
A ROBBINS-MONRO PROCEDURE FOR A CLASS OF MODELS
OF DEFORMATION

PHILIPPE FRAYSSE

Université de Bordeaux

Abstract. The paper deals with the statistical analysis of several data sets as-
sociated with shape invariant models with different translation, height and scaling
parameters. We propose to estimate these parameters together with the common
shape function. Our approach extends the recent work of Bercu and Fraysse to
multivariate shape invariant models. We propose a very efficient Robbins-Monro
procedure for the estimation of the translation parameters and we use these esti-
mates in order to evaluate scale parameters. The main pattern is estimated by a
weighted Nadaraya-Watson estimator. We provide almost sure convergence and
asymptotic normality for all estimators. Finally, we illustrate the convergence of
our estimation procedure on simulated data as well as on real ECG data.

1. INTRODUCTION

Statistic analysis of models with periodic data is a mathematical field of great
interest. Indeed, a detailed analysis of such models enables us to have a satisfactory
approximation of real life phenomena. In particular, semiparametric models are
often used to describe a large number of phenomena as Meteorology [22], road
traffic [2], [7] or children growth [8]. More precisely, all these examples are modeled
by a particular subclass of semiparametric models, called shape invariant models
[13]. Periodic shape invariant model is a semiparametric regression model with
an unknown periodic shape function. In this paper, we consider several data sets
associated with a common shape function and differing from each other by three
parameters, a translation, a height and a scale. Formally, we are interested in the
following shape invariant model

(1.1) Yi,j = ajf(Xi − θj) + vj + εi,j,

where 1 ≤ i ≤ n and 1 ≤ j ≤ p and the common shape function f is periodic. The
variables Xi are random, which generalizes the case of equi-distributed deterministic
variables studied for example in [7], [20] or [22]. The case where p = 1, a1 = 1 and
v1 = 0 has been previously investigated by Bercu and Fraysse [1] and we propose to
generalize their study to the multivariate case p ≥ 2 and nontrivial scale and height
parameters. We are interested in the parametric estimation of the height parameters
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v, the translation parameters θ and the scale parameters a, respectively given by

(1.2) v =

v1...
vp

 , θ =

θ1...
θp

 , a =

a1...
ap

 .

Our goal is also to estimate the common shape function f . Estimation of shifts
has lots of similarities with curve registration and alignment problems [18]. Analy-
sis of ECG curves [20] or the study of traffic data [2], [7] fall into this framework.
In [8], Gasser and Kneip propose to estimate the shifts by aligning the maxima of
the curves, their position being estimated by the zeros of the derivative of a ker-
nel estimate. In the case where aj = 1 and vj = 0, Gamboa et al. [7] provide a
semiparametric method for the estimation of the shifts. They use a Discrete Fourier
Transform to transform the model (1.1) into the Fourier domain. Then, they esti-
mate the shift parameters from the transformed model using M -estimation. This
M -estimate converges almost surely as the number of Fourier coefficients increases,
and they establish asymptotic normality of their estimator. The important con-
tribution of Vimond [22] generalizes this study, adding the estimation of scale and
height parameters. When the parameters θj are supposed to be random, Castillo
and Loubes [2] provide sharp estimators of the θj, following the approach of Dalalyan
et al. [4] in the Gaussian white noise framework. Then, they recover the unknown
density of the θj using a kernel density estimator. Trigano et al. [20] follow the
same approach and provide an application on ECG data. Note that they prove
asymptotic results when p goes to infinity contrary to [7] whose asymptotic results
are established when n goes to infinity. In this paper, we shall focus our attention
on asymptotic results related to n. More precisely, for the estimation of the θj’s, we
propose to make use of a multidimensional version of the Robbins-Monro algorithm
[19]. Assume that one can find a function φ : Rp → Rp, free of the parameter θ, such
that φ(θ) = 0. Then, it is possible to estimate θ by the Robbins-Monro algorithm

(1.3) θ̂n+1 = θ̂n + γnTn+1

where (γn) is a positive sequence of real numbers decreasing towards zero and (Tn) is
a sequence of random vectors such that E[Tn+1|Fn] = φ(θ̂n) where Fn stands for the
σ-algebra of the events occurring up to time n. Under standard conditions on the
function φ and on the sequence (γn), it is well-known [6] that θ̂n tends to θ almost
surely. The asymptotic normality of θ̂n may be found in [16] whereas the quadratic
strong law and the law of iterated logarithm are established in [15]. Results for
randomly truncated version of the Robbins-Monro algorithm are given in [12].

The second part of the paper concerns the nonparametric estimation of the re-
gression function f which represents the common behavior of every subject j. A
wide range of literature is available on nonparametric estimation of a regression
function. We refer the reader to [5], [21] for two excellent books on density and re-
gression function estimation. Here, we focus our attention on the Nadaraya-Watson
estimator [14] [24] of f . Our approach follows essentially the same lines as in [1].
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More precisely, we propose to make use of a weighted recursive Nadaraya-Watson
estimator [6] of f which takes into account the previous estimation of v, θ and a,
respectively by v̂n, θ̂n and ân. It is given, for all x ∈ R, by

(1.4) f̂n(x) =

p∑
j=1

ωj(x)f̂n,j(x)

with
f̂n,j(x) =

1

ân,j

∑n
i=1Wi,j(x) (Yi,j − v̂i−1,j)∑n

i=1Wi,j(x)

and

Wn,j(x) =
1

hn
K
(Xn − θ̂n−1,j − x

hn

)
,

where v̂n,j, θ̂n−1,j and ân,j are respectively the j-th component of v̂n, θ̂n−1 and ân.
Moreover, the kernel K is a chosen probability density function and the bandwidth
(hn) is a sequence of positive real numbers decreasing to zero. The main difficulty
arising here is that we have to deal with the additional term θ̂n inside the kernel K.

The paper is organized as follows. Section 2 presents the model and the hypothesis
which are necessary to carry out our statistical analysis. Section 3 is devoted to the
parametric estimation of the vector v, while Section 4 deals with our Robbins-Monro
procedure for the parametric estimation of θ. Section 5 concerns the parametric es-
timation of the vector a. In these three sections, we establish the almost sure conver-
gence of v̂n, θ̂n and ân as well as their asymptotic normality. A quadratic strong law
is also provided for these three estimates. Section 6 deals with the nonparametric
estimation of f . Under standard regularity assumptions on the kernel K, we prove
the almost sure pointwise convergence of f̂n to f . In addition, we also establish the
asymptotic normality of f̂n. Section 7 contains some numerical experiments on sim-
ulated and real data, illustrating the performances of our semiparametric estimation
procedure. The proofs of the parametric results are given is Section 8, while those
concerning the nonparametric results are postponed to Section 9. Finally, Section
10 is devoted to the identifiability constraints associated with the model (1.1).

2. MODEL AND HYPOTHESIS

We shall propose several natural identifiability constraints associated with the
model (1.1) given, for all 1 ≤ i ≤ n and 1 ≤ j ≤ p, by

Yi,j = ajf(Xi − θj) + vj + εi,j,

where, for all 1 ≤ j ≤ p, aj 6= 0. The noise (εi,j) is a sequence of independent
random variables with mean zero and variances E

[
ε2i,j
]

= σ2
j < +∞. In addition,

as in [1], we make the following hypothesis.

(H1) The observation times (Xi) are independent and identically distributed
with probability density function g, positive on its support [−1/2; 1/2]. In
addition, g is continuous, twice differentiable with bounded derivatives.

(H2) The shape function f is symmetric, bounded, periodic with period 1.
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Our goal is to estimate the parameters a, θ, v as well as the common shape function
f . However, the shape invariant model (1.1) is not always identifiable. Indeed, for
a given vector of parameters (a, θ, v) and a given shape function f , one can find
another vector of parameters (a∗, θ∗, v∗) and an other shape function f ∗ such that
for all 1 ≤ j ≤ p and for all x ∈ R,

(2.1) ajf(x− θj) + vj = a∗jf
∗(x− θ∗j ) + v∗j .

Härdle and Marron [10] or Kneip and Engel [11] were among the first to discuss
about identifiability. However, in most papers dealing with shape invariant models,
the identifiability is not so clear. Indeed, the identifiability conditions proposed by
some authors could be not as restrictive as it should be. For example, under the
conditions provided by Vimond [22], it is possible to find two different vectors of
parameters (a, θ, v) and (a∗, θ∗, v∗) satisfying their conditions and (2.1), while under
the conditions provided by Wang et al. [23], it is possible to find two different shape
functions f and f ∗ satisfying their conditions and (2.1). That is the reason why we
have chosen carefully the identifiability constraints. More precisely, we impose the
following conditions.

(H3)

∫ 1/2

−1/2
f(x)dx = 0,

(H4) a1 = 1, θ1 = 0 and max
1≤j≤p

|θj| < 1/4.

Hypothesis (H3) allows us to define uniquely the vj and the second constraint in
(H4) define uniquely the θj, while a1 = 1, θ1 = 0 implies that the first curve is taken
as a reference. These conditions are well-adapted to our framework. Note that (H3)
and (H4) could be replaced by (H′3) and (H′4) defined as

(H′3)
∫ 1/2

−1/2
f(x)dx = 0 and sup

x∈[0;1]
|f(x)| = 1,

(H′4) θ1 = 0, min
1≤j≤p

aj > 0 and max
1≤j≤p

|θj| < 1/2.

An other alternative could be to substitute the hypothesis (H4) by (H′′4) or (H′′′4 )
defined as

(H′′4) a1 = 1, θ1 = 0, min
1≤j≤p

aj > 0, max
1≤j≤p

|θj| < 1/2,

(H′′′4 ) a1 > 0, θ1 = 0,
∑p

j=1 a
2
j = p and max

1≤j≤p
|θj| < 1/4.

Finally, note that the hypothesis of symmetry of f is not necessary to ensure iden-
tifiability of the model (1.1) and it is possible to get rid of the symmetry assumption
on f , see Remark 4.3 below. Nevertheless, this hypothesis makes the estimation of
the internal shifts easier, as we shall see in Section 4. All those identifiability con-
ditions are discussed in Section 10.
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3. ESTIMATION OF THE EXTERNAL SHIFTS

Via (H2) and (H3), it is not difficult to see that

E
[
Yi,j
g(Xi)

]
= vj.

Then, a natural consistent estimator v̂n of v is given, for all 1 ≤ j ≤ p, by

(3.1) v̂n,j =
1

n

n∑
i=1

Yi,j
g(Xi)

.

In order to establish the asymptotic behaviour of v̂n, we denote by Y the vector

(3.2) Y =

Y1...
Yp

 ,

where
Yj = ajf(X − θj) + vj + εj,

with X a random variable sharing the same distribution as the sequence (Xn) and
for 1 ≤ j ≤ p, εj sharing the same distribution as the sequence (εi,j).

The asymptotic results for v̂n are as follows.

Theorem 3.1. Assume that (H1) to (H4) hold. Then, we have the a.s. convergence

(3.3) lim
n→+∞

v̂n = v a.s.

and the asymptotic normality

(3.4)
√
n (v̂n − v)

L−→ Np (0,Γ(v)) ,

where Γ(v) stands for the covariance matrix given by

Γ(v) = Cov
(

Y

g(X)

)
.

In addition, we also have the quadratic strong law

(3.5) lim
n→+∞

1

log(n)

n∑
i=1

(v̂i − v) (v̂i − v)T = Γ(v) a.s.

4. ESTIMATION OF THE INTERNAL SHIFTS

In all the sequel, we introduce an auxiliary function φ defined for all t ∈ Rp, by

(4.1) φ(t) = E

D(X, t)

a1f(X − θ1)
...

apf(X − θp)
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where D(X, t) stands for the diagonal square matrix of order p defined by

(4.2) D(X, t) =
1

g(X)
diag

(
sin(2π(X − t1)), . . . , sin(2π(X − tp))

)
.

Using the symmetry of f , the same calculations as in [1] lead, for all 1 ≤ j ≤ p, to

(4.3) E
[

sin(2π(X − tj))
g(X)

ajf(X − θj)
]

= ajf1 sin(2π(θj − tj))

where f1 stands for the first Fourier coefficient of f

f1 =

∫ 1/2

−1/2
cos(2πx)f(x) dx.

Consequently,

(4.4) φ(t) = f1

a1 sin(2π(θ1 − t1))
...

ap sin(2π(θp − tp))

 .

Throughout the paper, in order to avoid tedious discussion, we assume that f1 6= 0.
Roughly speaking, we are going to implement our Robbins-Monro procedure as in
[1] for each component of θ. More precisely, for all 1 ≤ j ≤ p, by noting φj(t) =
ajf1 sin(2π(θj − tj)), if |tj − θj| < 1/2, (tj − θj)φj(t) < 0 if sign(ajf1) > 0 and
(tj − θj)φj(t) > 0 otherwise. Moreover, denote K = [−1/4; 1/4]. Then, we define
the projection of x ∈ R on K by

πK(x) =


x if |x| ≤ 1/4,

1/4 if x ≥ 1/4,

−1/4 if x ≤ −1/4.

Let (γn) be a decreasing sequence of positive real numbers satisfying

(4.5)
∞∑
n=1

γn = +∞ and
∞∑
n=1

γ2n < +∞.

For the sake of clarity, we shall make use of γn = 1/n. Then, for 1 ≤ j ≤ p, we
estimate θj via the sequence (θ̂n,j) defined, for all n ≥ 1, by

(4.6) θ̂n+1,j = πK

(
θ̂n,j + γn+1sign (ajf1)Tn+1,j

)
where the initial value θ̂0 ∈ Kp and the random vector Tn+1 is given by

(4.7) Tn+1 = D(Xn+1, θ̂n)

Yn+1,1
...

Yn+1,p

 .

The almost sure convergence for the estimator θ̂n is as follows.
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Theorem 4.1. Assume that (H1) to (H4) hold. Then, θ̂n converges almost surely to
θ as n goes to +∞. In addition, for 1 ≤ j ≤ p, the number of times that the random
variable θ̂n,j + γn+1sign (ajf1)Tn+1,j goes outside of K is almost surely finite.

Remark 4.1. At first sight, the estimation procedure needs the knowledge of the
sign of ajf1 for all 1 ≤ j ≤ p. However, it is possible to do without. Indeed, denote
by (θ̂+n,j) the sequence defined, for n ≥ 1, as

θ̂+n+1,j = πK

(
θ̂+n,j + γn+1T

+
n+1,j

)
,

where

T+
n+1 = D(Xn+1, θ̂

+
n )

Yn+1,1
...

Yn+1,p

 ,

and by θ̂−n,j the sequence defined, for n ≥ 1, as

θ̂−n+1,j = πK

(
θ̂−n,j − γn+1T

−
n+1,j

)
,

where

T−n+1 = D(Xn+1, θ̂
−
n )

Yn+1,1
...

Yn+1,p

 .

Then, two events are possible. More precisely, for 1 ≤ j ≤ p,

lim
n→+∞

θ̂+n,j = θj and lim
n→+∞

|θ̂−n,j| = 1/4 a.s.

or
lim

n→+∞
θ̂−n,j = θj and lim

n→+∞
|θ̂+n,j| = 1/4 a.s.

Hence, for n large enough, the vector θ̂n which is considered is the vector whose
absolute value of the j-th component is given by min(|θ̂+n,j|, |θ̂−n,j|). Nevertheless, for
the sake of clarity, we shall do as if the sign of ajf1 is known.

In order to establish the asymptotic normality of θ̂n, it is necessary to introduce
a second auxiliary function ϕ defined, for all t ∈ Rp, as

(4.8) ϕ(t) = E[V (t)V (t)T ]

where V (t) is given by

V (t) = diag
(
sign(a1f1), . . . , sign(apf1)

)
D(X, t)Y,

with Y given by (3.2). As soon as 4π|f1| min
1≤j≤p

|aj| > 1, denote for all 1 ≤ k, l ≤ p,

Σ(θ)k,l =
ϕ(θ)k,l

2π(|ak|+ |al|)|f1| − 1
.
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Theorem 4.2. Assume that (H1) to (H4) hold. In addition, suppose that (εi,j) has
a finite moment of order > 2 and that

4π|f1| min
1≤j≤p

|aj| > 1.

Then, we have the asymptotic normality

(4.9)
√
n(θ̂n − θ)

L−→ Np(0,Σ(θ)).

Theorem 4.3. Assume that (H1) to (H4) hold. In addition, suppose that (εi,j) has
a finite moment of order > 2 and that

4π|f1| min
1≤j≤p

|aj| > 1.

Then, we have the law of iterated logarithm, given, for all w ∈ Rp, by

lim sup
n→∞

(
n

2 log log n

)1/2

wT (θ̂n − θ) = − lim inf
n→∞

(
n

2 log log n

)1/2

wT (θ̂n − θ)

=
√
wTΣ(θ)w a.s.(4.10)

In particular,

(4.11) lim sup
n→∞

(
n

2 log log n

)(
θ̂n − θ

)(
θ̂n − θ

)T
= Σ(θ) a.s.

In addition, we also have the quadratic strong law

(4.12) lim
n→∞

1

log n

n∑
i=1

(θ̂i − θ)(θ̂i − θ)T = Σ(θ) a.s.

Remark 4.2. In the particular case where

4π|f1| min
1≤j≤p

|aj| = 1,

it is also possible to show, thanks to Theorem 2.2.12 page 52 of [6], that√
n

log(n)
(θ̂n − θ)

L−→ N (0, ϕ(θ)).

Remark 4.3. As in [1], it is also possible to get rid of the symmetry assumption on
f . However, it requires the knowledge of the first Fourier coefficients of f

f1 =

∫ 1/2

−1/2
cos(2πx)f(x) dx and g1 =

∫ 1/2

−1/2
sin(2πx)f(x) dx.

On the one hand, it is necessary to assume that f1 6= 0 or g1 6= 0, and to replace in
(4.1) the diagonal matrix D(X, t) defined in (4.2), by

(4.13) ∆(X, t) =
1

g(X)
diag

(
δ(X, t1), . . . , δ(X, tp)

)
,

where, for all 1 ≤ j ≤ p,

δ(X, tj) = f1 sin(2π(X − tj))− g1 cos(2π(X − tj)).
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Then, Theorem 4.1 is true for the projected Robbins-Monro algorithm defined, for
all 1 ≤ j ≤ p, by

θ̂n+1,j = πK

(
θ̂n,j + sign(aj)γn+1Tn+1,j

)
,

where the initial value θ̂0 ∈ Kp and the random vector Tn+1 is given by

Tn+1 = ∆(Xn+1, θ̂n)

Yn+1,1
...

Yn+1,p

 .

On the other hand, we also have to replace the second function ϕ defined in (4.8) by

Ψ(t) = E[W (t)W (t)T ],

where W (t) is given by

W (t) = diag
(
sign(a1f1), . . . , sign(apf1)

)
∆(X, t)Y

Then, as soon as 4π(f 2
1 + g21) min

1≤j≤p
|aj| > 1, Theorems 4.2 and 4.3 hold with

Σ(θ)k,l =
Ψ(θ)k,l

2π(f 2
1 + g21)(|ak|+ |al|)− 1

.

In the rest of the paper, we shall not go in that direction as our strategy is to make
very few assumptions on the Fourier coefficients of f .

5. ESTIMATION OF THE SCALE PARAMETERS

Henceforth, we introduce an other auxiliary function ψ defined for all t ∈ Rp, by

(5.1) ψ(t) = E

C(X, t)

a1f(X − θ1)
...

apf(X − θp)


where C(X, t) is the diagonal matrix of order p, given by

(5.2) C(X, t) =
1

g(X)
diag

(
cos(2π(X − t1)), . . . , cos(2π(X − tp))

)
.

As for (4.4), we have

(5.3) ψ(t) = f1

a1 cos(2π(θ1 − t1))
...

ap cos(2π(θp − tp))

 .

Then, it is clear from Theorem 4.1 that ψ(θ̂n) tends to ψ(θ) = f1a. Hence, denote
by (ân) the sequence defined, for n ≥ 1 and for all 1 ≤ j ≤ p, as

(5.4) ân,j =
1

nf1

n∑
i=1

cos(2π(Xi − θ̂i−1,j))
g(Xi)

Yi,j.

The asymptotic behaviour of ân is as follows.
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Theorem 5.1. Assume that (H1) to (H4) hold. Then, we have the a.s. convergence

(5.5) lim
n→+∞

ân = a a.s.

and the asymptotic normality

(5.6)
√
n (ân − a)

L−→ Np (0,Γ(a)) ,

where Γ(a) stands for the covariance matrix given by

(5.7) Γ(a) =
1

f 2
1

Cov (C(X, θ)Y ) .

In addition, we also have the quadratic strong law

(5.8) lim
n→+∞

1

log(n)

n∑
i=1

(âi − a) (âi − a)T = Γ(a) a.s.

Remark 5.1. The estimation procedure needs the estimation of the first Fourier
coefficient f1. Under the hypothesis (H4), it is natural to estimate f1 by

f̂1,n =
1

n

n∑
i=1

cos(2πXi)

g(Xi)
Yi,1.

6. ESTIMATION OF THE REGRESSION FUNCTION

In this section, we are interested in the nonparametric estimation of the regression
function f via a recursive Nadaraya-Watson estimator. On the one hand, we add
the following standard hypothesis.

(H5) The regression function f is Lipschitz.

On the other hand, we follow the same approach as in [1]. Moreover, for more
accuracy, we consider a weighted version of the Nadaraya-Watson estimator

(6.1) f̂n(x) =

p∑
j=1

ωj(x)f̂n,j(x),

where, for all 1 ≤ j ≤ p,

(6.2) ωj(x) ≥ 0 and
p∑
j=1

ωj(x) = 1,

(6.3) f̂n,j(x) =
1

ân,j

∑n
i=1(Wi,j(x) +Wi,j(−x)) (Yi,j − v̂i−1,j)∑n

i=1(Wi,j(x) +Wi,j(−x))
,

and

(6.4) Wn,j(x) =
1

hn
K
(Xn − θ̂n−1,j − x

hn

)
.

The bandwidth (hn) is a sequence of positive real numbers, decreasing to zero, such
that nhn tends to infinity. For the sake of simplicity, we propose to make use of
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hn = 1/nα with α ∈ ]0, 1[. Moreover, we shall assume in all the sequel that the kernel
K is a positive symmetric function, bounded with compact support, satisfying∫

R
K(x) dx = 1 and

∫
R
K2(x) dx = ν2.

Theorem 6.1. Assume that (H1) to (H5) hold and that the sequence (εi,j) has a
finite moment of order > 2. Then, for any x ∈ [−1/2; 1/2], we have

(6.5) lim
n→∞

f̂n(x) = f(x) a.s.

Theorem 6.2. Assume that (H1) to (H5) hold and that the sequence (εi,j) has a
finite moment of order > 2. Then, as soon as the bandwidth (hn) satisfies hn = 1/nα

with α > 1/3, we have for any x ∈ [−1/2; 1/2] with x 6= 0, the pointwise asymptotic
normality

(6.6)
√
nhn(f̂n(x)− f(x))

L−→ N

(
0,

ν2

1 + α

p∑
j=1

σ2
jω

2
j (x)

a2j (g(θj + x) + g(θj − x))

)
.

In addition, for x = 0,

(6.7)
√
nhn(f̂n(0)− f(0))

L−→ N

(
0,

ν2

1 + α

p∑
j=1

σ2
jω

2
j (0)

a2jg(θj)

)
.

Remark 6.1. The choice of the weights ωj(x) could be important. Intuitively, the
asymptotic variances in (6.6) and (6.7) are minimal if for all 1 ≤ j ≤ p, ωj(x) is
inversely proportional to the variance σ2

j of the noise. More precisely, the Lagrange
Multiplier Theorem gives us the values of the weights for which the asymptotic vari-
ances in (6.6) and (6.7) are minimal under the constraint (6.2). They are given,
for all 1 ≤ j ≤ p and for all x ∈ [−1/2; 1/2], by

ωj(x) =
mj(x)∑p
k=1mk(x)

where

mj(x) =
a2j (g(θj + x) + g(θj − x))

σ2
j

.

For these values, the asymptotic variances in (6.6) and (6.7) are respectively given,
for x 6= 0, by

ν2

1 + α

(
p∑
j=1

mj(x)

)−1
,

and for x = 0, by

ν2

1 + α

(
p∑
j=1

mj(0)

2

)−1
.
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7. SIMULATIONS

In this section, we illustrate the asymptotic behavior of our estimates on simulated
data as well as on real data.

7.1. Simulated data. We consider data simulated according to the model (1.1)
Yi,j = ajf(Xi − θj) + vj + εi,j

where 1 ≤ j ≤ p and 1 ≤ i ≤ n with p = 5 and n = 2 000. Moreover, v =
(0, 1/3,−1, 2,−9/10)T , θ = (0, 1/5,−1/20,−1/7, 1/6)T and a = (1,−4, 3,−5/2,−2)T

and the noise (εi,j) is a sequence of i.i.d. random variables with N (0, 1) distribu-
tion. The random variables (Xi) are simulated according to the uniform distribu-
tion on [−1/2; 1/2] and the regression function, whose f1 = 1/2, is given for all
x ∈ [−1/2; 1/2] by

f(x) =
5∑

k=1

cos(2kπx).

The simulated data are given in Figure 1. The results of the estimates of the vectors
v, θ and a by v̂n, θ̂n and ân are given in Figure 2. The true values are drawn
in abscissa and their estimates in ordinate. One can observe that our parametric
estimation procedure performs pretty well. For the estimation of the regression
function f , we have chosen α = 9/10 for the bandwidth sequence (hn). Moreover,
the kernel K considered is the uniform kernel on [−1; 1] and for all 1 ≤ j ≤ p,
ωj(x) = 1/p. The estimation of the regression function f by f̂n is given on the left
side of Figure 3, and the estimation of f by f̂n,1 is given on the right side.

One can observe that the estimation of f by f̂n is better than the one by f̂n,1. This
is due to the asymptotic variances given in (6.6) and (6.7) of Theorem 6.2. These
asymptotic variances are smaller than those of Theorem 3.2 in [1]. In particular, this
justifies the choice of taking a weighed version of the Nadaraya-Watson estimator.
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Figure 1. Simulated data
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Figure 3. Estimation of f by f̂n and f̂n,1

7.2. Modeling of ECG data. This section is devoted to real ECG data. An ECG
is a recording of the electrical activity of the heart over a period of time, as detected
by electrodes attached to the outer surface of the skin. A typical ECG consists of
a P wave, followed by a QRS complex, and a T wave. Here, we consider two sets
of ECG data, one corresponding to a healthy heart and the other to a heart having
arrythmia. These data are extracted from the MIT-BIH Database, and they are
represented respectively in Figure 4 and in Figure 5.



14 PHILIPPE FRAYSSE

- 1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 500 1000 1500

Figure 4. ECG of a healthy patient
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Figure 5. ECG of a patient having arrythmia

For each ECG recording, one consider that the heart cycle of interest, that is to
say the cycle PQRST, is roughly the same at each beat. One also consider that
every heart cycle are noised and that the white noise is independent of the typical
shape we want to estimate. After an appropriate segmentation of the ECGs, one
observe signals of same length such that each of them contains an unique PQRST
cycle. The segmentation of the ECGs is done by detecting the maximum of each
QRS complex and centering the segments around this maxima. It is very important
to have segments of same length in order to ensure periodicity. A well-adapted
method for the segmentation is the one proposed by Gasser and Kneip [8]. After
the segmentation of the two ECGs, we obtain p = 18 and every segments of length
n = 83 for the healthy heart and p = 15 and n = 91 for the ill heart. Then, our goal
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is to estimate the typical shape of each ECG, corresponding to the function f in the
model (1.1). Firstly, the estimation for the healthy heart is going to show that our
model is well adapted for the problem of modelling an ECG signal. Indeed, for the
healthy heart, a good approximation of the heart cycle is to take the average of the
p different signals, whereas the different parameters v, θ and a of the model (1.1)
are trivial. The estimation of the typical shape of the ECG for the healthy heart by
our procedure is on the right hand-side of Figure 6, whereas the left-side shows one
on the original ECG signal. The comparison between the two plots shows that our
estimation procedure performs pretty well and that our estimation procedure can
be useful for the modeling of an ECG signal.
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Figure 6. One signal and its reconstruction

Secondly, we want to estimate the typical shape of the nonhealthy heart, ploted
in Figure 5. One see that the electric activity is more irregular than for the healthy
heart, and a simple averaging may lead to a mean cycle that does not correspond
to the typical shape of the ECG. More precisely, we suppose that the model (1.1)

Yi,j = ajf(Xi − θj) + vj + εi,j,

fits the data. The segmentation allows us to have a common shape function f 1-
periodic. Moreover, f is nonsymmetric, but we already saw in Remark 4.3 that our
procedure still works for nonsymetric shape function. The parameters a, θ and v
correspond to the deformation due to the arrythmia relative to the common shape
f we want to estimate. For more accuracy, we have to choice one of the p curves as
a reference, that is to say where for one 1 ≤ j∗ ≤ p, aj∗ = 1, θj∗ = 0 and vj∗ = 0.
For this choice, we consider a criterion of residual variance. More precisely, we first
consider the model (1.1) with a1 = 1, θ1 = 0 and v1 = 0. From this model, we apply
our procedure to estimate the different parameters a, θ and v and the shape function
f respectively by ân, θ̂n, v̂n and f̂n. With these estimates, we then calculate the
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vector σ̂2
n,1 whose j-th component (σ̂2

n,1)j is defined by

(σ̂2
n,1)j =

1

n

n∑
i=1

(
Yi,j − ân,j f̂n(Xi − θ̂n,j)− v̂n,j

)2
.

Then, we make use of the same procedure by changing the curve of reference, and
we finally obtain p vectors of length p

σ̂2
n,1, . . . , σ̂

2
n,p.

Finally, the choice of the curve of reference for the modeling of the ECG signal is
given by taking

j∗ = arg
1≤j≤p

min ||σ̂2
n,j||1

where ||.||1 corresponds to the l1-norm. Therefore, we model the ECG by

Yi,j = ajf(Xi − θj) + vj + εi,j

where
1 ≤ i ≤ n, 1 ≤ j ≤ p and aj∗ = 1, θj∗ = 0, vj∗ = 0.

On our data set, the implementation of this method shows that j∗ = 3 and

||σ̂2
n,j∗||1 = 0.6095.

The result for the estimation of the typical shape f is given in Figure 7. On the right
side of Figure 7 one can compare the estimation of f obtained with our estimate f̂n
and with the simple average signal. One can observe that our estimation procedure
is better because the P wave is well estimated.
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Figure 7. Estimation of f by f̂n (in red) and with the mean average
signal (in black)
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8. PROOFS OF THE PARAMETRIC RESULTS

8.1. Proof of Theorem 3.1. The convergences (3.3) and (3.4) follow from the
standard law of large numbers and the standard central limit theorem for martingales
with independent increments. Moreover, we immediately deduce (3.5) from Theorem
2.1 of [3].

8.2. Proof of Theorem 4.1. The result follows from Theorem 2.1 of [1].

8.3. Proof of Theorem 4.2. Our goal is to apply Theorem 2.1 page 330 of Kush-
ner and Yin [12]. First of all, as γn = 1/n, the condition on the decreasing step
is satisfied. Moreover, we already saw that θ̂n converges almost surely to θ. Con-
sequently, all the local assumptions of Theorem 2.1 of Kushner and Yin [12] are
satisfied. In addition, it is not hard to see from (4.7) that

E [Tn+1|Fn] = φ
(
θ̂n

)
a.s.

Moreover, the function φ is continuously differentiable. Hence, φ(θ) = 0 and Dφ(θ)
is the square diagonal matrix defined by

Dφ(θ) = −2πf1diag (a1, . . . , ap) .

By noting Ip the identity matrix, the condition 4π|f1| min
1≤j≤p

|aj| > 1 implies that

Dφ(θ) +
1

2
Ip

is a negative-definite matrix. Furthermore, we have that, for all 1 ≤ k, l ≤ p,

E [sign(akf1)Tn+1,ksign(alf1)Tn+1,l|Fn] = ϕ(θ̂n)k,l a.s.

which leads to

lim
n→∞

E [sign(akf1)Tn+1,ksign(alf1)Tn+1,l|Fn] = ϕ (θ)k,l a.s.

Consequently, if we are able to prove that the sequence (Wn) given by

Wn =
||θ̂n − θ||2

γn

is tight, then we shall deduce from Theorem 2.1 of [12] that
√
n(θ̂n − θ)

L−→ Np(0,Σ(θ))

where for all 1 ≤ k, l ≤ p,

Σ(θ)k,l = ϕ(θ)k,l

∫ +∞

0

exp
((

1− 2π|f1|(|ak|+ |al|)
)
t
)
dt =

ϕ(θ)k,l
2π|f1|(|ak|+ |al|)− 1

.

Therefore, it remains to prove the tightness of the sequence (Wn). Let (Vn) be the
sequence defined, for all n ≥ 1, by

(8.1) Vn = ||θ̂n − θ||2,



18 PHILIPPE FRAYSSE

and T ′n the sequence defined, for all 1 ≤ j ≤ p, by

(8.2) T ′n,j = sign (ajf1)Tn,j.

Then, we clearly have

Vn+1 = ||θ̂n+1 − θ||2

= ||πKp

(
θ̂n + γn+1T

′
n+1

)
− θ||2

= ||πKp

(
θ̂n + γn+1T

′
n+1

)
− πKp (θ) ||2

≤ ||θ̂n + γn+1T
′
n+1 − θ||2

as πKp = (πK , . . . , πK)T is a Lipschitz function. It follows that

Vn+1 ≤ Vn + γ2n+1||T ′n+1||2 + 2γn+1 < θ̂n − θ, T ′n+1 > a.s.

By taking expectation in the previous inequality, we obtain that there exists a
constant M > 0 such that

(8.3) E[Vn+1|Fn] ≤ Vn + γ2n+1M + 2γn+1 < θ̂n − θ,E[T ′n+1|Fn] > a.s.

Moreover, (4.7) together with (8.2) lead to

(8.4) E[T ′n+1|Fn] = Sp(a)φ
(
θ̂n

)
,

where
Sp(a) = diag (sign (a1f1) , . . . , sign (apf1)) .

Hence, we deduce from (8.3) and (8.4) that

(8.5) E[Wn+1|Fn] ≤ Vn
γn+1

+ γn+1M + 2 < θ̂n − θ, Sp(a)φ
(
θ̂n

)
> a.s.

Moreover, a Taylor expansion of φ allows us to write

< θ̂n − θ, Sp(a)φ
(
θ̂n

)
> = < θ̂n − θ, 2πf1Sp(a)diag (a1, . . . , ap)

(
θ − θ̂n

)
>

+ f1 < θ̂n − θ, Sp(a)diag (a1, . . . , ap)V
(
θ̂n

)(
θ − θ̂n

)
>,(8.6)

where for all t 6= θ,

V (t) = diag

(
sin (2π(θ1 − t1))− 2π(θ1 − t1)

θ1 − t1
, . . . ,

sin (2π(θp − tp))− 2π(θp − tp)
θp − tp

)
.

Moreover, the equality

f1Sp(a)diag (a1, . . . , ap) = L(a),

where
L(a) = diag (|f1a1|, . . . , |f1ap|) ,
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together with (8.6) lead to

< θ̂n − θ, Sp(a)φ
(
θ̂n

)
> = −2π

(
θ̂n − θ

)T
L(a)

(
θ̂n − θ

)
−

(
θ̂n − θ

)T
L(a)V

(
θ̂n

)(
θ̂n − θ

)
.

Hence, (8.5) can be rewritten as

E[Wn+1|Fn] ≤ (1 + γn)Wn + γnM − 4π
(
θ̂n − θ

)T
L(a)

(
θ̂n − θ

)
(8.7)

−2
(
θ̂n − θ

)T
L(a)V

(
θ̂n

)(
θ̂n − θ

)
.

Moreover, as
L(a) ≥ min

1≤j≤p
|ajf1|Ip,

we deduce from (8.7) that

E[Wn+1|Fn] ≤ Wn + 2qγnWn +Mγn − 2
(
θ̂n − θ

)T
L(a)

(
θ̂n − θ

)
,(8.8)

where
2q = 1− 4π|f1| min

1≤j≤p
|aj|,

which means that q < 0. By the continuity of the function V , one can find 0 < ε <
1/2 such that, if ||t− θ|| < ε,

(8.9)
q

2|f1| min
1≤j≤p

|aj|
Ip < V(t) < 0.

Moreover, let An and Bn be the sets An = {||θ̂n − θ|| ≤ ε} and

Bn =
n⋂

k=m

Ak

with 1 ≤ m ≤ n. Then, it follows from (8.9) that

(8.10) 0 < −2|f1| min
1≤j≤p

|aj|V(θ̂n)IBn < −
(q

2

)
IpIBn .

where Ip is the identity matrix. Hence, it follows from the conjunction of (8.8) and
(8.10) that for all n ≥ m,

E[Wn+1IBn|Fn] ≤ WnIBn + 2γnWnqIBn − qγnWnIBn + γnM,

≤ WnIBn(1 + qγn) + γnM.(8.11)

Since Bn+1 = Bn ∩ An+1, Bn+1 ⊂ Bn, and we obtain by taking the expectation on
both sides of (8.11) that for all n ≥ m,

(8.12) E[Wn+1IBn+1 ] ≤ (1 + qγn)E[WnIBn ] + γnM.
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Finally, following the same lines as in the proof of Theorem 2.2 in [1], we obtain
that for all ξ > 0, it exists K > 0 such that for m large enough,

sup
n≥m

P(Wn > K) < ξ

which implies the tightness of (Wn) and completes the proof of Theorem 4.2.

8.4. Proof of Theorem 4.3. The vectorial law of iterated logarithm given by
(4.10) follows from Theorem 1 of [15], while the vectorial quadratic strong law given
by (4.12) can be obtained from Theorem 3 of [15].

8.5. Proof of Theorem 5.1. Recall that for all 1 ≤ j ≤ p,

ân,j =
1

nf1

n∑
i=1

cos(2π(Xi − θ̂i−1,j))
g(Xi)

Yi,j.

Then, it is clear that

ân =
1

nf1

n∑
i=1

C
(
Xi, θ̂i−1

)
Yi,

where

Yi =

Yi,1...
Yi,p

 .

We also have the decomposition

(8.13) ân − a =
1

nf1
Sn(a) +

1

nf1
Rn(a),

with

Sn(a) =
n∑
i=1

(C(Xi, θ)Yi − f1a) ,

and the remainder

Rn(a) =
n∑
i=1

(
C(Xi, θ̂i−1)− C (Xi, θ)

)
Yi.

Moreover, for all 1 ≤ j ≤ p,

(8.14) Rn,j(a) = ajR
1
n,j(a) + vjR

2
n,j(a) +R3

n,j(a),

where

R1
n,j(a) =

n∑
i=1

∆ci,j
g(Xi)

f(Xi − θj), R2
n,j(a) =

n∑
i=1

∆ci,j
g(Xi)

, R3
n,j(a) =

n∑
i=1

∆ci,j
g(Xi)

εi,j,

and
∆ci,j = cos

(
2π(Xi − θ̂i−1,j)

)
− cos (2π(Xi − θj)) .
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Firstly, since

E
[ ∆ci,j
g(Xi)

|Fi−1
]

=

∫ 1/2

−1/2
cos
(

2π(x− θ̂i−1,j)
)
dx−

∫ 1/2

−1/2
cos (2π(x− θj)) dx

= 0,

the sequence
(
R2
n,j(a)

)
is a square integrable martingale whose predictable variation

is given by

〈R2
j (a)〉n =

n∑
i=1

E
[ ∆c2i,j
g2(Xi)

|Fi−1
]
.

Then, as cos is a Lipschitz function, we have

|∆ci,j| ≤ |θ̂i−1,j − θj|.
Consequently, since g does not vanish on [−1/2; 1/2], there exists a constant C > 0
such that

(8.15) E
[ ∆c2i,j
g2(Xi)

|Fi−1
]
≤ C

(
θ̂i−1,j − θj

)2
.

Then, it follows from (4.12) together with the previous inequality (8.15) that

(8.16) 〈R2
j (a)〉n = O (log(n)) a.s.

Therefore, we deduce from the strong law of large numbers for martingales given
e.g. by Theorem 1.3.15 of [6] that, for all 1 ≤ j ≤ p,

(8.17) R2
n,j(a) = o (log(n)) a.s.

Moreover,
(
R3
n,j(a)

)
is also a square integrable martingale whose predictable varia-

tion is given by
〈R3

j (a)〉n = σ2
j 〈R2

j (a)〉n.
Then, we immediately deduce from (8.16) that

(8.18) 〈R3
j (a)〉n = O (log(n)) a.s.,

and from the strong law of large numbers for martingales that, for all 1 ≤ j ≤ p,

(8.19) R3
n,j(a) = o (log(n)) a.s.

Afterwards, for all 1 ≤ j ≤ p, with the change of variables u = x− θj,

E
[ ∆ci,j
g(Xi)

f(Xi − θj)|Fi−1
]

=

∫ 1/2

−1/2

(
cos(2π(x− θ̂i−1,j))− cos (2π(x− θj))

)
f(x− θj)dx

=

∫ 1/2−θj

−1/2−θj

(
cos(2π(u+ θj − θ̂i−1,j))− cos (2πu)

)
f(u)du.

Then, the elementary trigonometric equality

cos(2π(u+θj− θ̂i−1,j)) = cos(2πu) cos(2π(θj− θ̂i−1,j))− sin(2πu) sin(2π(θj− θ̂i−1,j)),
the symmetry and the periodicity of the function f lead to

E
[ ∆ci,j
g(Xi)

f(Xi − θj)|Fi−1
]

= f1

(
cos(2π(θj − θ̂i−1,j))− 1

)
a.s.
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Moreover, for all |x| < 1/2, we have

| cos(2πx)− 1| ≤ 2π2x2,

which implies that

(8.20) |E
[ ∆ci,j
g(Xi)

f(Xi − θj)|Fi−1
]
| ≤ 2π2

(
θj − θ̂i−1,j

)2
a.s.

Moreover, we have the decomposition

R1
n,j(a) = An,j(a) +Bn,j(a),

where

An,j(a) =
n∑
i=1

(
∆ci,j
g(Xi)

f(Xi − θj)− E
[ ∆ci,j
g(Xi)

f(Xi − θj)|Fi−1
])

,

and

Bn,j(a) =
n∑
i=1

E
[ ∆ci,j
g(Xi)

f(Xi − θj)|Fi−1
]
.

It follows one again from the quadratic strong law (4.12) together with (8.20) that,
for all 1 ≤ j ≤ p,

(8.21) Bn,j(a) = O (log(n)) a.s.

Moreover, for all 1 ≤ j ≤ p, (An,j(a)) is a square integrable martingale whose
predictable variation 〈Aj(a)〉n satisfy

〈Aj〉n ≤
n∑
i=1

E
[ ∆c2i,j
g(Xi)2

f 2(Xi − θj)|Fi−1
]
.

As the shape function f is bounded, we deduce from (4.12) together with (8.15) that

〈Aj(a)〉n = O (log(n)) a.s.

Therefore, we can conclude from the strong law of large numbers for martingales
that, for all 1 ≤ j ≤ p,

(8.22) An,j(a) = o (log(n)) a.s.

Finally, we infer from (8.17), (8.19) together with (8.21) and (8.22) that, for all
1 ≤ j ≤ p,

(8.23) Rn,j(a) = O (log(n)) a.s.

Hence, one obtain from (8.13) that

(8.24) ân − a =
1

nf1
Sn(a) +O

(
log(n)

n

)
a.s.

Secondly, since
E[C(Xi, θ)Yi|Fi−1] = f1a,
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the sequence (Sn(a)) is a vectorial martingale with independent increments. For all
n ≥ 1, its predictable variation 〈S(a)〉n is given by

〈S(a)〉n =
n∑
i=1

E[(C(Xi, θ)Yi − f1a) (C(Xi, θ)Yi − f1a)T |Fi−1]

=
n∑
i=1

Cov (C(Xi, θ)Yi|Fi−1)

Then, it is clear that

lim
n→+∞

〈S(a)〉n
n

= Γ(a) a.s.

where Γ(a) is given by (5.7). Consequently, (5.5) follows from the law of large num-
bers for martingales and (5.6) follows from the central limit theorem for martingales
and Slutsky’s lemma, while one can obtain (5.8) from Theorem 2.1 of [3].

9. PROOFS OF THE NONPARAMETRIC RESULTS

9.1. Proof of Theorem 6.1. For x ∈ [−1/2; 1/2], denote by f̃n,j(x) the sequence
defined for n ≥ 1 and 1 ≤ j ≤ p, by

f̃n,j(x) = ân,j f̂n,j(x).(9.1)

We can rewrite

f̃n,j(x) = f̃ 1
n,j(x) + f̃ 2

n,j(x),(9.2)

where
f̃ 1
n,j(x) =

∑n
i=1 (Wi,j(x) +Wi,j(−x)) (Yi,j − vj)∑n

i=1 (Wi,j(x) +Wi,j(−x))
,

and
f̃ 2
n,j(x) =

∑n
i=1 (Wi,j(x) +Wi,j(−x)) (vj − v̂i−1,j)∑n

i=1 (Wi,j(x) +Wi,j(−x))
.

On the one hand, it follows from Theorem 3.1 of [1] that for any x ∈ [−1/2; 1/2],

lim
n→+∞

f̃ 1
n,j(x) = ajf(x) a.s.

On the other hand, the almost sure convergence of v̂i−1,j to vj as i goes to infinity
implies by Toeplitz lemma, that for any x ∈ [−1/2; 1/2],

lim
n→+∞

f̃ 2
n,j(x) = 0 a.s.

Hence, one can conclude that

(9.3) lim
n→∞

f̃n,j(x) = ajf(x) a.s.

Consequently, as ân,j converges almost surely to aj 6= 0 as n goes to infinity, it
follows that

lim
n→∞

f̂n,j(x) = f(x) a.s.(9.4)

Finally, (6.1) with (9.4) allow us to conclude the proof of Theorem 6.1.
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9.2. Proof of Theorem 6.2. We shall now proceed to the proof of the asymptotic
normality of f̂n. We have, for all x ∈ [−1/2; 1/2],

f̂n(x)− f(x) =

p∑
j=1

ωj(x)
(
f̂n,j(x)− f(x)

)
=

p∑
j=1

ωj(x)
Mn,j(x) + Pn,j(x) +Qn,j(x) +Rn,j(x) + Sn,j(x)

nGn,j(x)
(9.5)

where

Gn,j(x) = ân,j (ĝn,j(x) + ĝn,j(−x)) ,

Mn,j(x) = Mn,j(x) +Mn,j(−x),

Pn,j(x) = Pn,j(x) + Pn,j(−x),

Qn,j(x) = Qn,j(x) +Qn,j(−x),

Rn,j(x) = Rn,j(x) +Rn,j(−x),

Sn,j(x) = Sn,j(x) + Sn,j(−x),

with ĝn,j(x), Mn,j(x), Pn,j(x), Qn,j(x), Rn,j(x) and Sn,j(x) given by

ĝn,j(x) =
1

n

n∑
i=1

Wi,j(x),

Mn,j(x) =
n∑
i=1

Wi,j(x)εi,j,

Pn,j(x) = ân,j

n∑
i=1

Wi,j(x)
(
f(Xi − θ̂i−1,j)− f(x)

)
,

Qn,j(x) = ân,j

n∑
i=1

Wi,j(x)
(
f(Xi − θj)− f(Xi − θ̂i−1,j)

)
,

Rn,j(x) = (aj − ân,j)
n∑
i=1

Wi,j(x)f(Xi − θj),

Sn,j(x) =
n∑
i=1

Wi,j(x) (vj − v̂i−1,j) .

Firstly, (6.28) of [1] together with the almost sure convergence of ân to a as n goes
to infinity, lead to

(9.6) lim
n→+∞

Gn,j(x) = aj (g(θj + x) + g(θj − x)) a.s.
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In addition, we obtain from (6.32) and (6.35) of [1] that, for α > 1/3,

P2
n,j(x) = o

(
n1+α

)
a.s.,(9.7)

Q2
n,j(x) = o

(
n1+α

)
a.s.(9.8)

Hence, for all x ∈ [−1/2, 1/2], we find that

(9.9) lim
n→∞

√
hn
n

p∑
j=1

ωj(x)
Pn,j(x) +Qn,j(x)

Gn,j(x)
= 0 a.s.

Secondly, as the shape function f is bounded, it follows that

Rn,j(x) = O

(
|aj − ân,j|

n∑
i=1

Wi,j(x)

)
a.s.

Hence,
n∑
i=1

Wi,j(x) = O(n) a.s.,

ensures that

(9.10) Rn,j(x) = O (n|aj − ân,j|) a.s.

In addition, we can deduce from (8.24) that, for all 1 ≤ j ≤ p,

|aj − ân,j| = O

(√
log(n)

n

)
a.s.

which via (9.10), leads to

(9.11) Rn,j(x) = O
(√

n log(n)
)

a.s.

Consequently,

(9.12) R2
n,j(x) = o(n1+α) a.s.

Thirdly, we have the following inequality

(9.13) |Sn,j(x)| ≤ Λn,j(x) + Σn,j(x)

where

Λn,j(x) =
n∑
i=1

Li,j (Wi,j(x)− E[Wi,j(x)|Fi−1])

and

Σn,j(x) =
n∑
i=1

Li,jE[Wi,j(x)|Fi−1]
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with Li,j = |vj − v̂i−1,j|. We deduce from (6.34) of [1] together with the Cauchy-
Schwarz inequality and the quadratic strong law given by (3.5) that

(9.14) Σn,j(x) = O

√n( n∑
i=1

L2
i,j

)1/2
 = O

(√
n log(n)

)
a.s.

Moreover, the sequence (Λn,j(x)) is a martingale whose predictable variation is given
by

〈Λj(x)〉n = O

(
n∑
i=1

L2
i,jE[W 2

i,j(x)|Fi−1]

)
a.s.

Consequently, we obtain one again from the quadratic strong law (3.5) that

(9.15) 〈Λ(x)〉n,j = O

(
nα

n∑
i=1

L2
i,j

)
= O (nα log(n)) a.s.

which allows us to show, from the strong law of large numbers for martingales that
for any γ > 0,

(9.16) Λ2
n,j(x) = o

(
nα log(n)2+γ

)
a.s.

Therefore,

S2
n,j(x) = o

(
nα log(n)2+γ

)
+O (n log(n))

= o
(
n1+α

)
a.s.(9.17)

We are now in position to study the asymptotic behavior of the dominating term
Mn,j(x). For all x ∈ [−1/2; 1/2] and for all 1 ≤ j ≤ p, the sequence (Mn,j(x)) is a
square-integrable martingale whose predictable variation is given by

〈Mj(x)〉n = σ2
j

n∑
i=1

E
[
(Wi,j(x) +Wi,j(−x))2 |Fi−1

]
.

We deduce from (6.37) of [1] that we have, for x 6= 0,

(9.18) lim
n→∞

〈Mj(x)〉n
n1+α

=
σ2
j ν

2

1 + α
(g(θj + x) + g(θj − x)) .

and from (6.38) of [1] that, for x = 0,

(9.19) lim
n→∞

〈Mj(0)〉n
n1+α

= 4
σ2
j ν

2

1 + α
g(θj).

Moreover, according to (6.39) of [1], as (εi,j) has a moment of order > 2, Lindeberg
condition is satisfied forMn,j(x). We can conclude from the central limit theorem
for martingales given e.g. by Corollary 2.1.10 of [6] that for all x ∈ [−1/2; 1/2] with
x 6= 0,

(9.20)
Mn,j(x)√
n1+α

L−→ N
(

0,
σ2
j ν

2

1 + α
(g(θj + x) + g(θj − x))

)
,
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while, for x = 0,

(9.21)
Mn,j(0)√
n1+α

L−→ N
(

0, 4
σ2
j ν

2

1 + α
g(θj)

)
.

Finally, it follows from (9.20) and (9.21) together with the previous convergence
(9.6) and Slutsky’s theorem that, for all x ∈ [−1/2, 1/2] with x 6= 0,

(9.22)
1√
n1+α

p∑
j=1

ωj(x)
Mn,j(x)

Gn,j(x)

L−→ N
(

0,
ν2

1 + α

p∑
j=1

σ2
jω

2
j (x)

a2j (g(θj + x) + g(θj − x))

)
,

while, for x = 0,

(9.23)
1√
n1+α

p∑
j=1

ωj(0)
Mn,j(0)

Gn,j(0)

L−→ N
(

0,
ν2

1 + α

p∑
j=1

σ2
jω

2
j (0)

a2jg(θj)

)
.

Then, the conjunction of (9.9), (9.12), (9.17) together with the two previous con-
vergences (9.22) and (9.23) and Slutsky’s theorem let us to conclude that, for all
x ∈ [−1/2, 1/2] with x 6= 0,√

nhn(f̂n(x)− f(x))
L−→ N

(
0,

ν2

1 + α

p∑
j=1

σ2
jω

2
j (x)

a2j (g(θj + x) + g(θj − x))

)
,

while, for x = 0,√
nhn(f̂n(0)− f(0))

L−→ N
(

0,
ν2

1 + α

p∑
j=1

σ2
jω

2
j (0)

a2jg(θj)

)
,

which completes the proof of Theorem 6.2.

10. APPENDIX

In order to prove every identifiability conditions, let us consider that for a given
vector of parameters (a, θ, v) satisfying (H4) and a given shape function f satisfying
(H2) and (H3), one can find another vector of parameters (a∗, θ∗, v∗) satisfying (H4)
and an other shape function f ∗ satisfying (H2) and (H3) such that for all 1 ≤ j ≤ p
and for all x ∈ R, (2.1) is true, that is to say

(10.1) ajf(x− θj) + vj = a∗jf
∗(x− θ∗j ) + v∗j .

First of all, the periodicity of f and (H3) lead to vj = v∗j . Then, (10.1) becomes

(10.2) ajf(x− θj) = a∗jf
∗(x− θ∗j ).

For j = 1, the identifiability constraints a1 = a∗1 and θ1 = θ∗1 enables us to show
that f(x) = f ∗(x). Then, (10.2) can be rewritten as

(10.3) ajf(x− θj) = a∗jf(x− θ∗j ).
Hence, by denoting I2 the integral of the square of f

I2 =

∫ 1

0

f 2(x)dx,
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and by squaring and integrating into (10.3), we obtain that

(10.4) a2jI2 =
(
a∗j
)2
I2,

leading to

(10.5) a2j =
(
a∗j
)2
.

If aj = a∗j , then f(x− θj) = f(x− θ∗j ) and it follows from the constraint

max
1≤j≤p

|θj| < 1/4

that θj = θ∗j . Otherwise, if aj = −a∗j , then f(x− θj) + f(x− θ∗j ) = 0, which clearly
leads to the identitity f(x) = f(x+ 2(θj − θ∗j )). Therefore, the constraint

max
1≤j≤p

|θj| < 1/4

implies that θj = θ∗j . Then, f(x) = 0, which is impossible. Finally, we have shown
that

v = v∗, θ = θ∗, a = a∗ and f = f ∗,

leading to the identifiability of the model (1.1). This reasoning fits for the other sets
of identifiability constraints.

Acknowledgements. The author thanks Bernard Bercu for all his advices and for
his thorough readings of the paper.

References

[1] Bercu, B., and Fraysse, P. A robbins-monro procedure for estimation in semiparametric
regression models. Ann. Statist. 40 (2012).

[2] Castillo, I., and Loubes, J.-M. Estimation of the distribution of random shifts deforma-
tion. Math. Methods Statist. 18 1 (2009), 21–42.

[3] Chaabane, F., and Maaouia, F. Théorèmes limites avec poids pour les martingales vec-
torielles. ESAIM PS 4 (2000), 137–189.

[4] Dalalyan, A. S., Golubev, G. K., and Tsybakov, A. B. Penalized maximum likelihood
and semiparametric second-order efficiency. Ann. Statist. 34 1 (2006), 169–201.

[5] Devroye, L., and Lugosi, G. Combinatorial methods in density estimation. Springer Series
in Statistics. Springer-Verlag, New York, 2001.

[6] Duflo, M. Random iterative models, vol. 34 of Applications of Mathematics. Springer-Verlag,
Berlin, 1997.

[7] Gamboa, F., Loubes, J.-M., and Maza, E. Semi-parametric estimation of shifts. Electron.
J. Stat. 1 (2007), 616–640.

[8] Gasser, T., and Kneip, A. Searching for structure in curve sample. Journal of the Am.
Statis. Asso..

[9] Hall, P., and Heyde, C. C. Martingale limit theory and its application. Academic Press
Inc. New York, 1980.

[10] Härdle, W., and Marron, J. S. Semiparametric comparison of regression curves. Ann.
Statist. 18, 1 (1990), 63–89.

[11] Kneip, A., and Engel, J. Model estimation in nonlinear regression under shape invariance.
Ann. Statist. 23, 2 (1995), 551–570.

[12] Kushner, H. J., and Yin, G. G. Stochastic approximation and recursive algorithms and
applications, vol. 35 of Applications of Mathematics. Springer-Verlag, New York, 2003.



A ROBBINS-MONRO PROCEDURE FOR A CLASS OF MODELS OF DEFORMATION 29

[13] Lawton, W. H., Sylvestre, E. A., and Maggio, M. S. Self modeling nonlinear regression.
Technometrics 14 (1972), 513–532.

[14] Nadaraja, È. On a regression estimate. Teor. Verojatnost. i Primenen 9 (1964), 157–159.
[15] Pelletier, M. On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic

Process. Appl. 78, 2 (1998), 217–244.
[16] Pelletier, M. Weak convergence rates for stochastic approximation with application to

multiple targets and simulated annealing. Annals of Appli. Proba. 8, 1 (1998), 10–44.
[17] Ramsay, J. O., and Li, X. Curve registration. J. R. Stat. Soc. Ser. B Stat. Methodol. 60, 2

(1998), 351–363.
[18] Ramsay, J. O., and Silverman, B. W. Functional data analysis, second ed. Springer Series

in Statistics. Springer, New York, 2005.
[19] Robbins, H., and Monro, S. A stochastic approximation method. Ann. Math. Statistics 22

(1951), 400–407.
[20] Trigano, T., Isserles, U., and Ritov, Y. Semiparametric curve alignment and shift

density estimation for biological data. IEEE Trans. Signal Processing 59 (2011), 1970–1984.
[21] Tsybakov, A. B. Introduction à l’estimation non-paramétrique, vol. 41 of Mathématiques &

Applications (Berlin). Springer-Verlag, Berlin, 2004.
[22] Vimond, M. Efficient estimation for a subclass of shape invariant models. Ann. Statist. 38,

3 (2010), 1885–1912.
[23] Wang, Y., Ke, C., and Brown, M. B. Shape-invariant modeling of circadian rhythms

with random effects and smoothing spline ANOVA decompositions. Biometrics 59, 4 (2003),
804–812.

[24] Watson, G. Smooth regression analysis. Sankhya Ser. A.
E-mail address: philippe.fraysse@math.u-bordeaux1.fr

Université Bordeaux 1, Institut de Mathématiques de Bordeaux, UMR CNRS
5251, and INRIA Bordeaux, team ALEA, 351 cours de la libération, 33405 Talence
cedex, France.


