpose of proving our main results. From a mathematical
point of view, this means that the functions ρ and F and the domain D appearing in the definition above
are not necessarily the ones that appear in the preceding sections, but the assumptions we impose on
them are inherited from the physical features of our original GP theory. Note however that we do not
assume in this section that the problem is radial. We do not stress the dependence of Iρ on F because
in the applications we have in mind F is related to ρ as in (1.10).

The following theorem states the existence and uniqueness of the minimizer of the functional Iρ in
the natural energy space. These are somewhat classical results reminiscent of potential theory [ST, Sta],
more important to us are the explicit formula (3.6) for the minimizer and the stability property (3.8)
that is the key input in the proof of Theorem 2.2.

Theorem 3.1 (Minimization of the renormalized energy).
Let D be a regular open subset of R2, ρ ∈ C2(D), ρ ≥ 0, F ∈ C2(D). We assume that

1

2
ρ− F > 0, in D, (3.3)

and define

Hρ :=
1

2
ρ+ F. (3.4)

1. Existence and uniqueness of a minimizer. The functional Iρ has a unique minimizer µρ in
the class of measures

Mρ(D) =

{

ν ∈
(

C0
c (D)

)∗
,

∫

D

{

1

ρ
|∇hν |2 + ρ|ν|

}

< +∞
}

. (3.5)

It is given by the formula

µρ =

[

∇
(

1

ρ
∇Hρ

)]

+

1{Hρ≤0}, (3.6)
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and the ground state energy is

Iρ = Iρ[µρ] =
1

2

∫

supp(µρ)

Hρµρ. (3.7)

2. Stability of the minimizer. For any ν ∈ Mρ(D)

Iρ[ν] ≥ Iρ +

∫

D

1

2ρ

∣

∣∇hµρ−ν

∣

∣

2
. (3.8)

The main physically relevant assumption we make here is (3.3), which indicates that negative degree
vortices are not energetically favored. In our setting it will always be satisfied because typically ρ ≥ 0
and F ≤ 0 with equality only at the boundary of the domain. One may certainly prove a related theorem
in the case where (3.3) does not hold but it is not our concern here.

Proof. We split the proof in four steps.
Step 1 (Existence and Euler-Lagrange equation). It is not difficult to prove the existence of a minimizer,

we will thus skip most of this discussion. Let us just note that with our assumptions

Iρ[ν] ≥
∫

D

1

4ρ
|∇hν |2 + C1 ‖ν‖2H−1(D) − C2 ‖ν‖(C1

c (D))∗ +

∫

D

ρ|ν|,

with C1 = (2 sup
r∈D ρ)−1 and C2 = sup

r∈D(
1
2ρ − F ). Recalling the embedding of

(

C1
c (D)

)∗
in H−1(D)

it is then easy to deduce bounds on the minimizing sequences and conclude by lower semi-continuity
arguments.
Considering now a variation of the form (1 + tf)µρ, f ∈ C0(D), and noticing that (3.2) implies

∫

D

1

ρ
|∇hν |2 =

∫

D

hνν, (3.9)

we see that the Euler-Lagrange equation of the minimization problem takes the form

∫

D

(

hµρµρ +
1

2
ρ|µρ|+ Fµρ

)

f = 0 (3.10)

for any f ∈ C0(D). Writing
µρ = µ+

ρ − µ−
ρ , with µ+

ρ , µ
−
ρ ≥ 0,

we deduce from the above that

{

hµρ = −Hρ, on supp
(

µ+
ρ

)

,

hµρ = 1
2ρ− F, on supp

(

µ−
ρ

)

,







µρ = ∇
(

1
ρ∇Hρ

)

, on supp
(

µ+
ρ

)

,

µρ = −∇
[

1
ρ∇
(

1
2ρ− F

)

]

, on supp
(

µ−
ρ

)

.
(3.11)

Note that this implies in particular supp
(

µ+
ρ

)

⊂
{

∇
(

1
ρ∇Hρ

)

≥ 0
}

.

Step 2 (Explicit formula for the minimizer). We first prove that µ−
ρ = 0 by using the trial state

µtrial = µ+
ρ .

Uniqueness of the solution to (3.2) implies that

hµtrial
= −Hρ, on supp

(

µ+
ρ

)

,
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hµtrial
being simply extended to the whole domain D by requiring that ∇(ρ−1∇hµtrial

) = 0 on D \
supp

(

µ+
ρ

)

. Recalling (3.9) and (3.11), we thus have

Iρ[µtrial] =
1

2

∫

D

µ+
ρ Hρ,

whereas

Iρ[µρ] =
1

2

∫

D

µ+
ρ Hρ +

1

2

∫

D

(

1

2
ρ− F

)

µ−
ρ

Using assumption (3.3), this clearly means that it must be µ−
ρ = 0. The minimizer µρ ≥ 0 is then

completely determined by the set supp (µρ) ⊂ {∇( 1ρ∇Hρ) ≥ 0} and we have (recall (3.11))

Iρ[µρ] =
1

2

∫

supp(µρ)

Hρ

(

∇1

ρ
∇Hρ

)

,

from which it is easy to deduce that, in order for µρ to minimize Iρ, it must be

supp (µρ) =

{

∇
(

1

ρ
∇Hρ

)

≥ 0

}

∩ {Hρ ≤ 0} ,

and (3.6) follows.
Step 3 (Consequences). We first claim that

hµρ ≥ −Hρ, a.e. in D. (3.12)

Indeed, we have equality in supp(µρ) = {∇( 1ρ∇Hρ) ≥ 0} ∩ {Hρ ≤ 0}. Let us now suppose that (3.12)

does not hold in some subregion of supp(µρ)
c and pick some ν > 0 with support in this region. Consider

the trial state
µtrial = µρ + tν

for t > 0. Since µρ and ν have disjoint supports

|µtrial| = |µρ|+ tν.

Also we remark that for any pair of measures µ1, µ2 ∈ M (D)

∫

D

1

ρ
∇hµ1 · ∇hµ2 =

∫

D

µ1hµ2 , (3.13)

which allows to compute the energy of µtrial and find

Iρ[µtrial] = Iρ[µρ] + t2
∫

D

1

2ρ
|∇hν |2 + t

∫

D

(

Hρ + hµρ

)

ν.

Since the last term is negative by assumption, for t small enough we would obtain Iρ[µtrial] < Iρ[µρ],
which contradicts the fact that µρ minimizes Iρ.

Next we prove that
1

2
ρ− F − hµρ ≥ 0, a.e. in supp(µρ). (3.14)

The argument is again by contradiction. Suppose that in some subregion of supp(µρ), we have ρ− 2F −
2hµρ < 0 and pick some positive measure ν ∈ M (D) whose support is included in this region. Consider
the trial state

µtrial = µρ − tν
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for some t > 0. We have
|µρ − tν| ≤ |µρ|+ tν.

because of (3.2). Computing Iρ[µtrial] by expanding the quadratic term and using (3.13), we thus find

Iρ[µtrial] ≤ Iρ[µρ] + t2
∫

D

1

2ρ
|∇hν |2 + t

∫

D

(

1

2
ρ− F − hµρ

)

ν,

from which we immediately deduce that, for small enough t, we would obtain Iρ[µtrial] < Iρ[µρ], which
is a contradiction. We conclude that (3.14) must hold true.

Step 4 (Stability). We are now ready to prove the most important point of our theorem, namely the
stability property (3.8). We write any ν ∈ M (D) as

ν = µρ + ν1 + ν2,

where supp(ν1) ⊂ supp(µρ) and supp(ν2) ⊂ supp(µρ)
c and note that

|ν| ≥ µρ + ν1 + |ν2|.

Since µρ ≥ 0, using (3.13) again, we get

Iρ[ν] ≥ Iρ[µρ] +

∫

D

1

2ρ
|∇hν1+ν2 |2 +

∫

D

(

1

2
ρ+ F + hµρ

)

ν1 +

∫

D

1

2
ρ|ν2|+

∫

D

(

F + hµρ

)

ν2, (3.15)

but ρ+ 2F + 2hµρ = 0 on supp(ν1) by (3.11). Thus, decoupling ν2 into its positive and negative parts:

ν2 = ν+2 − ν−2 , with ν+2 , ν−2 ≥ 0,

we have

Iρ[ν] ≥ Iρ[µρ] +

∫

D

1

2ρ
|∇hν1+ν2 |2 +

∫

D

(

1

2
ρ+ F + hµρ

)

ν+2 +

∫

D

(

1

2
ρ− F − hµρ

)

ν−2 .

The last two terms of the above expression are positive because of (3.12) and (3.14) and this leads to
(3.8).

Remark 3.1 (The obstacle problem of Ginzburg-Landau theory)
As already mentioned, the problem studied in this section has a clear connection with the limit problem
obtained in the study of type-II superconductors in the first critical field regime [SS1, SS2], which in
turn is connected to obstacle problems [BS]. The energy of a vortex density in a type-II superconductor
occupying the 2D domain D can be approximated in suitable units and variables by

IGL[µ] =
1

2

∫

D

( |µ|
λ

+ |∇hµ|2 + |hµ − 1|2
)

, (3.16)

where hµ solves
{

−∆hµ + hµ = µ, in D,

hµ = 1, on ∂D,
(3.17)

and λ > 0 is a parameter.
It is known [BS, SS1] that (3.16) has a unique minimizer µGL, expressed in terms of the solution of

an obstacle problem, which is a particular type of free-boundary problem. As far as we know, no explicit
formula for µGL exists for generic domains D: it is constant in a subdomain of the sample D and zero in
the rest of the domain but the boundary between the two regions is not known explicitly, although much
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can be proved about it (see [SS2, Chapter 7] and references therein). In the special case of a spherically
symmetric domain, one can show by uniqueness of the minimizer that µGL is in fact radial and therefore
almost explicit.

Using a method similar to that we used for the proof of Theorem 3.1, one can show the following: for
any ν such that µGL + ν is in the energy space corresponding to (3.16),

IGL
[

µGL + ν
]

≥ IGL
[

µGL
]

+
1

2

∫

D

(

|∇hν |2 + |hν − 1|2
)

, (3.18)

which is the equivalent of the stability estimate (3.8). A convenient way of seeing that (3.18) holds true
is the change of variables µ → µ− 1, hµ → hµ − 1, which yields as equivalent problem the minimization
of the functional

Ĩ[µ] = 1

2

∫

D

( |µ+ 1|
λ

+ |∇hµ|2 + |hµ|2
)

=
1

2

∫

D

( |µ+ 1|
λ

+ hµµ

)

,

where now
{

−∆hµ + hµ = µ, in D,

hµ = 0, on ∂D.

This form has the advantage of being closer to (3.1) and facilitating the proof of (3.18), but the physical
interpretation of the problem is more transparent in (3.16).

Now we apply the result proven above to the functional ITF defined in (2.4). In this case both F and
Hρ can be explicitly computed:

FTF(r) = −Ω0

∫ RTF

r

dt t ρTF(t) = −1

4
Ω0

[

RTFs
(

RTF2 − r2
)

− 2

s+ 2

(

RTFs+2 − rs+2
)

]

, (3.19)

HTF(r) =
1

2
ρTF(r) + FTF(r)

=
1

4

(

RTFs − rs
)

− 1

4
Ω0

[

RTFs
(

RTF2 − r2
)

− 2

s+ 2

(

RTFs+2 − rs+2
)

]

. (3.20)

There is a certain freedom in the choice of the integration domain D (see Remark 3.2) in ITF[ν] but for
clarity we set D = B(RTF).

Corollary 3.1 (Minimization of ITF[ν]).
Let ITF[ν] be the renormalized energy defined in (2.4) with ρTF given by (1.6). There exists a unique
minimizer µ⋆ in the class of measures (3.5), which is radial and absolutely continuous w.r.t. the Lebesgue
measure, i.e., there exists a continuous radial function m⋆(r) such that

µ⋆ = [m⋆(r)]+ 1{HTF≤0} dr (3.21)

and

m⋆(r) =

[

1

2
∂2
r log

(

ρTF(r)
)

+ 2Ω0

]

. (3.22)

If in addition Ω0 > Ω1, the support of µ⋆ satisfies

∅ 6= supp(µ⋆) = B(R⋆) ( B(RTF), (3.23)

for some 0 < R⋆ < RTF such that
R⋆R

TF (3.24)

when Ω0 → ∞.
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Remark 3.2 (Domain of ITF[ν])
A simple inspection of the proof of the above results shows that the minimization and thus the ground
state energy and minimizer are to some extent independent of the domain D in the definition of ITF[ν].
More precisely one obtains the same minimizing µ⋆ and the same minimum energy for any D such that

B(R⋆) ⊂ D ⊂ B(RTF). (3.25)

Indeed µ⋆ is a minimizer as long as supp(µ⋆) ⊂ D, so that (3.23) yields the condition (3.25).

Proof. In order to apply Theorem 3.1, we can take any D ⊂ B(RTF), since by construction F (r) < 0 for
any r < RTF and FTF(RTF) = 0. Moreover ρTF and FTF clearly satisfy all the requirements of Theorem
3.1 and the first part of the statement is thus proven.

The explicit expression of µ⋆ is provided by (3.6) and since both ρTF and HTF are radial, µ⋆ must be
so as well. A simple computation yields m⋆, which is a well-defined continuous function for any r < RTF.
The condition HTF ≤ 0 guarantees that the support of µ⋆ is strictly contained in B(RTF): Indeed one
has HTF(RTF) = 0 but

HTF′

(RTF) =
1

2
ρTF′

(RTF) = −1

4
sRTFs−1

< 0,

which implies that there exists some R1 < RTF, such that HTF(R1) = 0 and HTF(r) > 0 for any
R1 < r < RTF. The fact that R1 > 0 follows from the analysis of HTF at the origin: using (1.7) and
(1.13), we compute

HTF(0) =
1

4
λTF − 1

2π
Ω0 =

1

2π
(Ω1 − Ω0) < 0, (3.26)

by assumption. Moreover a simple analysis of the derivative of HTF, i.e.,

HTF′

(r) =
1

2
r
(

−srs−2 +Ω0R
TFs − Ω0r

s
)

,

shows that HTF′

(r) = 0 for r = 0, R̄ for some R̄ > 0. It is positive between 0 and R̄ and negative for
R̄ < r ≤ RTF. In particular this, together with the discussion above, implies that HTF has a unique
maximum in [0, RTF] and, since HTF is negative at the origin and vanishes at the outer boundary, one
can conclude that

HTF(R1) = 0, HTF(r) < 0, for any 0 ≤ r < R1. (3.27)

To complete the proof it suffices therefore to exploit the explicit expression of m⋆, i.e.,

m⋆(r) = −rs−2
(

rs + s(s− 1)RTFs)

8ρTF(r)2
+ 2Ω0, (3.28)

which easily implies that m⋆ is decreasing since the first term on the r.h.s. of the above expression is.
Moreover

m⋆(0) = Ω0 > 0, m⋆(r) −−−−−→
r→RTF

−∞, (3.29)

so that the subregion where m⋆ is positive is another ball of radius R2 < RTF and

R⋆ = min[R1, R2]. (3.30)

To see that R⋆ → RTF in the limit Ω0 → ∞, it is sufficient to note that the maximum point R̄ of HTF

converges to RTF as Ω0 → ∞, which implies that sup0≤r≤RTF HTF → 0 in the same limit. Hence

R1 −−−−→
Ω0→∞

RTF (3.31)
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and an analogous statement holds true for R2, i.e.,

R2 −−−−→
Ω0→∞

RTF (3.32)

as it immediately follows by noticing the first terms in (3.22) is independent of Ω0, while the second is
linear in Ω0.

A simple computation yields the equations satisfied by R1 and R2: setting ri := Ri/R
TF, i = 1, 2 (so

that 0 < ri < 1), one has

1− r1

1− r
2/s
1 − 2

s+2

(

1− r
(s+2)/s
1

) = Ω0R
TF2

,
1

2
r
(s−2)/s
2

s(s− 1) + r2
(1 − r2)2

= Ω0R
TF2

, (3.33)

which allows to obtain a relation between r1 and r2 independent of Ω0. The computation of r1 or r2 or
their ratio can not be made explicitly but the above equations could be tested numerically to study the
dependence of the support of µ⋆ on the parameter s, that is whether R⋆ is given by R1 or R2. In the
harmonic case s = 2 however both equations (3.33) are solvable and one obtains

r1 =
R1

RTF
=

√

1− 2

Ω0RTF2 , r2 =
R2

RTF
=

√

√

√

√1− 1

4Ω0RTF2

(√

1 +
3

2Ω0RTF2 − 1

)

. (3.34)

Note that, by taking the limit Ω0 → ∞ of the above expressions, one easily recovers (3.24).

4 Energy Upper Bound

The main result of this section is stated in the following Proposition 4.1 and is the proof of an appropriate
upper bound for the GP ground state energy.

The result is obtained by testing the GP functional on some explicit trial function Ψtrial. The most
difficult part is the construction of such a function because of several requirements it has to fulfill in order
that its energy is suitably close to the ground state energy. There are indeed two main constraints: On
the one hand the modulus of Ψtrial must be approximately equal to g, in order to recover the leading order
contribution ÊGP, but, on the other hand, its phase has to contain a large number (of order O(| log ε|))
of vortices of unit degree, distributed according to the minimizing measure µ⋆ given by (3.6) on a scale
| log ε|. In addition Ψtrial must belong to DGP, which in particular implies that it must be normalized in
L2(R2). The rest of the proof is just the evaluation of EGP on Ψtrial.

Proposition 4.1 (GP energy upper bound).
If Ω = Ω0| log ε|, with Ω0 > Ω1 as ε → 0, then

EGP ≤ ÊGP + ITF| log ε|2
(

1 +O
(

log | log ε|
| log ε|1/2

))

. (4.1)

4.1 The Trial Function

As we have anticipated at the beginning of the section, the most difficult part of the proof is the identifi-
cation of the proper trial function to use in the estimate of the ground state energy. In order to simplify
the analysis however we first extract from EGP the leading order term, i.e., the energy ÊGP. Like in the
lower bound, this can be done by a splitting trick, i.e., setting ΨGP =: gv, where g is the vortex-free
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profile given by the minimization (2.3) and v some locally bounded function. Exploiting the variational
equation for g, one obtains the identity

EGP = ÊGP + E [v], E [v] :=
∫

R2

dr

{

1

2
g2 |∇v|2 − Ωg2r⊥ · (iv,∇v) + ε−2g4

(

1− |v|2
)2
}

, (4.2)

where we recall that

r⊥ := (−y, x), (iv,∇v) :=
i

2
(v∇v∗ − v∗∇v) .

It is clear that in order to obtain an upper bound for EGP, it is sufficient to provide a suitable trial
function vtrial to evaluate E [v]. Note that v inherits an L2-normalization from ΨGP:

∫

R2

dr g2|v|2 = 1,

and the same must apply to vtrial. We thus set

vtrial(r) := cε ξ(r) exp {iφtrial} , (4.3)

where ξ is a cut-off function, φtrial is a phase factor we are going to define and cε is a normalization
constant.

The phase factor of vtrial must contain a number O(| log ε|) of vortices of unit degree distributed
according to the measure µ⋆| log ε|. For further convenience we start by defining the phase inside a ball
B(R<) of radius

R< := RTF − ε2/3| log ε|2/3, (4.4)

which is strictly contained inside the TF support B(RTF) and has the crucial property that inside B(R<)
the pointwise estimate (A.5) applies and g2 ≈ ρTF: There we define φtrial as the solution of the equation

∇φtrial = −ρTF−1∇⊥hνtrial , for r ∈ B(R<) \
Nε
⋃

i=1

B(ai, ε), (4.5)

where the potential hνtrial solves the differential equation (see below for further details on the existence
and properties of such a solution)















−∇
(

ρTF−1∇hνtrial

)

= νtrial, in B(R<),

−∆hνtrial = 0, in B(R>) \ B(R<),

hνtrial = 0, on ∂B(R>),

(4.6)

for some R> > RTF given below. Note that we modify the equation to ∆hνtrial = 0 in the boundary layer
B(R>) \ B(R<). This is to avoid problems due to the vanishing of ρTF on ∂B(RTF). Other strategies are
possible, see, e.g., [R, Section 2]. The outer radius R> is larger but close enough to RTF: for technical
reasons which will be clearer later and are mostly related to the estimate of the interaction term and the
exponential decay (A.8), we pick

R> := RTF + ε2/3| log ε|4/3. (4.7)

The function νtrial is a smooth approximation of a measure given by the sum of Dirac masses at the
points ai, i = 1, . . . , Nε, e.g.,

νtrial :=
2

ε2

Nε
∑

i=1

1B(ai,ε), (4.8)
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i.e., ai are the positions of vortices and Nε their total number. We have also implicitly assumed that
inf |ai−aj | > 2ε and ai ≤ R<−ε (see below for further details on the distribution of points). The crucial
property of φtrial is that, given any contour C ⊂ B(R<) encircling only one ball B(ai, ε), one has

∮

C

dσ ∂τφtrial = −
∫

∂B(ai,ε)

dσ ∂τφtrial =

∫

∂B(ai,ε)

dσ ρTF−1
∂nhνtrial

= −
∫

B(ai,ε)

dr∇
(

ρTF−1∇hνtrial

)

=

∫

B(ai,ε)

νtrial = 2π, (4.9)

since the integral of curl(∇φtrial) over the area delimited by C and ∂B(ai, ε) vanishes thanks to (4.6).
Hence φtrial is a well-defined phase factor for any r ∈ B(R<) \ ∪B(ai, ε), whereas inside the vortex balls
φtrial is not the phase of any function and we will have to use a cut-off function ξ to exclude that region.
We need however to define the trial function and therefore its phase up to R> because otherwise the last
term in E [v] (see (4.2)) would give a too large contribution. For the phase in the boundary layer we set

∇φtrial = −ρTF−1
(R<)∇⊥hνtrial , for r ∈ B(R>) \ B(R<). (4.10)

In fact since the boundary layer B(R>)\B(R<) is vortex-free by construction, it is not difficult to realize
that the differential equation (4.6) can be solved explicitly there and

hνtrial = c log (r/R>) ,

where the coefficient c is fixed by imposing continuity of ∂nhνtrial on ∂B(R<). On the other hand if we
integrate (4.6) in B(R<) we obtain

−
∫

B(R<)

dr∇
(

ρTF−1∇hνtrial

)

= −ρTF−1
(R<)

∫

∂B(R<)

dσ ∂nhνtrial = 2πNε, (4.11)

which combined with the explicit expression of hνtrial for r ≥ R< yields

hνtrial(r) = −Nερ
TF(R<) log (r/R>) , for r ∈ B(R>) \ B(R<), (4.12)

and therefore

∇φtrial = Nε
r⊥

r2
, for r ∈ B(R>) \ B(R<). (4.13)

One can verify that this extension defines a phase in B(R>) \ ∪B(ai, ε): the property (4.9) is still valid
and, for any contour C ⊂ B(R>) containing all the vortex balls B(ai, ε), one has

∮

C

dσ ∂τφtrial =

∫

∂B(R<)

dσ ∂τφtrial = 2πNε, (4.14)

thanks to (4.13) and the fact that the r.h.s. of (4.5) or (4.10) is irrotational outside C.
We can now turn to the cut-off function ξ. Its role is twofold: on the one hand it is needed to restrict

the integration domain in E [v] to B(R>) and, on the other, regularizes φtrial inside the vortex balls to
ensure that vtrial is a one-valued function. Concretely we set

ξ(r) := ξ0(r)

Nε
∏

i=1

ξv(|r− ai|), (4.15)

with ξ0 and ξv smooth functions satisfying

ξ0(r) =

{

0, for r ≥ R>,

1, for r ≤ R> − ε2/3| log ε|−1,
ξv(r) =

{

0, for r ≤ ε,

1, for r ≥ 2ε,
(4.16)
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and such that their gradients satisfy the conditions

‖∇ξ0‖∞ ≤ O(ε−2/3| log ε|1/3), ‖∇ξv‖∞ ≤ O(ε−1). (4.17)

With these definitions we can estimate the normalization constant without saying anything more
about the distribution of points but only assuming that Nε = O(| log ε|): since the cut-off function
satisfies ξ ≤ 1, one clearly has cε ≥ 1 and

1 = c2ε

∫

R2

dr g2ξ2 ≥ c2ε

∫

B(R>−ε2/3| log ε|−1)\∪B(ai,2ε)

dr g2

≥ c2ε

[

1−
∫

R2\B(R>−ε2/3| log ε|−1)

dr g2 −O(ε2| log ε|)
]

≥ c2ε
[

1−O(ε2| log ε|)
]

,

thanks to boundedness and monotonicity of g and the exponential decay (A.8), yielding

g2(r) = O(ε∞), uniformly in r ≥ RTF +O(ε2/3| log ε|4/3). (4.18)

Therefore we conclude
1 ≤ c2ε ≤ 1 +O(ε2| log ε|). (4.19)

Finally we discuss the distribution of vortex points ai: the final goal is the reproduction of the density
provided by the minimizing measure µ⋆| log ε|. We proceed as follows: for any k ∈ N larger than some
given k0 > 0, we set

̺k :=
k

√

| log ε|
, (4.20)

and denote by Ck and Nk the circle ∂B(̺k) and the number of equidistributed points we will put on Ck
respectively. Recalling (3.22), we put uniformly distributed points on Ck in such a way that the total
number is (with ⌊ · ⌋ standing for the integer part)

Nk =
⌊

2π
√

| log ε|̺km⋆(̺k)
⌋

, (4.21)

provided Ck ⊂ supp(µ⋆).We denote by K ⊂ N the set of integers k such that Ck ⊂ supp(µ⋆), so that one
clearly has

sup
k∈K

k ≤ R⋆

√

| log ε|, sup
k∈K

|aik | ≤ R⋆, (4.22)

thanks to (3.23). The lower bound k ≥ k0 is needed in order to ensure that on the smallest circle there
are sufficiently many points (e.g., Nk ≥ 4 for any k ≥ k0). The point distribution naturally provides a
decomposition of Ck into sectors ϑik ≤ ϑ ≤ ϑik+1, ik = 1, . . . , Nk, centered at the points aik and of equal
arc length given by |Ck|/Nk, i.e., for k ∈ K,

Θk := ϑik+1 − ϑik = 2π/Nk. (4.23)

The total number of points is of order O(| log ε|):

Nε =
∑

k∈K

Nk = O(| log ε|). (4.24)
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Moreover νtrial satisfies the required property, namely νtrial ≃ | log ε|µ⋆. More precisely for any radial
test function Φ(r) ∈ C1(B(RTF)),

∫

B(RTF)

dr Φ(r)νtrial = (1 +O(ε))
∑

k∈K

Nk
∑

ik=1

Φ (aik) = (1 +O(ε))
∑

k∈K

NkΦ (̺k)

= 2π (1 +O(ε))
√

| log ε|
∑

k∈K

̺km⋆(̺k)Φ (̺k) +O
(

√

| log ε|
)

= | log ε|
∫

supp(µ⋆)

dr Φ(r)m⋆(r) +O(
√

| log ε|) = | log ε|
∫

R2

Φµ⋆ +O
(

√

| log ε|
)

, (4.25)

where we have used the one-dimensional Riemann sum approximation,
∣

∣

∣

∣

2π| log ε|−1/2
∑

k∈K

̺kf(̺k)−
∫

supp(µ⋆)

dr f(r)

∣

∣

∣

∣

≤ C ‖f ′(r)‖∞ | log ε|−1/2,

the fact that by hypothesis ‖∇Φ‖∞ ≤ C and the gradient estimate

‖m′
⋆(r)‖L∞(supp(µ⋆))

≤ 1

2
sup
r≤R⋆

∣

∣∂3
r log ρ

TF
∣

∣ =
1

2
sup
r≤R⋆

ρTF2
ρTF′′′

+2(ρTF′)3−3ρTFρTF′
ρTF′′

ρTF3 ≤ C, (4.26)

by (3.23).

4.2 Evaluation of the reduced energy E [vtrial]
Now we are going to estimate each term of the energy E [vtrial] separately.

We start by considering the kinetic term: Noticing that one has

|∇vtrial|2 = c2ε |∇ξ|2 + c2εξ
2 |∇φtrial|2 ≤

(

1 +O(ε2| log ε|)
)

(

|∇ξ|2 + ξ2 |∇φtrial|2
)

,

by (4.19), we obtain the bound

∫

R2

dr g2 |∇vtrial|2 ≤
(

1 +O(ε2| log ε|)
)

[
∫

R2

dr g2 |∇ξ|2 +
∫

B(R>)\∪B(ai,ε)

dr g2 |∇φtrial|2
]

≤
(

1 +O(ε2| log ε|)
)

∫

B(R<)

dr g2ρTF−2 |∇hνtrial |2 + CN2
ε

∫

B(R>)\B(R<)

dr r−2g2 +O(| log ε|)

≤
(

1 +O(ε2/3| log ε|2/3)
)

∫

B(R<)

dr ρTF−1 |∇hνtrial |2 +O(| log ε|), (4.27)

where we have used the upper bounds (4.17), the estimate of the total number of points (4.24) and (A.5)
for the term located in B(R<). In the boundary layer R< ≤ r ≤ R> we have exploited the explicit
expression for ∇φtrial (4.13) and the pointwise estimate (A.8). We estimate now the interaction term,
i.e. the last term in (4.2):

ε−2

∫

R2

dr g4
(

1− |vtrial|2
)2

≤ ε−2

∫

R2\B(R>−ε2/3| log ε|−1)

dr g4 + ε−2

∫

B(R>)

dr g4
(

1− |vtrial|2
)2

≤ Cε−2(c2ε − 1)2 +O(ε∞) ≤ O(ε2| log ε|2), (4.28)
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thanks to the exponential decay of g (A.8) and (4.19).
The angular momentum term (second term in (4.2)) can be integrated by parts:

− Ω

∫

R2

dr g2r⊥ · (ivtrial,∇vtrial) = | log ε|
∫

B(R>)

dr Fg(r) curl (ivtrial,∇vtrial) , (4.29)

where

Fg(r) := −Ω0

∫ R>

r

dt t g2(t). (4.30)

Note that in the integration by parts the boundary term vanishes thanks to the fact that Fg vanishes
there. In fact in the boundary layer B(R>) \ B(R<) it is more convenient to integrate the r.h.s. of (4.29)
by parts back:

| log ε|
∫

B(R>)\B(R<)

dr Fg(r)curl (ivtrial,∇vtrial)

= −Ω1| log ε|
∫

B(R>)\B(R<)

dr g2r⊥ · (ivtrial,∇vtrial)− | log ε|
∫

∂B(R<)

dσ Fg(R<) (ivtrial, ∂τvtrial)

≤ ε2/3
∫

B(R>)\B(R<)

dr g2 |∇φtrial|2 + Cε−2/3| log ε|2
∫

B(R>)\B(R<)

dr r2g2 + |Fg(R<)| O(| log ε|)

≤ ε2/3
∫

B(R>)

dr g2 |∇φtrial|2 +O(ε2/3| log ε|10/3) (4.31)

by Cauchy-Schwarz inequality and the pointwise estimate (A.8). The same estimate also implies that
|Fg(R<)| ≤ Cε4/3| log ε|4/3, which has been used above as well as the fact that

∫

∂B(R<)

dσ (ivtrial, ∂τvtrial) = c2ε

∫

∂B(R<)

dσ ∂τφtrial = 2πc2ε deg {φtrial, ∂B(R<)} = O(| log ε|), (4.32)

by (4.14) and (4.24). The r.h.s. of (4.31) can then be safely incorporated in the remainder in (4.27) and
it is sufficient to consider the r.h.s. of (4.29) only inside B(R<), where ξ0 = 1 and

curl (ivtrial,∇vtrial) = c2εcurl (∇φtrial) = 0, in

( Nε
⋃

i=1

B(ai, 2ε)
)c
⋂

B(R<), (4.33)

so that we have

| log ε|
∫

B(R<)

dr Fg(r)curl (ivtrial,∇vtrial) = | log ε|
∫

∪B(ai,2ε)

dr Fg(r) curl (ivtrial,∇vtrial)

= (1 +O(ε)) | log ε|
Nε
∑

i=1

Fg(ai)

∫

B(ai,2ε)

dr curl
(

ξ2v∇φtrial

)

= (1 +O(ε)) | log ε|
Nε
∑

i=1

Fg(ai)

∫

∂B(ai,2ε)

dσ ∂τφtrial ≤ 2π| log ε|
Nε
∑

i=1

Fg(ai) +O(ε| log ε|2), (4.34)

where we have used the bound ‖∇Fg‖∞ ≤ C to estimate

sup
r∈B(ai,2ε)

|Fg(r) − Fg(ai)| ≤ Cε |Fg(ai)| , (4.35)
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since

|Fg(ai)| ≥ C

∫ R<

ai

dt t g2(t) ≥ C
(

1−O(ε2/3| log ε|2/3)
)

∫ R<

R⋆

dt ρTF(t) ≥ C > 0, (4.36)

thanks to (3.23), (4.22) and (A.5). The replacement of Fg by FTF can be done in a similar way:

∣

∣Fg(ai)− FTF(ai)
∣

∣ ≤ C

∫ R>

r

dt t
∣

∣g2(t)− ρTF(t)
∣

∣ ≤ O(ε2/3| log ε|2/3), (4.37)

by (4.22) and (A.5), so that using (4.36) one obtains

∣

∣Fg(ai)− FTF(ai)
∣

∣ ≤ O(ε2/3| log ε|2/3)FTF(ai), for any i = 1, . . . , Nε.

Combining (4.27) and (4.28) with (4.29), (4.31) and (4.34), we obtain

E [vtrial] ≤
(

1 +O(ε2/3| log ε|2/3)
)

∫

B(R<)

1

2ρTF
|∇hνtrial |2 + 2π| log ε|

Nε
∑

i=1

Fg(ai) +O(| log ε|), (4.38)

so that in order to complete the proof it suffices to estimate the first term on r.h.s. of the expression
above. To this purpose we first note that the potential

h̃νtrial := hνtrial +Nερ
TF(R<) log (R</R>) , (4.39)

solves
{

−∇
(

ρTF−1∇h̃νtrial

)

= νtrial, in B(R<),

h̃νtrial = 0, on ∂B(R<),
(4.40)

since hνtrial is continuous in the whole of B(R>) and for r ≥ R< it has the explicit expression (4.12).
Obviously one also has

∫

B(R<)

dr
1

ρTF
|∇hνtrial |2 =

∫

B(R<)

dr
1

ρTF
|∇h̃νtrial |2.

It is now convenient to introduce the Green function

G(x,y) := A−1(x,y), A := −∇
(

ρTF−1∇
)

, (4.41)

i.e., the integral kernel of the inverse of the differential operator A. More precisely G solves the differential
equation (we postpone to Lemma 4.1 below the proof of the required properties of G)

{

−∇x

[

ρTF−1
(x)∇xG(x,y)

]

= δ(x− y), for x,y ∈ B(R<),

G(x,y) = 0, for x ∈ ∂B(R<).
(4.42)

By means of G, we can rewrite the first term on the r.h.s. of (4.38) as

∫

B(R<)

1

ρTF
|∇hνtrial |2 =

∫

B(R<)

∫

B(R<)

G(x,y)νtrial(x)νtrial(y)

=
4

ε4

Nε
∑

i=1

∫

B(ai,ε)

dx

∫

B(ai,ε)

dy G(x,y) + 4

ε4

Nε
∑

i,j=1
i6=j

∫

B(ai,ε)

dx

∫

B(aj ,ε)

dy G(x,y). (4.43)
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For the estimate of the diagonal term we can use the inequality (4.53) proven in Lemma 4.1 below,
which yields

4

ε4

Nε
∑

i=1

∫

B(ai,ε)

dx

∫

B(ai,ε)

dy G(x,y) ≤ − 2

πε4

Nε
∑

i=1

∫

B(ai,ε)

dx

∫

B(ai,ε)

dy ρTF(y) log |x− y|+O(| log ε|)

≤ − (1 +O(ε))
2

πε4

Nε
∑

i=1

ρTF(ai)

∫

B(ai,ε)

dx

∫

B(ai,ε)

dy log |x− y|+O(| log ε|)

≤ 2π

Nε
∑

i=1

ρTF(ai)| log ε|+O(| log ε|), (4.44)

where we have used the properties of harmonic functions and in particular the mean value theorem to
compute

−
∫

B(ai,ε)

dx

∫

B(ai,ε)

dy log |x− y|

= −1

2

∫ 2π

0

dϑ

∫ 2π

0

dϑ′

∫ ε

0

d̺̺

∫ ε

0

d̺′̺′ log
[

̺2 + ̺′
2 − 2̺̺′ cos (ϑ− ϑ′)

]

= −4π2

∫ ε

0

d̺̺

[
∫ ̺

0

d̺′̺′ log ̺+

∫ ε

̺

d̺′̺′ log ̺′
]

= π2ε4| log ε|+ 1

2
π2ε4. (4.45)

To estimate of the difference ρTF(r) − ρTF(ai), we have used the bounds ‖∇ρTF‖∞ ≤ C and

ρTF(ai) ≥ C > 0, for any i = 1, . . . , Nε, (4.46)

which is a simple consequence of the explicit expression of ρTF, (3.23) and (4.22).
The off-diagonal term on the other hand can be dealt with by using the inequality (4.54) proven

in Lemma 4.1 and a Riemann sum approximation. The distribution of points {ai} identifies a cell
decomposition of B(R⋆): one can associate with each sector a two-dimensional cell Qik as

Qik :=

{

r = (r, ϑ) : ϑ ∈
[

ϑik − 1

2
Θk, ϑik +

1

2
Θk

]

, r ∈
[

(k − 1

2
)| log ε|−1/2, (k +

1

2
)| log ε|−1/2

]}

,

(4.47)
with volume

|Qik | =
̺kΘk
√

| log ε|
=

2π̺k

Nk

√

| log ε|
≥ 1

m⋆(̺k)| log ε|
, (4.48)

by (4.20), (4.21) and (4.23). Given a ik it will be convenient to denote n(ik) the set of indices jh such
that Qjh is a nearest neighbor of Qik in the cell decomposition. Indeed, G(x,y) is singular for small
|x−y| and it is therefore useful to distinguish those pairs of cells Qik ,Qjh for which the distance |x−y|
can be arbitrarily small for x ∈ Qik,y ∈ Qjh .

We first write, using (4.54) and the fact that the distance between ai and aj is at least of order
| log ε|−1/2 for i 6= j,

4

ε4

Nε
∑

i,j=1
i6=j

∫

B(ai,ε)

dx

∫

B(aj ,ε)

dy G(x,y) = (2π)2
Nε
∑

i,j=1
i6=j

G(ai, aj) +O(ε| log ε|2 log | log ε|). (4.49)
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Then we neglect the neighboring points in the sum, using (4.53) and the fact that |aik − ajh | is of order
| log ε|−1/2 for jh ∈ n(ik):

Nε
∑

i,j=1
i6=j

G(ai, aj) =
∑

k,h∈K

Nk
∑

ik=1

Nh
∑

jh=1
jh /∈n(ik)

G(aik , ajh ) +O(| log ε| log | log ε|).

Next we use (4.54) to write (here its is crucial to have excluded from the sum the nearest neighbors of
each point to have lower bounds on |x− y|)

(2π)2
∑

k,h∈K

Nk
∑

ik=1

Nh
∑

jh=1
jh /∈n(ik)

G(aik , ajh ) =
∑

k,h∈K

(2π)2

|Qik | |Qjh |

Nk
∑

ik=1

Nh
∑

jh=1
jh /∈n(ik)

∫

Qik

dx

∫

Qjh

dy G(x,y)

+O(| log ε|3/2 log | log ε|). (4.50)

Now, using (4.53) again, one can see that neighboring cells do not weigh too much in the integrals:

∑

k,h∈K

(2π)2

|Qik | |Qjh |

Nk
∑

ik=1

Nh
∑

jh=1
jh∈n(ik)

∫

Qik

dx

∫

Qjh

dy G(x,y) = O(| log ε| log | log ε|),

which allows to conclude, gathering the above equations and using a Riemann sum approximation again,

4

ε4

Nε
∑

i,j=1
i6=j

∫

B(ai,ε)

dx

∫

B(aj ,ε)

dy G(x,y) = | log ε|2
∫

B(R⋆)

∫

B(R⋆)

G(x,y)µ⋆(x)µ⋆(y)

+O(| log ε|3/2 log | log ε|). (4.51)

We can now go back to (4.38) and replace (4.44) and (4.49), finally obtaining

E [vtrial] ≤ 2π| log ε|
Nε
∑

i=1

[

1

2
ρTF(ai) + FTF(ai)

]

+ (2π)2
Nε
∑

i,j=1
i6=j

G(ai, aj) +O(| log ε|)

≤ 2π| log ε|
Nε
∑

i=1

HTF(ai) + | log ε|2
∫

B(R⋆)

∫

B(R⋆)

G(x,y)µ⋆(x)µ⋆(y) +O(| log ε|3/2 log | log ε|)

≤ | log ε|2
∫

B(RTF)

dr

{

1

ρTF
|∇hµ⋆ |2 +HTF(r)m⋆(r)

}

+O(| log ε|3/2 log | log ε|)

= ITF| log ε|2 +O(| log ε|3/2 log | log ε|), (4.52)

where we have used (4.25) for the term involving HTF. Recalling (4.2), the proof of Proposition 4.1 is
now complete.

We conclude this section by proving some technical results about the Green function G(x,y) used in
the proof above. We recall that G is defined as the solution of (see (4.42))

{

−∇x

[

ρTF−1
(x)∇xG(x,y)

]

= δ(x− y), for x,y ∈ B(R<),

G(x,y) = 0, for x ∈ ∂B(R<).
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Lemma 4.1 (Properties of the Green function G(x,y)).
There exists a unique solution G(x,y) to (4.42) in W 1,p(B(R<)⊗B(R<)) for any 1 ≤ p < 2. It is positive
and symmetric and

sup
x,y∈B(R<)

∣

∣

∣

∣

G(x,y) + 1

2π
ρTF(y) log |x− y|

∣

∣

∣

∣

≤ C (4.53)

for some fixed constant C > 0. Moreover, for any i, j ∈ N and y ∈ Qj,

sup
x∈Qi

|∇xG(x,y)| ≤ C

(

sup
x∈Qi

|log |x− y||+ 1

)

, (4.54)

where the cell Qi is defined in (4.47).

Proof. Most of the properties of G follow from standard arguments applied to the analysis of the elliptic
operator A (see, e.g., [Sta]). Moreover analogous results including (4.53) have already been proven in [R,
Lemma 2.4] and [AAB, Lemma 4.5] (see also [ASS]) and we skip here the details for the sake of brevity,
only stressing that the crucial ingredient for (4.53) is the fact that ‖∇ρTF‖∞ ≤ C.

The second inequality is a consequence of the equation for G, which for x ∈ Qi and y ∈ Qj , i 6= j,
can be rewritten

∇xρ
TF(x) · ∇xG(x,y) − ρTF(x)∆xG(x,y) = 0,

together with the Gagliardo-Nirenberg inequality (see, e.g., [N, Theorem 1])

‖∇xG‖∞ ≤ C
(

‖∆xG‖1/2∞ ‖G‖1/2∞ + ‖G‖∞
)

,

where the suprema are taken with respect to x ∈ Qi and for almost every y ∈ Qj. Combining this with
the inequality above we get ‖∇xG‖∞ ≤ C ‖G‖∞ since ρTF is uniformly bounded from below inside the
support of µ⋆. Using (4.53) one then obtains (4.54).

5 Energy Lower Bound and Convergence of the Vorticity Mea-

sure

In this section we complete the proof of Theorem 2.1 by proving the following:

Proposition 5.1 (GP energy lower bound).
If Ω = Ω0| log ε|, with Ω0 > Ω1 as ε → 0, then

EGP ≥ ÊGP + ITF| log ε|2
(

1 +O
(

log | log ε|
| log ε|

))

. (5.1)

In the course of the proof we will gather the estimates leading to the conclusion of Theorem 2.2, in
particular the rigorous version of (2.29). The strategy we employ makes use of several classical techniques
which have already been used in similar contexts, see, e.g., [AAB, ABM, CRY, IM1, R]. It originates
from the GL theory of type-II superconductors (see [SS2] and references therein).

5.1 Preliminary Steps

We start as usual with the energy decoupling

EGP = ÊGP +

∫

R2

dr eg(u), (5.2)
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where we have denoted

u :=
ΨGP

g
(5.3)

and the reduced energy density is

eg(u) :=
1

2
g2|∇u|2 − Ωg2r⊥ · (iu,∇u) +

g4

ε2
(

1− |u|2
)2

, (5.4)

with, as usual,

(iu,∇u) =
i

2
(u∇u∗ − u∗∇u) .

For a lower bound it is possible to neglect the contribution to the reduced energy in the region R2 \B(R+)
with

R+ := RTF + ε1/4. (5.5)

Indeed, the only possibly negative term can be bounded below by a simple trick

− Ω

∫

R2\B(R+)

dr g2 · (iu,∇u) ≥ −1

4

∫

R2\B(R+)

dr g2 |∇u|2 − Ω2

∫

R2\B(R+)

dr g2|u|2 (5.6)

and in R2 \B(R+) we can use the exponential smallness (see Proposition A.6) of ΨGP = gu to bound the
second term and obtain

∫

R2

dr eg(u) ≥
∫

B(R+)

dr eg(u)−O(ε∞) (5.7)

where positive but useless contributions have been dropped.
Note for later use that the trick (5.6) used on the whole of R2 together with the trivial bound

E [u] ≤ 0,

which follows by taking g as a trial state for EGP, imply

∫

R2

dr

{

1

4
g2|∇u|2 + g4

ε2
(

1− |u|2
)2
}

≤ C| log ε|2, (5.8)

because of the normalization of g2|u|2 = |ΨGP|2.
We now define

F (r) := −Ω0

∫ R+

r

dt t g2(t), (5.9)

which satisfies | log ε|∇⊥F = g2Ωr⊥ in B(R+) and F (R+) = 0. We can then integrate by parts the
momentum term in (5.7) to obtain

∫

B(R+)

dr eg(u) =

∫

B(R+)

dr

{

1

2
g2|∇u|2 + | log ε|F curl(iu,∇u) +

g4

ε2
(

1− |u|2
)2
}

. (5.10)

We will soon construct vortex balls to bound this energy from below by the energy of vortices of u.
There is however one more reduction we need to perform before: as it is well-known, the vortex balls
construction is feasible only in the region where the matter density is large enough. We thus split the
domain again, introducing for some constant Cbulk > 0 to be chosen later on (Rbulk is the radius appearing
in the statement of Theorem 2.1)

Rbulk := R+ − CbulkΩ
−1, Rcut := R+ − 1

2
CbulkΩ

−1. (5.11)
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Note that we have now four radii in our construction:

Rbulk < Rcut < RTF < R+

and in particular
Rcut ≤ RTF − CΩ−1, (5.12)

which is a consequence of (5.5) and (5.11). Using (A.5) and the explicit form of ρTF (in particular the
fact that it vanishes linearly on ∂B(RTF)), this implies

g2(r) ≥ C| log ε|−1, for any r ∈ B(Rcut), (5.13)

and for some C > 0.
We now perform a smooth cut-off atRcut by introducing regular radial functions χin and χout satisfying

χin + χout = 1 in R2, χin(r) = 1 for r ≤ Rbulk, χin(r) = 0 for r ≥ Rcut. (5.14)

Using (5.11) and recalling that we consider the regime Ω = O(| log ε|) we can impose

|∇χin| ≤ C| log ε|−1, |∇χout| ≤ C| log ε|−1. (5.15)

The point of performing this cut-off is that we choose Cbulk small enough in (5.11) in such a way that

| log ε||F | ≤ 1

4
g2, in B(R+) \ B(Rbulk). (5.16)

This is an easy consequence of the definition of F (5.9): for any r ∈ B(R+) \ B(Rbulk) one has (recall
that g is decreasing as discussed in the Appendix)

|F (r)| = Ω0

∣

∣

∣

∣

∫ R+

r

dt t g2(t)

∣

∣

∣

∣

≤ 1

2
Ω0g

2(r)
(

R2
+ − r2

)

≤ 1

2
CbulkR+| log ε|−1g2(r), (5.17)

so that the above inequality holds true if one picks, e.g., Cbulk ≤ 1
2R

−1
+ . Using (5.16) and the trivial

bound (the two line computation is in [CPRY3, Lemma 3.4])

|curl(iu,∇u)| ≤ |∇u|2,

we see that

χout

(

1

4
g2|∇u|2 + | log ε|F curl(iu,∇u)

)

≥ 0.

This leads to
∫

B(R+)

dr eg(u) ≥
∫

B(R+)

dr

{

χin

[

1

2
g2|∇u|2 + F curl(iu,∇u)

]

+
1

4
χoutg

2|∇u|2 + g4

ε2
(1 − |u|2)2

}

.

(5.18)

5.2 Evaluating the Individual Energy of Vortices

We now state two classical results allowing to spot the vortices of the condensate and evaluate their self-
energy. The methods (vortex balls construction and Jacobian estimates) are classical tools by now and
we thus skip the proofs. The reader can refer to [SS2, Chapter 4 and 6] for a self-contained presentation
of the techniques and to [IM1, Proposition 4.1], [AAB, Proposition 4.1], [CRY, Proposition 4.2 and 4.3]
for applications in contexts similar to the present one. The original references are [Je, JS2, Sa].

The first result isolates the possible zeros and phase singularities, i.e., vortices, of u in small balls. It
is a consequence of the bound (5.8) and uses (5.13), which makes the reduction to B(Rcut) mandatory.
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Proposition 5.2 (Vortex ball construction).
There is a certain ε0 > 0 such that, for ε ≤ ε0 there exists a finite collection {Bj}j∈J := {B(aj , ̺j)}j∈J
of disjoint balls with centers aj and radii ̺j such that

1.
{

r ∈ B(Rcut) : ||u(r)| − 1| > | log ε|−5
}

⊂ ⋃j∈J Bj,

2.
∑

j∈J

̺j = | log ε|−10.

Setting dj := deg{u, ∂Bj}, if Bj ⊂ B(Rcut), and dj = 0 otherwise, we have the lower bounds

∫

Bj

dr g2 |∇u|2 ≥ π|dj |g2(aj) |log ε|
(

1− C
log |log ε|
|log ε|

)

(5.19)

for some fixed constant C > 0.

Note that the error term O(log | log ε|) in (5.19) has two origins: one is the use of the growth and
merging method [Sa, Je]. It could probably be improved by using more refined versions of the technique,
as presented, e.g., in [SS3]. The other is the approximation of g2 in each vortex ball by its value at the
center using (A.5) and the regularity of ρTF. The second error is much smaller than the first one and is
thus absorbed in the O(log | log ε|) term. It is also much more intrinsic to our setting since it originates
from the inhomogeneity of the matter density.

Remark that there is some freedom in the definition of the vortex balls: we could take any negative
power of | log ε| at point 1 of the statement above, obtaining ball families such that the sum of the
radii would be bounded by an arbitrary negative power of | log ε|. This would not affect the order of
magnitude of the remainder in (5.19) and would improve some other remainders that will appear in the
sequel. Since the error we make in (5.19) will necessarily be present in the final result, we see no point
in over-optimizing other estimates and thus stick to the concrete choice made above (which by the way
is the same as in [IM1, Proposition 4.1]).

We denote

F [u] :=

∫

B(R+)

dr

{

1

2
g2|∇u|2 + g4

ε2
(

1− |u|2
)2
}

. (5.20)

It is well-known [JS2] that this quantity can be used to control the vorticity measure (recall our normal-
ization choice)

µ = | log ε|−1curl (iu,∇u) , (5.21)

which is the content of the following result.

Proposition 5.3 (Jacobian estimate).
Let φ be any piecewise-C1 test function with compact support

supp(φ) ⊂ B(Rbulk).

Let {Bj}j∈J := {B(aj , rj)}j∈J be a collection of disjoint balls as in Proposition 5.2. Setting dj :=

deg{u, ∂Bj}, if Bj ⊂ B(Rcut), and dj = 0 otherwise, one has

∣

∣

∣

∣

∑

j∈J

2πdjφ(aj)− | log ε|
∫

B(Rbulk)

φ µ

∣

∣

∣

∣

≤ C| log ε|−9 ‖∇φ‖L∞(B(Rbulk))
F [u] (5.22)

where the constant C is independent of φ.
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Taken together, these results imply

∫

B(R+)

dr

{

χin

(

1

2
g2|∇u|2 + | log ε|F curl (iu,∇u)

)}

≥ 1

2

∫

B(R+)\∪i∈IBi

dr χing
2|∇u|2

+
∑

j∈J

2π| log ε|χin(aj)

(

1

2
|di|g2(aj) + diF (aj)

)(

1− C
log | log ε|
| log ε|

)

−O(| log ε| log | log ε|), (5.23)

where the bound (5.15) has been used. The last remainder terms contains two contributions: the smaller
one is due to (5.22) can be easily seen to be of order O(| log ε|−7) by using the a priori bound (5.8) on
F [u]. The second one is due to the factor −C log | log ε|| log ε|−1 multiplying the (negative) vortex energy
gain

∑

2π| log ε|diF (aj), i.e.,

log | log ε|
∫

B(R+)

dr F curl (iu,∇u) = −Ω0 log | log ε|
∫

B(R+)

dr g2 (iu,∇u)

and it can be estimated precisely as in (5.6), again with the help of (5.8), yielding an error term of order
| log ε| log | log ε|.

The purpose of the next section is to prove a lower bound to the first term of the right-hand side of
this inequality. As we will see, it is this term that contains the energy due to the interaction between
vortices.

5.3 Evaluating the Interaction Energy of Vortices

We now estimate the first term of the right-hand side of (5.23). Following [ABM, R] we first regularize
the vorticity measure µ, by introducing the modified current

̃ =

{

(iu,∇u), in B(Rcut) \
⋃

j∈J Bj

0, otherwise.
(5.24)

The regularized vorticity measure µ̃ is the one naturally associated with ̃ (renormalized as in (2.13)):

µ̃ := | log ε|−1curl̃. (5.25)

It is more regular than the original µ in the sense that we have removed the singular part of the phase
generated by vortices by neglecting in (5.24) the part of the current inside the vortex balls. There is still
of course a line singularity along the boundary of the balls because the current ̃ goes brutally to 0 there,
but this is much less problematic that the vortices lying inside the balls, which are point singularities.

The following lemma shows that the regularized vorticity measure is close to the original one in the
(C1

c )
∗ norm, allowing to control the error term due to the replacement of µ by its regularization µ̃.

Lemma 5.1 (Approximation by a regularized vorticity measure).
There exists a constant C > 0 such that, for any piecewise-C1 test function φ with compact support

supp(φ) ⊂ B(Rcut),

we have
∣

∣

∣

∣

∫

B(Rcut)

(µ− µ̃)φ

∣

∣

∣

∣

≤ C| log ε|−8 ‖∇φ‖L∞(B(Rcut))
. (5.26)
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Proof. By the definitions (5.21) and (5.25)
∣

∣

∣

∣

∫

B(Rcut)

(µ− µ̃)φ

∣

∣

∣

∣

= | log ε|−1

∣

∣

∣

∣

∫

B(Rcut)

dr∇⊥φ · (j− ̃)

∣

∣

∣

∣

= | log ε|−1

∣

∣

∣

∣

∫

∪j∈JBj

dr∇⊥φ · j
∣

∣

∣

∣

.

Then, using (5.13),
∣

∣

∣

∣

∫

∪j∈JBj

dr∇⊥φ · j
∣

∣

∣

∣

≤ ‖∇φ‖L∞(B(Rcut))

∫

∪j∈JBj

dr |u||∇u|

≤ C| log ε| ‖∇φ‖L∞(B(Rcut))

∫

∪j∈JBj

dr g2|u||∇u|

≤ C| log ε| ‖∇φ‖L∞(B(Rcut))

(

δ

∫

∪j∈JBj

dr g2|u|2 + δ−1

∫

R2

dr g2|∇u|2
)

for some δ > 0. We now use the upper bound g2|u|2 = |ΨGP|2 ≤ C (see Proposition A.6) and the upper
bound on

∑

j ̺j of Proposition 5.2, to obtain
∫

∪j∈JBj

dr g2|u|2 ≤ C| log ε|−20.

Recalling the bound (5.8), we also have
∫

R2

dr g2|∇u|2 ≤ C| log ε|2

and, choosing δ = | log ε|11, we conclude the proof.

We now define hµ̃ as the unique solution to
{

−∇
(

1
g2∇hµ̃

)

= µ̃, in B(Rbulk),

hµ̃ = 0, on ∂B(Rbulk),
(5.27)

and claim that the following holds:

Lemma 5.2 (Vortex interaction energy).
Let {Bj}j∈J := {B(aj, rj)}j∈J be a collection of disjoint balls as in Proposition 5.2. We have

∫

B(R+)\∪j∈JBj

dr χing
2|∇u|2 ≥

(

1− C| log ε|−5
)

| log ε|2
∫

B(Rbulk)

dr
1

g2
|∇hµ̃|2 (5.28)

for some given constant C > 0.

Proof. The proof is the same as in [R, Lemma 3.3], only a bit simpler because we work in a simply
connected geometry. We recall that χin = 1 in B(Rbulk) \∪j∈JBj and |u| is close to 1 there, according to
point 1 in Proposition 5.2. Thus

∫

B(R+)\∪j∈JBj

dr χing
2|∇u|2 ≥

∫

B(Rbulk)\∪j∈JBj

dr g2|∇u|2

≥
(

1− C| log ε|−5
)

∫

B(Rbulk)\∪j∈JBj

dr g2|u|2|∇u|2

≥
(

1− C| log ε|−5
)

∫

B(Rbulk)\∪j∈JBj

dr g2 |(iu,∇u)|2

=
(

1− C| log ε|−5
)

∫

B(Rbulk)

dr g2 |̃|2.
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By definition

curl

(

| log ε|−1̃+
1

g2
∇⊥hµ̃

)

= 0, in H−1 (B(Rbulk)) ,

so that there exists f ∈ H1(B(Rbulk)) satisfying

̃ = −| log ε| 1
g2

∇⊥hµ̃ +∇f.

Using the fact that hµ̃ is constant on ∂B(Rbulk), we have

∫

B(Rbulk)

dr∇⊥hµ̃ · ∇f = 0

by Stokes’ formula, and thus

∫

B(Rbulk)

dr g2 |̃|2 = | log ε|2
∫

B(Rbulk)

dr
1

g2
|∇hµ̃|2 +

∫

B(Rbulk)

dr g2|∇f |2

and there only remains to drop the last positive term to conclude the proof.

5.4 Completion of the Lower Bound Proof

Injecting (5.28) in (5.23), we have

∫

B(R+)

dr

{

χin

(

1

2
g2|∇u|2 + | log ε|F curl(iu,∇u)

)}

≥
(

1− C| log ε|−5
)

| log ε|2
∫

B(Rbulk)

dr
1

2g2
|∇hµ̃|2

+
∑

j∈J

2π| log ε|χin(aj)

(

1

2
|di|g2(ai) + diF (ai)

)(

1− C
log | log ε|
| log ε|

)

−O(| log ε| log | log ε|)

and because of Proposition A.4 we can replace g2 and F by ρTF and FTF respectively and absorb the
new remainder in the old ones. Using in addition Proposition 5.3 we can also replace the sum over vortex
balls and obtain

∫

B(R+)

dr

{

χin

(

1

2
g2|∇u|2 + | log ε|F curl(iu,∇u)

)}

≥
(

1− C| log ε|−5
)

| log ε|2
∫

B(Rbulk)

dr
1

2ρTF
|∇hµ̃|2

+ | log ε|2
(

1− C
log | log ε|
| log ε|

)
∫

B(Rcut)

χin

(

1

2
ρTF|µ|+ FTFµ

)

−O(| log ε| log | log ε|). (5.29)

We can apply Lemma 5.1 with either φ = χinρ
TF or φ = χinF

TF, to deduce

∫

B(R+)

dr χin

(

1

2
g2|∇u|2 + | log ε|F curl(iu,∇u)

)

≥
(

1− C| log ε|−5
)

| log ε|2
∫

B(Rbulk)

dr
1

2ρTF
|∇hµ̃|2

+ | log ε|2
(

1− C
log | log ε|
| log ε|

)
∫

B(Rcut)

χin

(

1

2
ρTF|µ̃|+ FTFµ̃

)

−O(| log ε| log | log ε|). (5.30)

Now the definitions (5.9) and (5.11) guarantees that inside B(Rcut) \ B(Rbulk)

|F | ≤ 1

2
g2
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by the same computation as in (5.17), and we can thus drop one more positive term to arrive at (recall
that χin = 1 in B(Rbulk))

∫

B(R+)

dr χin

(

1

2
g2|∇u|2 + | log ε|F curl(iu,∇u)

)

≥

| log ε|2
(

1− C
log | log ε|
| log ε|

)
∫

B(Rbulk)

(

1

2ρTF
|∇hµ̃|2 +

1

2
ρTF|µ̃|+ FTFµ̃

)

−O(| log ε| log | log ε|). (5.31)

Gathering (5.2), (5.7), (5.18) and the above inequality, we thus conclude

EGP ≥ ÊGP + | log ε|2
(

1− C
log | log ε|
| log ε|

)
∫

B(Rbulk)

(

1

2ρTF
|∇hµ̃|2 +

1

2
ρTF|µ̃|+ FTFµ̃

)

−O(| log ε| log | log ε|) (5.32)

and one can recognize the renormalized energy ITF of the regularized vorticity measure µ̃ on the right-
hand side, except that the domain is B(Rbulk) instead of B(RTF). However it is clear from Theorem
3.1 that B(R⋆) ⊂ B(Rbulk) for any fixed Ω0 and ε small enough since R⋆ does not depend on ε and
Rbulk → RTF when ε → 0. We can thus invoke Remark 3.2 to deduce that the infimum of the renormalized
energy appearing on the right-hand side of (5.32) (taken with respect to µ̃) is precisely | log ε|2ITF, so
that one has

EGP ≥ ÊGP + ITF| log ε|2 −O (| log ε| log | log ε|) ,
which concludes the proof of Proposition 5.1 and thus of Theorem 2.1.

5.5 Convergence of the Vorticity Measure

It is now a short way to the proof of Theorem 2.2. We apply the stability estimate (3.8) to the renormalized
energy appearing in (5.32), with integration domain restricted to B(Rbulk). Since such an energy has the
same infimum and minimizer as ITF (see again Remark 3.2),

EGP ≥ ÊGP + | log ε|2
(

ITF +

∫

B(Rcut)

1

2ρTF
|∇hµ̃−µ⋆ |2

)

(

1− C
log | log ε|
| log ε|

)

−O(ε∞)

where for any measure ν we denote now by hν the solution of

{

−∇
(

1
ρTF∇hν

)

= ν, in B(Rbulk),

hν = 0, on ∂B(Rbulk).
(5.33)

Combining this with the energy upper bound of Proposition 4.1, we obtain

C
log | log ε|
| log ε|1/2 ≥

∫

B(Rcut)

1

ρTF
|∇hµ̃−µ⋆ |2 (5.34)

which clearly implies that

sup
φ∈C1

c (B(Rbulk))

∣

∣

∣

∣

∫

B(Rbulk)

(µ̃− µ⋆)φ

∣

∣

∣

∣

(
∫

B(Rbulk)

1

ρTF
|∇φ|2

)1/2
≤ C

(

log | log ε|
| log ε|1/2

)1/2

. (5.35)
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Indeed the estimate (5.34) together with (5.33) imply that, for any differentiable function φ with compact
support strictly contained in B(Rcut),

∣

∣

∣

∣

∫

B(Rbulk)

(µ̃− µ⋆)φ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B(Rbulk)

1

ρTF
∇hµ̃−µ⋆ · ∇φ

∣

∣

∣

∣

≤ C

(

log | log ε|
| log ε|1/2

)1/2(∫

B(Rbulk)

1

ρTF
|∇φ|2

)1/2

, (5.36)

by the Cauchy-Schwarz inequality. Note that we have also vindicated the claim contained in Remark 2.3
that the regularized vorticity measure can be estimated in a better norm that µ.

Finally, combining (5.35) with Lemma 5.1, we obtain

sup
φ∈C1

c (B(Rbulk))

∣

∣

∣

∣

∫

B(Rbulk)

(µ− µ⋆)φ

∣

∣

∣

∣

(
∫

B(Rbulk)

1

ρTF
|∇φ|2

)1/2

+ ‖∇φ‖L∞(B(Rbulk)

≤ C

(

log | log ε|
| log ε|1/2

)1/2

where µ is defined in (2.13).

Appendix

In this Appendix we collect some useful but technical estimates. Most of them have already been proven
in very similar contexts so, for the sake of brevity, we keep the proofs as short as possible, referring to
other papers for full details.

We start by investigating the properties of g, i.e., the minimizer of ÊGP. By standard arguments one
can show that g is unique, smooth, positive, radial and decreasing and it solves the variational equation

− g′′ − r−1g′ + rsg + 2ε−2g3 = ε−2λ̂GPg, (A.1)

for r ∈ R+.
The evaluation of ÊGP on a suitable regularization of

√

ρTF as well as the trivial lower bound ÊGP ≥
ETF yield the estimate

ÊGP = ETF +O(| log ε|), (A.2)

which in turn implies the convergence of g2 to ρTF and a similar estimate of the difference between the
chemical potentials:

∥

∥g2 − ρTF
∥

∥

L2(R2)
≤ O(ε

√

| log ε|),
∣

∣

∣
λ̂GP − λTF

∣

∣

∣
≤ O(ε

√

| log ε|). (A.3)

A very simple investigation of the variational equation (A.1) shows that the maximum of g is bounded

by the chemical potential λ̂GP and thus by a constant, i.e.,

‖g‖L∞(R2) ≤ O(1). (A.4)

The next result is an improvement of the estimate of the difference g2 − ρTF:

Proposition A.4 (Pointwise estimate of g2).
Let Ω = Ω0| log ε| with Ω0 > 0 fixed, then

sup
r∈[0,RTF−ε2/3| log ε|2/3]

∣

∣g2(r) − ρTF(r)
∣

∣ ≤ O(ε2/3| log ε|2/3). (A.5)
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Proof. The result has already been proven in a slightly different setting in [CRY, Proposition 2.6] (see
also [AAB, IM1] for similar results) but we repeat the crucial steps for convenience of the reader.

The result is obtained through a local analysis of the variational equation (A.1), which can be rewritten
in the form −∆g = 2ε−2(ρ̃− g2)g, with

ρ̃(r) :=
1

2

[

λ̂GP − rs
]

. (A.6)

Note that in the ball B(RTF − 1
2ε

2/3| log ε|2/3) one has the lower bound ρ̃(r) ≥ Cε2/3| log ε|2/3, since
∣

∣ρ̃(r) − ρTF(r)
∣

∣ ≤ O(ε
√

| log ε|) ≪ ρTF(r) = O(ε2/3| log ε|2/3), if r ≤ RTF − 1

2
ε2/3| log ε|2/3, (A.7)

by (A.3).
Now we consider an interval [r0 − δ, r0 + δ] with

δ =
1

2
ε2/3| log ε|2/3,

for some 1
2ε

2/3| log ε|2/3 ≤ r0 ≤ RTF − ε2/3| log ε|2/3. In this region it is possible to construct explicit
super- (see [CRY, Eq. (2.36)] or [AS, Proof of Proposition 2.1]) and sub-solutions (see [CRY, Eq. (2.47)]
or [Ser]) to (A.1), which provide the estimates

ρ̃ (r0 + δ) (1 +O(ε∞)) ≤ g2(r0) ≤ ρ̃ (r0 − δ) (1 +O(ε∞)) ,

where we have also exploited the fact that ρ̃ is decreasing. It remains now to replace ρ̃(r0± δ) with ρ̃(r0),
which yields an error of order ε2/3| log ε|2/3 and use (A.7).

Another important property of g is its exponential decay outside the support of ρTF, i.e., for r > RTF:

Proposition A.5 (Exponential decay of g).
Let Ω be as in Proposition A.4, then there exists two constants c > 0 and C < ∞ such that for any
r ≥ RTF + ε2/3

g2(r) ≤ Cε2/3| log ε|2/3 exp
{

−c(r −RTF)

ε2/3

}

. (A.8)

Proof. It suffices to notice that W (r) := c1ε
1/3| log ε|1/3 exp{−c2(r − RTF)/ε2/3} is a supersolution to

(A.1) for r ≥ RTF + ε2/3 and for some constants c1, c2 with c2 > 0 and c1 < ∞: Indeed at the boundary
by (A.5)

W (RTF + ε2/3) = c1ε
1/3| log ε|1/3e−c2 ≥ g(r), for r ≥ RTF,

if we pick c1 = O(1) large enough. Moreover W satisfies −∆W + c22ε
−4/3W ≥ 0. On the other hand

(A.1) yields −∆g + Cε−4/3g ≤ 0 because ρ̃ ≤ −Cε2/3 in the same region, so that W is a supersolution
for c2 equal to

√
C > 0 and the result is proven.

We now turn to properties of ΨGP, that we summarize in

Proposition A.6 (Pointwise estimates of ΨGP).
Let Ω be as in Proposition A.4, then there exists two constants c > 0 and C < ∞ such that for any
r ≥ RTF + ε2/3

|ΨGP(r)|2 ≤ Cε2/3| log ε|2/3 exp
{

−c(r −RTF)

ε2/3

}

. (A.9)

Moreover, there is a constant C such that |ΨGP(r)| ≤ C uniformly in R2.

Proof. The proof is essentially the same as that of Proposition A.5 plus some standard trick to extract a
differential inequality for |ΨGP|. The reader can consult [AAB, Proposition 2.5], [IM1, Proposition 3.2]
or [CRY, Section 2.2] where similar results are proved.



Correggi, Rougerie – Inhomogeneous Vortex Patterns in BECs 39

References

[ARVK] J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of Vortex Lattices
in Bose-Einstein Condensates, Science 292, 476–479 (2001).

[AAB] A. Aftalion, S. Alama, L. Bronsard, Giant Vortex and the Breakdown of Strong Pinning
in a Rotating Bose-Einstein Condensate, Arch. Rational Mech. Anal. 178, 247–286 (2005).

[AB] A. Aftation, X. Blanc, Vortex Lattices in Rotating Bose-Einstein Condensates, SIAM J.
Math. Anal. 38, 874–893 (2006).

[ABD] A. Aftalion, X. Blanc, J. Dalibard, Vortex Patterns in a Fast Rotating Bose-Einstein
Condensate, Phys. Rev. A 71, 023611 (2005).

[AJR] A. Aftalion, R.L. Jerrard, J. Royo-Letelier, Non-Existence of Vortices in the Small
Density Region of a Condensate, J. Funct. Anal. 260, 2387–2406 (2011).

[ASS] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of
superconductivity, J. Maths Pures Appl. 80, 339–372 (2001).

[ABM] S. Alama, L. Bronsard, V. Millot, Gamma-convergence of 2D Ginzburg-Landau functionals
with vortex concentration along curves, J. Anal. Math. 114, 341 (2011).
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[BSSD] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Fast Rotation of a Bose-Einstein Condensate,
Phys. Rev. Lett. 92, 050403 (2004).
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