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Introduction

The idea of this paper is to perform grey-level image processing using the geometric information given by the Gauss map variations of image graphs. If it is well known that one can parametrize the Gauss map of a minimal surface by a meromorphic function (see below), it is a much more recent result (see [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF]) that such a parametrization can be extended to arbitrary surfaces of R 3 when dealing with spin geometry. Let us first recall that a minimal surface Σ immersed in R 3 , that is a surface with constant mean curvature equal to zero, can be described with one holomorphic function ϕ and one meromorphic function ψ such that the product ϕψ 2 is holomorphic. This is the so-called Weierstrass representation of Σ (see [START_REF] Lawson | Lectures on minimal manifolds[END_REF] or [START_REF] Osserman | A survey of minimal surfaces[END_REF] for details). The involved function ψ is nothing else but the composition of the Gauss map of Σ with the stereographic projection from the unit sphere to the complex plane. The main result of T. Friedrich in [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF] states that there is a one to one correspondance between spinor fields ϕ * of constant length on a Riemannian surface (Σ, g) and satisfying

Dϕ * = Hϕ * (1.1)
where D is a Dirac operator in one hand, and isometric immersions of Σ in R 3 with mean curvature equal to H, on the other hand. The Weierstrass representation appears to be the particular case corresponding to H ≡ 0. Let us describe now the method introduced in the following. Let

χ : Ω ⊂ R 2 -→ R 3 (x, y) -→ (x, y, I(x, y)) (1.2)
be the immersion in the 3-dimensional Euclidean space of a grey-level image I defined on a domain Ω of R 2 . The first step (see Sec. 2) consists in computing the spinor field ϕ * that describes the image surface Σ. We follow here the paper of T. Friedrich ([6]): ϕ * is obtained from the restriction to the surface Σ of a parallel spinor φ on R 3 . The computation of ϕ * necessitates to deal with irreducible representations of the complex Clifford algebra C 3,0 ⊗C and with the generalized Weierstrass representation of Σ based on period forms. In practice, ϕ * is given by a field of elements of C 2 . As said before, the spinor field ϕ * characterizes the geometry of the surface Σ immersed in R 3 by the parametrization (1.2). In the same way that the normal of a minimal surface is parametrized by the meromorphic function ψ, the normal of the surface Σ is parametrized by the spinor field ϕ * . This last one explains how the tangent plane to Σ varies in the ambient space.

There are many reasons to believe that such a generalized Weierstrass parametrization may reveal to be an efficient tool in the context of image processing.

1. The field ϕ * of elements of C 2 (see formula (2.26)) encodes the Riemannian structure of the surface Σ in a very tractable way (although the definition of ϕ * may appear quite complicated). 2. The geometrical methods based on the study of the so-called structure tensor involve only the eigenvalues of this one, that means in some sense the values of the first fundamental form of the surface. The spinor field ϕ * contains both intrinsic and extrinsic information. Studying the variations of ϕ * allows to get not only information about the variations (derivative) of the first fundamental form, but also about the geometric embedding of the surface Σ and in particular about the mean curvature. 3. We are dealing here with first order instead of zero order geometric variations of Σ. As shown later, this appears to be more relevant by taking into account both edges and textures. 4. As it will be detailed in the sequel, the spinor field ϕ * can be decomposed as a series of basic spinor fields using a suitable Clifford Fourier transform. This series corresponds to an harmonic decomposition of the surface Σ adapted to the Riemannian geometry. This is in fact the main novelty of this paper since usual Fourier analysis doesn't involve geometric data.

One can envisage to perform diffusion in this context. The usual Laplace

Beltrami operator can be replaced by the squared Atiyah Singer Dirac operator (the Atiyah Singer Dirac operator acting as an elliptic operator of order one on spinor fields).

To illustrate some of these ideas, we investigate rapidly in Sec. 3 applications to segmentation and more precisely to edge and texture detection. As said before, the basic idea is to replace the order 1 usual structure tensor by an order 2 structure tensor called spinor tensor obtained from the derivative of the spinor field ϕ * . This spinor tensor measures to the variations of the unit normal of the image surface. Experiments show that this approach is particularly well adapted to texture detection. We define in Sec. 4 the Clifford Fourier transform of a spinor field. For this, we follow the approach of [START_REF] Batard | Clifford Fourier Transform for Color Image Processing[END_REF] that relies on a spin generalization of the usual notion of group character. We are led to compute the group morphisms from Z/M Z × Z/N Z to Spin(3). Since this last group acts on the sections of the spinor bundle, a Clifford Fourier transform can be defined by averaging this action. One of the key ideas here is to split the spinor bundle of the surface according to the Clifford multiplication by the bivector coding the tangent plane to the surface. This has two advantages: the first one is to involve the geometry in the process, the second one is to reduce the computation of the Clifford Fourier transform to two usual complex Fourier transforms.

It is important to notice that although the Fourier transform we propose is as usual a global transformation on the image, the way it is computed takes into account local geometric data. We finally introduce the harmonic decomposition mentioned above and show results of filterings on standard images. The reader will find in the appendix the mathematical definitions and results used throughout the text.

Spinor Representation of Images

This section is devoted to the explicit computation of the spinor field ϕ * of a given surface immersed in the Euclidean space. It is obtained as the restriction of a constant spinor field of R 3 the components of which are determined using period forms.

Spinors and Graphs

Let I : Ω -→ R be a differentiable function defined on a domain Ω of R 2 . We consider the surface Σ immersed in R 3 by the parametrization:

χ(x, y) = (x, y, I(x, y)) (2.1)
Let also g be the metric on Σ induced by the Euclidean metric of R 3 . The couple (Σ, g) is a Riemannian surface of global chart (Ω, χ). We denote M the Riemannian manifold (R 3 , 2 ) and (z 1 , z 2 , ν) an orthonormal frame field of M with (z 1 , z 2 ) an orthonormal frame field on Σ and ν the global unit field normal to Σ. One can choose (z 1 , z 2 , ν) with the following matrix representation

               I x (I 2 x + I 2 y )(I 2 x + I 2 y + 1) -I y I 2 x + I 2 y -I x I 2 x + I 2 y + 1 I y (I 2 x + I 2 y )(I 2 x + I 2 y + 1)
I x I 2 x + I 2 y -I y I 2 x + I 2 y + 1 I 2 x + I 2 y (I 2 x + I 2 y )(I 2 x + I 2 y + 1) 0 1 I 2 x + I 2 y + 1                (2.2)
Note that z 2 is not defined when I x = I y = 0. This has no consequence in the sequel since we deal only with the normal ν.

Following [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF] the surface Σ can be represented by a spinor field ϕ * with constant length satisfying the Dirac equation:

Dϕ * = Hϕ * (2.3)
where H denotes the mean curvature of Σ. We recall here the basic idea (see Appendix A. for notations and definitions). Let φ be a parallel spinor field of M , i.e. satisfying ∇ M X φ = 0 (2.4) for all vector fields X on M . Let also ϕ be the restriction φ |Σ of φ to Σ. The spinor field ϕ decomposes into

ϕ = ϕ + + ϕ - (2.5) with ϕ + = 1 2 (ϕ + iν • ϕ) ϕ -= 1 2 (ϕ -iν • ϕ) (2.6)
and satisfies

Dϕ = -H • ν • ϕ (2.7)
This last equation reads

D(ϕ + + ϕ -) = -H • ν • (ϕ + + ϕ -) (2.8)
and implies

Dϕ + = -iHϕ - Dϕ -= iHϕ + (2.9)
If we set ϕ * = ϕ + -iϕ -then Dϕ * = Hϕ * and ϕ * is of constant length.

Proposition 2.1. The spinor fields ϕ + , ϕ -and ϕ * are given by

ϕ + = 1 2             1 - I y 1 + I 2 x + I 2 y   u +   I x -i 1 + I 2 x + I 2 y   v   1 + I y 1 + I 2 x + I 2 y   v +   I x + i 1 + I 2 x + I 2 y   u          
(2.10)

ϕ -= 1 2             1 + I y 1 + I 2 x + I 2 y   u -   I x -i 1 + I 2 x + I 2 y   v   1 - I y 1 + I 2 x + I 2 y   v -   I x + i 1 + I 2 x + I 2 y   u           (2.11) and ϕ * = 1 2 (1 -i)             1 - iI y 1 + I 2 x + I 2 y   u +   1 + iI x 1 + I 2 x + I 2 y   v   1 + iI y 1 + I 2 x + I 2 y   v +   iI x -1 1 + I 2 x + I 2 y   u           (2.12)
where u and v are (constant) complex numbers.

Proof. Since φ is a parallel spinor field on M , φ = (u, v) where u and v are two (constant) complex numbers. Let ρ 2 be the irreducible complex representation of Cl(3) described in Appendix A.1. Recall that

ν = 1 ∆ (-I x e 1 -I y e 2 + e 3 ) (2.13)
where ∆ = I 2 x + I 2 y + 1, so that

ρ 2 (ν) = - I x ∆ 0 i i 0 - I y ∆ -i 0 0 i + 1 ∆ 0 -1 1 0 (2.14)
By definition:

ν • ϕ = ρ 2 (ν) u v (2.15)
Simple computations lead now to the result.

The next step consists in computing the components (u, v) of the constant field φ. This is done by considering a quaternionic structure on the spinor bundle S(Σ) of the surface Σ and period forms.

Quaternionic Structure and Period Forms

Let I be the complex structure on S(Σ) given by the multiplication by i. A quaternionic structure on S(Σ) is a linear map J that satisfies J 2 = -Id and IJ = -JI. In the sequel J is given by

J ϕ 1 ϕ 2 = -ϕ 2 ϕ 1 (2.16)
If we write ϕ 1 = α 1 + iβ 1 and ϕ 2 = α 2 + iβ 2 , the corresponding quaternion is given by

ϕ 1 + ϕ 2 j = (α 1 + iβ 1 ) + (α 2 + iβ 2 )j = α 1 + iβ 1 + α 2 j + β 2 k
(2.17) and j(ϕ 1 + ϕ 2 j) = -ϕ 2 + ϕ 1 j (2.18) i.e. J is the left multiplication by j. Since

S + (Σ) = ϕ 1 ϕ 2 , ϕ 1 = I x -i I y + ∆ ϕ 2 (2.19)
and

S + (Σ) = ϕ 1 ϕ 2 , ϕ 1 = I x -i I y -∆ ϕ 2 (2.20) then JS + (Σ) ⊂ S -(Σ) and JS -(Σ) ⊂ S + (Σ).
We denote also J the quaternionic structure (obtained in the same way) on S(M ).

Let us consider φ = (u, v) a constant spinor field on M and ϕ * its restriction on Σ. Let also f : R 3 -→ R and g : R 3 -→ C be the functions defined by

f (m) = -(m • φ, φ) (2.21) and g(m) = i(m • φ, J(φ)) (2.22)
where ( , ) denotes the Hermitian product. Using the representation ρ 2 , one can check that

m • φ =   -im 2 u + (im 1 -m 3 )v (im 1 + m 3 )u + im 2 v   (2.23)
for m = (m 1 , m 2 , m 3 ). The equations f (m) = m 1 and g(m) = m 2 + im 3 are equivalent to:

|u| 2 = |v| 2 uv = - 1 2 (2.24) and uv = - 1 2 u 2 + v 2 = 1 u 2 = v 2 (2.25)
This implies u = ±1/ √ 2 and v = -u.

Definition 2.2. The spinor representation of the image given by the parametrization (2.1) is defined by

ϕ * = 1 2 √ 2 (1 -i)             1 - 1 + i(I x + I y ) 1 + I 2 x + I 2 y   -   1 + 1 + i(-I x + I y ) 1 + I 2 x + I 2 y             (2.26) 
This means that u = 1/ √ 2 and v = -1/ √ 2 in the expression (2.12).

The two 1-forms

η f (X) = 2 (X • (ϕ * ) + , (ϕ * ) -) = -(X • ϕ, ϕ) (2.27) η g (X) = i(X • (ϕ * ) + , J((ϕ * ) + )) + i(X • (ϕ * ) -, J((ϕ * ) -)) = i(X • ϕ, J(ϕ)) (2.28)
are exact and verify d(f |Σ ) = η f , d(g |Σ ) = η g . The generalized Weierstrass parametrisation is actually given by the isometric immersion:

(η f , η g ) : Σ -→ M (2.29)

Dirac Equation and Mean Curvature

We only mention here some result that can be used when dealing with diffusion. We do not go into further details since we will not treat of this problem in the present paper. Let (Σ, g) be an oriented 2-dimensional Riemannian manifold and ϕ a spinor field without zeros solution of the Dirac equation Dϕ = λϕ. Then ϕ defines an isometric immersion

( Σ, |ϕ| 4 g) -→ R 3 (2.30)
with mean curvature H = λ/|ϕ| 2 (see [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF]).

Spinors and Segmentation

The aim of this section is to introduce the spinor tensor corresponding to the variations of the unit normal and to show its capability to detect both edges and textures.

The Spinor Tensor

We propose here to deal with a second order version of the classical approach of edge detection based on the so-called structure tensor (see [START_REF] Zenzo | A Note on the Gradient of a Multi-Image[END_REF]). Instead of measuring edges from eigenvalues of the Riemannian metric, we focus here on the eigenvalues of the tensor obtained from the derivative of the spinor field ϕ * . More precisely let

ϕ = ϕ 1 ϕ 2 (3.1)
be a section of the spinor bundle S(Σ) given in an orthonormal frame, i.e.

|ϕ| 2 = |ϕ 1 | 2 + |ϕ 2 | 2
and let X = (X 1 , X 2 ) be a section of the tangent bundle T (Σ). We consider the connexion ∇ on S(Σ) given by the connexion 1-form ω = 0. Thus

∇ X ϕ =      X 1 ∂ϕ 1 ∂x + X 2 ∂ϕ 1 ∂y X 1 ∂ϕ 2 ∂x + X 2 ∂ϕ 2 ∂y      (3.2)
and

|∇ X ϕ| 2 = X 2 1 ∂ϕ 1 ∂x 2 + 2X 1 X 2 ∂ϕ 1 ∂x ∂ϕ 1 ∂y + X 2 2 ∂ϕ 1 ∂y 2 + X 2 1 ∂ϕ 2 ∂x 2 + 2X 1 X 2 ∂ϕ 2 ∂x ∂ϕ 2 ∂y + X 2 2 ∂ϕ 2 ∂y 2 (3.3)
If we denote

G ϕ =       ∂ϕ 1 ∂x 2 + ∂ϕ 2 ∂x 2 ∂ϕ 1 ∂x ∂ϕ 1 ∂y + ∂ϕ 2 ∂x ∂ϕ 2 ∂y ∂ϕ 1 ∂x ∂ϕ 1 ∂y + ∂ϕ 2 ∂x ∂ϕ 2 ∂y ∂ϕ 1 ∂y 2 + ∂ϕ 2 ∂y 2       (3.4) then (X 1 X 2 )G ϕ (X 1 X 2 ) T = |∇ X ϕ| 2 (3.5) G ϕ is a field of real symmetric matrices.
As in the case of the usual structure tensor (i.e. Di Zenzo tensor, see [START_REF] Zenzo | A Note on the Gradient of a Multi-Image[END_REF]) the optima of |∇ X ϕ| 2 under the constraint X = 1 (for the Euclidean norm) are given by the field of eigenvalues of G ϕ . Applying the above formula to the spinor ϕ * of Definition 2.2 leads to Note that as already mentioned this last tensor corresponds to the tensor involved in the measure of the variations of the unit normal ν introduced in Sec. 2.1. Indeed, we have

G ϕ * = 1 2(1 + I 2 x + I 2 y ) 2   G 11 ϕ * G 12 ϕ * G 21 ϕ * G 22 ϕ *   ( 3 
(X 1 X 2 )G ϕ * (X 1 X 2 ) T = d X ν 2 (3.8)

Experiments

We compare on Fig. 1 the edge and texture detection methods based on the usual structure tensor (Fig. 1(b) and 1(d)) and on the spinor tensor (Fig. 1(e) and 1(f)).

The structure tensor only takes into account the first order derivatives of the function I. The subsequent segmentation method detects the strongest grey-level variations of the image. As a consequence, this method provides thick edges, as can de observed.

The spinor tensor takes into account the second order derivatives of the function I too. By definition, it measures the strongest variations of the unit normal to the surface parametrized by the graph of I. We observe that this new approach provides thiner edges than the first one. It appears also to be more relevant to detect textures.

Spinors and Clifford Fourier Transform

We first define a Clifford Fourier transform using spin characters that is group morphisms from R 2 to Spin(3). Then, we introduce the spinor field decomposition leading to the harmonic decomposition of the image. Finally we show results of filterings.

Clifford Fourier Transform with Spin Characters

Let us recall the idea of the construction of the Clifford Fourier transform for color image processing introduced in [START_REF] Batard | Clifford Fourier Transform for Color Image Processing[END_REF]. From the mathematical viewpoint, a Fourier transform is defined through group actions and more precisely through irreducible and unitary representations of the involved group. This is closely related to the well known shift theorem stating that: 

Ff α (u) = e iαu Ff (u) (4.1) 
F(ϕ)(u, v) = n∈Z/N Z m∈Z/M Z ρ u,v,z1∧z2 (m,n) (-m, -n) • ϕ(m, n) (4.6)
where (z 1 , z 2 ) is an orthonormal frame of T (Σ).

Since the spinor bundle of Σ splits into

S(Σ) = S + z1∧z2 (Σ) ⊕ S - z1∧z2 (Σ) (4.7)
we have

ρ u,v,z1∧z2(m,n) (-m, -n) • ϕ(m, n) = e 2πi(um/M +vn/N ) ϕ + (m, n) v -i (m, n) + e -2πi(um/M +vn/N ) ϕ -(m, n) v i (m, n) (4.8
) where v -i , resp. v i is the unit eigenspinor field of eigenvalue -i, resp i relatively to the operator z 1 ∧ z 2 • (here • denotes the Clifford multiplication). Consequently

F(ϕ)(u, v) = ϕ + -1 (u, v), ϕ -(u, v) (4.9)
in the frame (v -i , v i ), where and -1 denote the Fourier transform on L 2 (Z/M Z × Z/N Z, C), also called discrete Fourier transform, and its inverse.

Spinor Field Decomposition

The inverse Clifford Fourier transform of ϕ reads

F -1 (ϕ)(u, v) = n∈Z/N Z m∈Z/M Z ρ u,v,z1∧z2(m,n) (m, n) • ϕ(m, n) (4.10)
This means that every spinor field ϕ may be written as a superposition of basic spinor fieds, i.e.

ϕ = ϕ m,n (4.11) 
where

ϕ m,n : (u, v) -→ ρ u,v,z1∧z2(m,n) (m, n) • F(ϕ)(m, n) (4.12)
Following the splitting

S(Σ) = S + z1∧z2 (Σ) ⊕ S - z1∧z2 (Σ), we have ϕ m,n = ϕ + m,n , ϕ - m,n
in the frame (v -i , v i ), with

ϕ + m,n : (u, v) -→ e -2πi(um/M +vn/N ) ϕ + -1 (m, n) and ϕ - m,n : (u, v) -→ e 2πi(um/M +vn/N ) ϕ -(m, n) Moreover, |ϕ m,n | 2 = |ϕ + m,n | 2 + |ϕ - m,n | 2 since S + z1∧z2 ( 
Σ) and S - z1∧z2 (Σ) are orthogonal.

Experiments

Let us give now an example of applications of the Clifford Fourier transform on spinor fields to image processing. In order to perform filterings with the decomposition (4.11), we proceed as follows. Let I be a grey-level image, and ϕ * be the corresponding spinor representation given in Def. 2.2. We apply a Gaussian mask T σ of variance σ in the spectrum Fϕ * of ϕ * . Then, we consider the norm of its Fourier inverse transform, i.e. |F -1 T σ Fϕ * | and the function |F -1 T σ Fϕ * | I. We can see on the left columns of Fig. 2 and Fig. 3 that the filtering acts through ϕ * as a smoothing of the geometry of the image. More precisely, when σ is small, the modulus |F -1 T σ Fϕ * | is small on points corresponding to nearly all the geometric variations of the image. When σ increases the modulus is affected only on points corresponding to the strongest geometric variations, i.e. to both edges and textures (and also where the noise is high). The right columns of Fig. 2 and Fig. 3 show that the filtering acts through |F -1 T σ Fϕ * | I as a diffusion that leaves the geometric data untouched (the higher is σ the more important is the diffusion). This appears clearly on Fig. 4 (compare the plumes of Lena's hat) or on Fig. 5 (compare the hair of Tiffany). These experiments show that our approach is pertinent to deal with harmonic analysis together with Riemannian geometry.

Conclusion.

Spin geometry is a powerful mathematical tool to deal with many theoretical and applied geometric problems. In this paper we have shown how to take advantage of the generalized Weierstrass representation to perform grey-level image processing, in particular edge and texture detection. Our main contribution is the definition of a Clifford Fourier transform for spinor fields that relies on a generalization of the usual notion of character (the spin character). One important fact is that this new transform takes into account the Riemannian geometry of the image surface by involving the spinor field that parametrizes the normal and the bivector field coding the tangent plane. We have also introduced what appears to be a harmonic decomposition of the parametrization and investigated applications to filtering. Note that there are only two cases where the Grassmannian G n,2 of 2planes in R n admits a rational parametrization. In fact, one can show that G 3,2 CP 1 and G 4,2 CP 1 × CP 1 (see [START_REF] Taimanov | Two-dimensional Dirac operator and surface theory[END_REF]). The case treated here corresponds to G 3,2 . As a consequence the generalization to color images is not straightforward. Nevertheless, a quite different approach is possible to tackle this problem and will be the subject of a forthcoming paper. Let us also mention that one may envisage to perform diffusion on grey-level images through the heat equation given by the Dirac operator. This last one is well known be a square root of the Laplacian. Preliminary results are discussed in [START_REF] Batard | Spinor representation of images[END_REF] that show that this diffusion better preserves edges and textures than the usual Riemannian approaches. 
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Appendix A. Mathematical Background

We recall here some definitions and results concerning spin geometry. The reader may refer to [START_REF] Lawson | Spin Geometry[END_REF] for details and conventions. We focus on the particular case of an oriented surface immersed in R 3 .

A.1. Complex Representations of C 3,0 ⊗ C Let (e 1 , e 2 , e 3 ) be an orthonormal basis of R 3 . The Clifford algebra C 3,0 is the quotient of the tensor algebra of the vectorial space R 3 by the ideal generated by the elements u ⊗ u + Q(u) where Q is the Euclidean quadratic form. It can be shown that C 3,0 is isomorphic to the product H × H of two copies of the quaternion algebra. The complex Clifford algebra

where C(2) denotes the algebra of 2×2-matrices with complex entries. This decomposition is given by

Thomas Batard and Michel Berthier 

and ω 3 is the pseudoscalar e 1 e 2 e 3 . More precisely, the subalgebra (C 3,0 ⊗C) + is generated by the elements and an isomorphism with C(2) is given by sending these elements to the matrices

In the same way, (C 3,0 ⊗ C) -is generated by and an isomorphism is given by sending these elements to the above matrices

Let us denote ρ the natural representation of C(2) on C 2 . The two equivalent classes ρ 1 and ρ 2 of irreducible complex representations of C 3,0 ⊗C are given by ρ

They are characterized by

For the sake of completeness, let us explicit these representations:

The complex spin representation of Spin(3) is the homomorphism

given by restricting an irreducible complex representation of C 3,0 ⊗ C to the spinor group Spin(3) ⊂ (C 3,0 ⊗ C) 0 (see for example [START_REF] Batard | A Metric Approach to nD Images Edge Detection with Clifford Algebras[END_REF] for the definition of the Spin group). Note that ∆ 3 is independant of the chosen representation.

A.2. Spin Structures and Spinor Bundles

Let us denote M the Riemannian manifold R 3 and P SO (M ) the principal SO(3)-bundle of oriented orthonormal frames of M . A spin structure on M is a principal Spin(3)-bundle P Spin (M ) together with a 2-sheeted covering

that is compatible with SO(3) and Spin(3) actions. The Spinor bundle S(M ) is the bundle associated to the spin structure P Spin (M ) and the complex spin representation ∆ 3 . More precisely, it is the quotient of the product P Spin (M ) × C 2 by the action

that sends (τ, p, z) to (pτ -1 , ∆ 3 (τ )z). We will write

It appears that the fiber bundle S(M ) is a bundle of complex left modules over the Clifford bundle Cl(M ) = P Spin (M ) × Ad Cl(3) of M . In the sequel

denotes the corresponding multiplication for u ∈ T (M ) and φ a section of S(M ).

We consider now an oriented surface Σ embedded in M . Let us denote (z 1 , z 2 ) on orthonormal frame of T (Σ) and ν the global unit field normal to Σ. Using the map

it is possible to pull back the bundle P Spin (M ) |Σ to obtain a spin structure

the algebra C 2,0 ⊗ C acts on C 2 via ρ 2 . This representation leads to the complex spinor representation ∆ 2 of Spin( 2). It can be shown that the induced bundle

coincides with the spinor bundle of the induced spin structure on Σ. Once again S(Σ) is a bundle of complex left modules over the Clifford bundle Cl(Σ) of Σ: the Clifford multiplication is given by the map

for v ∈ T (Σ) and ϕ a section of T (Σ). The Spinor bundle S(Σ) decomposes into [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF]). Since ρ 2 (z 1 z 2 ν) is minus the identity, this is equivalent to

. Spinor Connections and Dirac Operators

Let ∇ M and ∇ Σ be the Levi Civita connections on the tangent bundles T (M ) and T (Σ) respectively. The classical Gauss formula asserts that

where X and Y are vector fields on Σ. A similar formula exists when dealing with spinor fields. Let us first recall that one may construct on S(M ) and S(Σ) some spinor Levi Civita connections compatible with the Clifford multiplication, that is connections still denoted ∇ M and ∇ Σ verifying

when X and Y are vector fields on M and ϕ is a section of S(M ) and a similar formula for ∇ Σ . The analog of Gauss formula reads

for ϕ a section of S(Σ) and X a vector field on Σ (see [START_REF] Bar | Metrics with harmonic spinors[END_REF] for a proof). If (z 1 , z 2 ) is an orthonormal frame of T (Σ), following [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3-space[END_REF], the Dirac operator on S(Σ) is defined by

and it can be verified that DS ± (Σ) ⊂ S ∓ (Σ).

Let now φ and ϕ be respectively a section of S(M ) and the section of S(Σ) given by the restriction φ |Σ . We obtain from Gauss spinor formula

where H is the mean curvature of Σ, it follows that