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ABSTRACT

This paper deals with the problem of segmenting an image

with active contours. We explain how recent convexification

methods allow now to use active contours without level sets

with simple and efficient first order schemes. We recall dif-

ferent algorithms proposed in the literature, and we propose

a new variant. Numerical experiments in 2D and 3D confirm

the interest of the approach.

Index Terms— Segmentation, active contours, convexifi-

cation, total variation

1. INTRODUCTION

Segmentation remains one of the main problem in image pro-

cessing . Numerous methods have been proposed to tackle

this issue during the last 25 years. A very popular class of

approaches are the one relying on active contour description

with snakes [1, 2], level set representations [3, 4] or graph

modeling [5, 6]. Our topic here is to sum up the different

variational approaches that have raised so far with respect

to active contour models. More precisely, we fill focus on

the simple binary segmentation problem, known as the two-

phase piecewise constant Mumford-Shah problem, defined as

follows. Let us denote by I : x ∈ Ω 7→ [0; 1] a gray-scale

image of interest defined on the domain Ω ⊂ R
2. The binary

segmentation problem consists in estimating a binary mask

u : x ∈ Ω 7→ {0; 1}, that separates I into two different areas

corresponding to 2 mean colors c1 and c2. The problem can

be formalized as a minimization problem:

(u∗, c∗1, c
∗
2) = argmin

u∈{0;1}|Ω|,c1∈[0;1],c2∈[0;1]

J(u, c1, c2),

where the energy J is defined as:

J(u, c1, c2) =

∫

Ω

|Du|+ λ

∫

Ω

|I(x)− c1|2u(x)dx

+ λ

∫

Ω

|I(x)− c2|2(1− u(x))dx,

(1)

and λ ≥ 0 weights the influence of the data term with respect

to the penalization of the perimeter of the segmented area

Su = {x, u(x) = 1}. As u is binary, the contour length |∂Su|
is given by the total variation of u,

∫

Ω
|Du| [7]. Notice that in

the case when u is smooth, then
∫

Ω
|Du| =

∫

Ω
|∇u| dx. The

two last energy terms model the image I with two homoge-

neous regions characterized by c1 in the segmented area Su

and c2 in its complementary region Ω\Su = {x, u(x) = 0}.

In the case when c1 and c2 are fixed, it is a straightforward

application of the direct method of calculus of variations to

show that there exists a minimizer for problem (1) [8].

Considering the variables separately, the energy is convex

in u and in (c1, c2). It is nevertheless not convex in (u, c1, c2).
As a consequence, an alternative minimization scheme has to

be considered. When u is fixed, an explicit expression of the

optimal values of c1 and c2 can be computed by derivating (1).

On the other hand, minimizing such energy with respect to u
and within a variational framework is limited by two main

technical issues. First of all, the binary unknown u does not

live in a continuous space. Then, the analytic derivation of the

regularization term gives the curvature div
(

∇u
|∇u|

)

, that is not

defined everywhere and involves numerical approximations at

points x such that |∇u(x)| = 0.
In the following, we will chronologically review some

main approaches allowing to compute u within a variational

framework, and propose a new algorithm (11). It is inter-

esting to see how the two previously introduced issues have

been successively solved, and how the resulting algorithms

are each time not only more accurate but also faster, more

stable and simpler to parametrize.

2. CHAN-VESE LEVEL SET FORMULATION

In their seminal paper [4], Chan and Vese proposed to solve
this problem using a level set formulation. Introducing the
surface φ whose 0 level represents the contour of interest, we
can define the binary function u(x) = H(φ(x)), where H(.)
is the Heaviside function that is 1 if its argument is positive
and 0 otherwise. Reformulating problem (1) in terms of φ,
that now lives in a continuous space, we get:

J(φ) =

∫

Ω

|∇H(φ(x))|dx+ λ

∫

Ω

|I(x)− c1|
2H(φ(x))dx

+ λ

∫

Ω

|I(x)− c2|
2(1−H(φ(x))))dx.

(2)

The contour length penalization term can be then rewritten

as:
∫

Ω
|∇H(φ(x))|dx =

∫

Ω
δ(φ)|∇φ(x)|dx, where δ(y) (the

derivative of the Heaviside function) is the Dirac distribution.



For numerical purposes due to the computation of the Dirac

distribution, a regularization of the Heaviside function is

needed. Given ǫ > 0, the final modeling considers C2 ap-

proximations Hǫ(y) and δǫ(y) to extend the support of these

functions and thus be able to perform discrete computations.

In order to deal with the non differentiability of the Total

Variation, a regularization of the term may also be relevant

by defining |∇φ|η =
√

φ2
x + φ2

y + η2, for 0 < η << 1.

With all these approximations, one can compute the
Euler-Lagrange derivatives to design an iterative minimiz-
ing algorithm. Introducing an artificial time step τ and given
an initialization φ0(x), the gradient descent approach leads
to, for k ≥ 0: φk+1 = φk − τ∂φkJ(φk). We then have

φk+1= φk+τδǫ(φ
k)

[

div

(

∇φk

|∇φk|η

)

−λ(I − c1)
2+λ(I − c2)

2

]

.

(3)

Notice that the level set function has to be updated into a

signed distance function to get an accurate representation of

the contour length. As the level set evolves in the neighbor-

hood of its 0 level, such method estimates a local minimum

of the energy function that depends on the initialization φ0.

3. NIKOLOVA-ESEDOGLU-CHAN CONVEX

FORMULATION

More recently, it was proposed in [8] to relax the binary prob-
lem and let u(x) takes its values in the interval [0; 1]. The re-
laxed energy (1) is then convex in u, defined over the convex

function set A := {u ∈ BV (Ω, [0; 1]|Ω|)}. Hence a global
optimal solution u∗ may be computed using again a gradient
descent scheme:

uk+1=PA

(

uk + τ

(

div

(

∇u

|∇u|η

)

−λ(I − c1)
2+λ(I − c2)

2

))

,

(4)

the solution being projected onto the the convex set A after

each iteration through PA(u) = min(max(u, 0), 1)1.

To recover a binary map u from the global optimal solu-

tion u∗ of the relaxed energy function, one can use a useful

theorem (see [8, 9]), based on the co-area formula. It shows

that for almost any threshold µ ∈ (0; 1), the characteristic

function uµ = H(u∗ − µ) is also a global minimum of the

original binary energy function (1). Remark that the solution

u∗ is in practice binary almost everywhere, but there is no

proof of such a conjecture. This remarkable result has led to

numerous applications in computer vision (see e.g. [10]).

Notice that the problem has been reformulated in [11] in

order to be convex with respect to u, c1 and c2. Using the

strategy of [9], the problem complexity is increased by adding

two new dimensions corresponding to the discrete possible

values of c1 and c2. We will not detail this approach, as it

involves a huge computational cost for accurate estimations

of c1 and c2.

1The authors also propose a non constraint formulation of the problem

that directly deals with values of u in [0; 1].

4. DUAL FORMULATION OF THE CONVEX

PROBLEM

The previous formulation still involves the regularization of
the Total Variation |∇u|η , defined for functions u taking their
values in the continuous interval [0; 1]. Assuming periodic or
homogeneous Dirichlet boundary conditions over ∂Ω, an idea
is then to consider the dual formulation of the Total Variation
given by [12]:

∫

Ω

|Du| = sup
z∈B

∫

Ω

u div(z)dx (5)

where the dual variable z is a vector defined in the unit circle

with B = {z = (z1, z2), |z| =
√

z21 + z22 ≤ 1}. If u is

regular, then we have
∫

Ω
|Du| = sup

z∈B

∫

Ω
∇u · zdx. This

dual formulation allows to represent with z the unit vector

direction of ∇u and will be the key point for dealing with the

non differentiability that happens when |∇u| = 0. Fixing c1
and c2, we get the following minimization problem:

(u∗, z∗) = argmin
u∈A

argmax
z∈B

J(u, z),

where the energy J is defined as:

J(u, z) =

∫

Ω

u div(z)dx+ λ

∫

Ω

|I(x)− c1|
2u(x)dx

+ λ

∫

Ω

|I(x)− c2|
2(1− u(x))dx.

(6)

This energy is now continuously differentiable in (u, z).

4.1. Minimization and convergence

Following the works of Pock and al. [10, 13], the energy (6)
can be minimized with the parallelizable Arrow-Hurwicz al-
gorithm [14], also known as the first-order Primal-Dual prox-
imal point method [12, 15, 16], that consists of alternate max-
imizations over z ∈ B and minimizations over u ∈ A. Intro-
ducing two time steps τu and τz and starting from an initial-
ization (u0, z0), the process reads, for k ≥ 0:
{

z
k+1= PB(z

k +τz∇uk)

uk+1= PA(uk+τu(div(z
k+1)−λ(I − c1)

2 +λ(I − c2)
2)),

(7)

where the projections over the convex set B is given by:

PB(z) =

{

z if |z| ≤ 1
z

|z| otherwise.
(8)

It was recently demonstrated in [13] that the previous Primal-
Dual algorithm converges to the exact optimal solution u∗ at

the rate O(1/
√
N), for iteration N . It was shown that the

Primal-Dual (7) corresponds to the specific case θ = 0 of
the more general algorithm defined for any θ ∈ [0; 1] that
converges at the rate O(1/N) for θ > 0:






z
k+1= PB(z

k +τz∇uk)

ũk+1= PA(ũk+τu(div(z
k+1)−λ(I − c1)

2 +λ(I − c2)
2))

uk+1= ũk+1 + θ(ũk+1 − ũk),
(9)

with the initialization ũ0 = u0 and some conditions over τu
and τz that are detailed below.



4.2. Numerical implementation

In order to implement all the above mentioned algorithms,
we need to describe the discretization of the involved gra-
dient and divergence operators. To have an exact represen-
tation of the relation (5), the discretization of the following
scalar product must be checked: 〈u, div(z)〉 = −〈∇u, z〉,
∀u ∈ A, z ∈ B. We now consider the discrete regular grid
(i, j), 1 ≤ i ≤ L, 1 ≤ j ≤ M representing the domain Ω.
Looking at the discrete gradient operator as a vector of ma-
trices ∇ = [Dx;Dy]

T , the chosen discretizations should

check: 〈Dxu, z1〉 + 〈Dyu, z2〉 =
〈

u,DT
x z1 +DT

y z2)
〉

.
To that end, one can consider finite differences and take
∇u(i, j) = [u+

x (i, j), u
+
y (i, j)]

T where the gradient with
respect to the first dimension reads

u+
x (i, j) =

{

u(i+ 1, j)− u(i, j) if 1 ≤ i < M,
0 if i = M.

The corresponding divergence operator is given by div(z) =
(z1)

−
x + (z2)

−
y , the gradient over the first dimension taken as:

z−x (i, j) =







z(i, j) if i = 1,
z(i, j)− z(i− 1, j) if 1 < i < M,
−z(i− 1, j) if i = M.

4.3. Narrow band: local minima vs dimension reduction

When dealing with large images or even 3D images, as can
be provided by MRI, local convergence can be an advantage
to achieve segmentation in real time. With an adequate ini-
tialization, the local Chan and Vese method can segment a
specific object even if there exists other regions in the image
with similar color properties. On the other hand, the convex
formulations permit to compute a global optimal solution but
can not segment one single object. In this convex case, as the
obtained solution should be binary almost everywhere, the al-
gorithm will mainly acts at the boundaries of the segmented
regions after a few iterations,. For these reasons, Baeza et al.
proposed in [17] to define a narrow band method in order to
speed up the process in case of high dimensional problems.
However, such approach does not permit to compute a global
minimum anymore. The corresponding intuitive algorithm is
as follows. Lets u0 be an initial binary segmentation, a nar-
row band B0 ⊂ Ω is defined in the spatial domain, around the
boundaries ∂Su0

of the corresponding region Su0
. The size

of the narrow band is parametrized with β > 0 as:

B0 = {x ∈ Ω, min
y∈Su0

|x− y| < β}.

The recursive algorithm then consists in computing a first so-
lution u∗ evolving only in B0 and with fixed values in Ω\B0.
At convergence, the solution is binarized to obtained u1 that
is used to define a new narrow band B1 and so on... An ad-
ditional term to the energy is necessary to make the process
converge to a binary solution and prevent from narrow band
cycles. At narrow iteration l performing into the band Bl de-
fined at the neighborhood of the binary previous solution ul,
and introducing γ > 0, the energy to minimize for l ≥ 0 is:

J(u, z) =

∫

Bl

u div(z)dx+ λ

∫

Bl

|I(x)− c2|
2(1− u(x))dx

+ λ

∫

Bl

|I(x)− c1|
2u(x)dx+

γ

2

∫

Bl

|u− ul|
2dx,

(10)

with u(x) = ul(x), for x ∈ Ω\Bl. The three last terms
of this energy that correspond to the data now forms a uni-
formly convex operator with respect to u, with convexity pa-
rameter γ. As a consequence, the accelerated version of the
Chambolle-Pock algorithm [13] can be considered to reach
the rate of convergence O(1/N2) for the minimization inside
the narrow band. Considering τ0uτ

0
z

< 1/8 and initializing
u0 = ũ0 = ul, the new algorithm to find the optimal solution
inside the band Bl reads:



















z
k+1= PB(z

k + τk
z
∇uk)

ũk+1= PA

(

ũk+τk

u
(div(zk+1)−λ(I−c1)

2+λ(I−c2)
2+γul)

1+τk
u
γ

)

θk = 1/
√

1 + 2γτk
u , τ

k+1
u = θkτk

u , τ
k+1
z

= τk
z
/θk

uk+1= ũk+1 + θk(ũk+1 − ũk).
(11)

At convergence, the obtained solution u∗ is binarized to

define the next estimate ul+1. To ensure the convergence of

such an algorithm, the authors of [17] also showed that the

binarization should be done carefully. More precisely, one

should take ν << 1 and choose the binarization threshold µ
from among the two possible values µ = ν and µ = 1 −
ν, the one corresponding to the smaller energy (10). Notice

that in practice, taking a fixed threshold does not perturb the

convergence process.

5. EXPERIMENTS AND COMPARISONS

We compare the following algorithms: CV stands for the

Chan-Vese approach (equation (3)); NEC stands for the

Nikolova-Esedoglu-Chan approach (equation (4)); AH stands

for the Arrow Hurwicz primal dual algorithm (7); CP stands

for the Chambolle-Pock algorithm (9).

Fig. 1 presents a first segmentation result on a noisy syn-

thetic image (c1 = 50, c2 = 100 and σ = 35). The non

convex CV algorithm is limited by the initialization and can-

not segment entirely the objects, the level set evolution be-

ing stopped by local noisy fronts (the initialization choice can

also have a dramatic influence on the computation time). Ta-

ble 1 (left) displays comparison results between CV, CEN,

AH and CP algorithms for noisy data obtained with σ = 15.

It gives the computation time with respect to the size of a syn-

thetic image. It shows that the primal dual approaches (AH

and CP) are clearly much faster than the other algorithms.

Table 1 (right) shows the evolution of the number of mis-

segmented pixels with respect to the SNR of the image. The

primal dual approaches (AH and CP) seem to be more robust.

Noisy image Initialization CV CP

Fig. 1. Examples of the 2D segmentations obtained with the CV

and the convex approach (CP) on a synthetic image.

Of course, c1 and c2 can be updated within the iterations

as in [4] (but problem (6) is not convex with respect to u, z,

c1 and c2). Nevertheless, this has not been a problem from



size /method CV NEC AH CP

128×128 0.5 0.12 0.07 0.03

256×256 3.8 0.24 0.1 0.09

512×512 12.3 1.53 0.82 0.76

1024×1024 63 8.42 3.6 3.23

2048×2048 278 35.72 14.11 13.64

Table 1. Left: Computation time (in seconds) with respect to the

image size on a synthetic image. The primal dual approaches (AH

and CP) are much faster than the other ones. Right: Rate of mis-

segmented pixels with respect to the SNR of the image. The primal

dual approaches (AH and CP) are more robust.

a numerical point of view. Figure 2 shows such an example.

Fig. 3 presents a segmentation result on a real 3D image (only

2 layers are shown here). The narrow band method is useful

to deal with the high data dimension. Moreover, when using

a too large regularization term with CP algorithm, one gets an

over-smoothed segmentation result, whereas artifacts can be

kept in the segmentation results with a too small regulariza-

tion term. Thanks to the use of the narrow band method, we

can avoid both problems.

Cameraman CV CP

Fig. 2. Examples of the 2D segmentations obtained with the CV and

the convex approach (CP) on the cameraman image. Notice details

such as the eye which can be recovered with CP.

CP + narrow band CP CP
(λ = 0.1, γ = 0.1) (λ = 0.1) (λ = 0.12)

Fig. 3. Comparison of the 3D segmentations obtained with the CP

algorithm with or without the narrow band method. The segmen-

tation result is over-smoothed on the last image of the second row

and an artifact is kept in the segmentation result in the second image

of the first row. With the narrow band method both drawbacks are

avoided.

6. CONCLUSIONS

In this paper, we have presented robust and fast algorithms

based on convex functionals that deal with the binary segmen-

tation problem. As multiphase level sets, such approaches

can be easily extended to consider advanced image modeling.

From the experimental tests, the convex formulation is a very

reliable alternative to level sets methods.
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