
HAL Id: hal-00696072
https://hal.science/hal-00696072

Submitted on 10 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Discussion on Parallelization Schemes for Stochastic
Vector Quantization Algorithms
Matthieu Durut, Benoît Patra, Fabrice Rossi

To cite this version:
Matthieu Durut, Benoît Patra, Fabrice Rossi. A Discussion on Parallelization Schemes for Stochastic
Vector Quantization Algorithms. 20-th European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning (ESANN 2012), Apr 2012, Bruges, Belgium. pp.477-482.
�hal-00696072�

https://hal.science/hal-00696072
https://hal.archives-ouvertes.fr


A Discussion on Parallelization Schemes for
Stochastic Vector Quantization Algorithms

Matthieu Durut1,3, Benoit Patra2,3, Fabrice Rossi4

1- Telecom ParisTech - INFRES, 46 rue Barrault - Paris - France

2- Université Pierre et Marie Curie - LSTA, 4 place Jussieu - Paris - France

3- Lokad , 10 rue Philippe de Champaigne - Paris - France

4- SAMM, Université Paris I Panthéon-Sorbonne - 90 rue de Tolbiac - Paris - France

Abstract. This paper studies parallelization schemes for stochastic Vector
Quantization algorithms in order to obtain time speed-ups using distributed
resources. We show that the most intuitive parallelization scheme does
not lead to better performances than the sequential algorithm. Another
distributed scheme is therefore introduced which obtains the expected speed-
ups. Then, it is improved to fit implementation on distributed architectures
where communications are slow and inter-machines synchronization too
costly. The schemes are tested with simulated distributed architectures
and, for the last one, with Microsoft Windows Azure platform obtaining
speed-ups up to 32 Virtual Machines.

1 Introduction

Motivated by the problem of executing clustering algorithms on very large
datasets, we investigate parallelization schemes of the stochastic Vector Quantiza-
tion (VQ) method (also called online k-means). This procedure is known for its
good statistical properties but it does not exhibit the embarrassing parallelism of
the (batch) k-means. Given a satisfactory sequential implementation of the VQ
algorithm, we aim at speeding up its execution through a parallel implementation:
the ultimate goal is to reduce the wall time used by the method on a given dataset,
that is the time needed to reach some performance threshold, using more than
one computing unit. Theoretical parallel VQ algorithms are studied in [1]. The
aim of the present paper is to derive actual real world implementations.

The VQ technique computes a summary of a dataset {zt}nt=1 of d dimensional
samples with κ prototypes, w = (w1, . . . , wκ) ∈

(
Rd
)κ

. Starting from a random

initial w(0) ∈
(
Rd
)κ

and given a series of positive steps (εt)t>0, VQ produces
a series of w(t) by updating w prototype by prototype. More precisely, with

l(t) = argmini=1,...,κ

∥∥z{t+1 mod n} − wi(t)
∥∥2, we have

w(t+ 1)i =

{
w(t)i when i 6= l(t)

w(t)i − εt+1(w(t)i − z{t+1 mod n}) when i = l(t)
, (1)

where the mod operator stands for the remainder of an integer division operation.
A theorem about almost sure convergence of the VQ procedure is proved in [2].
It is well known that the VQ algorithm belongs to the class of stochastic gradient
descent algorithms (see [2] for instance).



This paper follows the VQ ideas presented in [1]. We assume having access to
M computing entities, each of them executing concurrent VQ procedures. These
executions are performed on a dataset, split among the local memory of the
computing instances, and represented by the sequences {zit}nt=1, i ∈ {1, . . . ,M}.
The prototype iterations computed by the VQ techniques on each node are
denoted by {wi(t)}∞t=0 and called versions. We use the following normalized
criterion to measure the speed-up ability of our investigated schemes.

Cn,M (w) =
1

nM

M∑
i=1

n∑
t=1

min
`=1,...,κ

∥∥zit − w`∥∥2, w ∈
(
Rd
)κ
. (2)

The rest of the paper is organized as follows. First, Section 2 provides
empirical evidences that the most simple scheme cannot bring speed-ups. Then,
some insights to explain the previous non satisfactory situation are provided in
Section 3. Consequently, we design a new scheme and prove by practice its ability
to bring speed-ups. Finally, in Section 4, we present an asynchronous adaptation
of this latter scheme which fits better slow communication architectures such as
Cloud Computing.

Notice that the proposed algorithms are tested using simulated distributed
architecture and synthetic vector data1, but our conclusions are more sensitive
to the loss function smoothness and convexity than to the data choice.

2 A first distributed scheme

Our investigation starts with the most intuitive parallelization scheme. Each
computing resource starts with the same initial prototypes (a.k.a., versions):
w1(0) = . . . = wM (0). Then each machine applies the sequential VQ to its
subset of the dataset. Once in a while, prototypes are synchronized: when τ data
points have been processed by each concurrent processor, a shared version of the
prototypes is computed as follows (here for the first synchronization event):

wsrd =
1

M

M∑
j=1

wj(τ). (3)

The shared version is then broadcasted to each processing unit. In the case of a
smooth convex loss function, distributed stochastic gradient descent algorithms
with averaging of local results provide a speed-up in comparison of the sequential
algorithm (see [3]). Figure 1 shows a typical evolution through wall time of the
quantization error, obtained with an execution of the scheme on a simulated
parallel implementation in which communications are instantaneous. It shows
up that in our non smooth and convex loss function case, multiple resources do
not bring speed-ups for convergence. Even if more data are processed, no gain in
term of wall clock time is provided using this parallel scheme.

1The source code is available at http://code.google.com/p/clouddalvq/. Details about
the artificial data generator are available in Section 4.2 of http://www.lsta.upmc.fr/doct/
patra/publications/PhDMain.pdf.



Figure 1: Charts of performance curves for iterations (3) with τ = 10 and different
number of computing entities: M = 1, 2, 10.

3 Towards a better scheme

The investigation of the previous non-satisfactory result starts by rewriting both
the sequential and the distributed scheme. Let us first introduce H(z, w) defined
by

H(z, w) =
(

(w` − z)1{l=argmini=1,...,κ‖z−wi‖2}
)
1≤`≤κ

. (4)

Then, a series of the sequential VQ iterations (1) can be rewritten:

w(t+ 1) = w(t− τ + 1)−
t∑

t′=t−τ+1

εt′+1H
(
z{t′+1 mod n}, w(t′)

)
, t ≥ τ . (5)

Then, just after a synchronization (defined by t mod τ = 0 and t > 0), for all
i ∈ {1, . . . ,M}, the sequential VQ iterations on each computational resource can
be rewritten as follows

wi(t+ 1) = wi(t− τ + 1)−
t∑

t′=t−τ+1

εt′+1

 1

M

M∑
j=1

H
(
zj{t′+1 mod n}, w

j(t′)
) .

(6)
Assuming that wj(t′) ≈ wi(t′), for all (i, j) ∈ {1, . . . ,M}2 and t′ ≥ 0, the
mean in parenthesis is an estimator of the gradient of the distortion at wi(t′).
Consequently, the two algorithms induced by iterations (5) and (6) can be thought
as stochastic gradient descent procedures with different estimators of the gradient
but driven by the same learning rate which is given by the sequence (εt)t>0.

The convergence speed of a non-fixed step gradient descent procedure is
essentially driven by the decreasing speed of the sequence of steps. The choice
of this sequence is subject to an exploration/convergence trade-off. Since the
two procedures above share the same learning rate with respect to the iterations
t ≥ 0, they share the same convergence speed with respect to the wall clock time
(time measured by an exterior observer). Yet, the distributed scheme of Section 2



has a much lower learning rate with respect to the number of samples processed,
favoring exploration to the detriment of the convergence. The multiple resources
therefore lead to better exploration but to similar convergence speed with respect
to wall clock time.

As we assume to have a satisfactory VQ implementation, the series of steps
(εt)t>0 is supposed to be adapted to the dataset. Consequently we should seek
for a distributed scheme that have the same learning rate evolution in term of
processed samples and which convergence speed with respect to iterations is
accelerated. Denoting

∆j
t1→t2 =

t2∑
t′=t1+1

εt′+1H
(
zj{t′+1 mod n}, w

j(t′)
)
, j ∈ {1, . . . ,M} and t2 > t1 ≥ 0.

(7)
At time t = 0, w1(0) = . . . = wM (0) = wsrd. For all i ∈ {1, . . . ,M} and all t ≥ 0,
consider the distributed scheme given by

witemp = wi(t)− εt+1H
(
zi{t+1 mod n}, w

i(t)
)

wi(t+ 1) = witemp if t mod τ 6= 0 or t = 0,{
wsrd = wsrd −

∑M
j=1 ∆j

t−τ→t
wi(t+ 1) = wsrd

if t mod τ = 0 and t ≥ τ.

(8)
The main difference between the two parallel schemes consists in the way results
are merged in the reducing phase (described by the braced inner equations): here
we apply the translation calculated by each parallel VQ to the current shared
version of the prototypes, rather than averaging this translation. The results of
a typical application of this scheme are displayed in the charts of Figure 2. The
charts show that substantial speed-ups are obtained with distributed resources.
The acceleration is greater when the reducing phase is frequent. Indeed, if τ is
large then more autonomy has been granted to the concurrent executions, they
could be attracted to different regions that would slow down the consensus and
the convergence.

4 A model with stochastic delays

The previous parallelization schemes do not deal with communication costs
introduced by update exchanges between machines. In the context of cloud
computing, no efficient shared memory is available and these costs introduce
delays. The effect of delays for parallel stochastic gradient descent has already
been studied (see for instance [4]) but for a computing architecture endowed with
an efficient shared memory. Moreover, the unreliability of the cloud computing
hardware introduces strong straggler issues and makes the synchronization process
inappropriate. In this subsection, we improve the model of iterations (8) with
random communication costs that follow a geometric distribution and we remove
the synchronization process of reducing phase, resulting in the more realistic



Figure 2: Charts of performance curves for iterations (8) with τ = 10 and different
number of computing entities: M = 1, 2, 10.

iterations (9) below. For each time t ≥ 0, let τ i(t) be the latest time before t
when the unit i finished to send its updates and received the shared version. At
time t = 0 we have w1(0) = . . . = wM (0) = wsrd, and for all i ∈ {1, . . . ,M} and
all t ≥ 0,



witemp = wi(t)− εt+1H
(
zi{t+1 mod n}, w

i(t)
)

wi(t+ 1) = witemp if t 6= τ i(t)

wi(t+ 1) = wsrd(τ i(t− 1))−∆i
τ i(t−1)→t if t = τ i(t)

wsrd(t+ 1) = wsrd(t)−
∑

j,t=τj(t)

∆j
τj(τj(t−1)−1)→τj(t−1)

(9)

Figure 3: Charts of performance curves for iterations (9) with τ = 10 and different
number of computing entities: M = 1, 2, 10.

There are no more synchronization between processing units: each machine
uploads its updates and downloads the shared version as soon as its previous
uploads and downloads are completed. A dedicated unit permanently modifies



the shared version with the latest updates received from the other machines
without any synchronization barrier. The Figure 3 shows that the introduction
of small delays and asynchronism only slightly impacts performances, compared
to the scheme given by equations (8). The Figure 4 shows the results obtained
by our cloud implementation2 of the iterations (9) using 32 real processing units.
A future paper will describe more precisely this cloud implementation.

Figure 4: Charts of performance curves for iterations (9) on our cloud implemen-
tation and different number of computing entities.

5 Conclusion

In this paper we show that the naive parallelization scheme proposed in Section 2
does not provide better performance than the sequential scheme. This surprising
result derives from the fact that our first parallel scheme leads to a decrease
of the learning rate per data points processed. We therefore propose a new
parallelization scheme relying on asynchronous updates of a common ”shared
version”. This latter algorithm is very well suited for parallel computation on slow
communication networks such as cloud computing platforms. Our implementation
on Azure shows significant scale-up, up to 32 machines.

References

[1] Benôıt Patra. Convergence of distributed asynchronous learning vector quantization
algorithms. Journal of Machine Learning Research 12 (2011), pages 3431–3466, 2011.

[2] Gilles Pagès. A space vector quantization for numerical integration. Journal of Applied
and Computational Mathematics, 89:1–38, 1997.

[3] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. CoRR, abs/1012.1367, 2010.

[4] Martin Zinkevich, Alex Smola, and John Langford. Slow learners are fast. In Advances in
Neural Information Processing Systems 22, pages 2331–2339. 2009.

2http://code.google.com/p/clouddalvq/


