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Clifford Fourier Transform and Spinor Rep-
resentation of Images

Thomas Batard and Michel Berthier

Abstract. We propose in this paper to introduce a spinor representation
for images based on the work of T. Friedrich. This spinor representation
generalizes to arbitrary surfaces (immersed in R3) the usual Weierstrass
representation of minimal surfaces (i.e. surfaces with constant mean cur-
vature equal to zero). We investigate applications to image processing
focusing on segmentation and Clifford Fourier analysis. All these appli-
cations involve sections of the spinor bundle of image graphs, that is
spinor fields, satisfying the so-called Dirac equation.
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1. Introduction

The idea of this paper is to perform grey-level image processing using the
geometric information given by the Gauss map variations of image graphs. If
it is well known that one can parametrize the Gauss map of a minimal surface
by a meromorphic function (see below), it is a much more recent result (see
[6]) that such a parametrization can be extended to arbitrary surfaces of R3

when dealing with spin geometry.
Let us first recall that a minimal surface Σ immersed in R3, that is a surface
with constant mean curvature equal to zero, can be described with one holo-
morphic function ϕ and one meromorphic function ψ such that the product
ϕψ2 is holomorphic. This is the so-called Weierstrass representation of Σ (see
[7] or [9] for details). The involved function ψ is nothing else but the compo-
sition of the Gauss map of Σ with the stereographic projection from the unit
sphere to the complex plane.
The main result of T. Friedrich in [6] states that there is a one to one cor-
respondance between spinor fields ϕ∗ of constant length on a Riemannian
surface (Σ, g) and satisfying

Dϕ∗ = Hϕ∗ (1.1)

where D is a Dirac operator in one hand, and isometric immersions of Σ
in R3 with mean curvature equal to H, on the other hand. The Weierstrass
representation appears to be the particular case corresponding to H ≡ 0.
Let us describe now the method introduced in the following. Let

χ : Ω ⊂ R2 −→ R3

(x, y) 7−→ (x, y, I(x, y))
(1.2)

be the immersion in the 3-dimensional Euclidean space of a grey-level image
I defined on a domain Ω of R2. The first step (see Sec. 2) consists in comput-
ing the spinor field ϕ∗ that describes the image surface Σ. We follow here the
paper of T. Friedrich ([6]): ϕ∗ is obtained from the restriction to the surface
Σ of a parallel spinor φ on R3. The computation of ϕ∗ necessitates to deal
with irreducible representations of the complex Clifford algebra C`3,0⊗C and
with the generalized Weierstrass representation of Σ based on period forms.
In practice, ϕ∗ is given by a field of elements of C2.
As said before, the spinor field ϕ∗ characterizes the geometry of the surface
Σ immersed in R3 by the parametrization (1.2). In the same way that the
normal of a minimal surface is parametrized by the meromorphic function ψ,
the normal of the surface Σ is parametrized by the spinor field ϕ∗. This last
one explains how the tangent plane to Σ varies in the ambient space.
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There are many reasons to believe that such a generalized Weierstrass parame-
trization may reveal to be an efficient tool in the context of image processing.

1. The field ϕ∗ of elements of C2 (see formula (2.26)) encodes the Rie-
mannian structure of the surface Σ in a very tractable way (although
the definition of ϕ∗ may appear quite complicated).

2. The geometrical methods based on the study of the so-called structure
tensor involve only the eigenvalues of this one, that means in some
sense the values of the first fundamental form of the surface. The spinor
field ϕ∗ contains both intrinsic and extrinsic information. Studying the
variations of ϕ∗ allows to get not only information about the variations
(derivative) of the first fundamental form, but also about the geometric
embedding of the surface Σ and in particular about the mean curvature.

3. We are dealing here with first order instead of zero order geometric
variations of Σ. As shown later, this appears to be more relevant by
taking into account both edges and textures.

4. As it will be detailed in the sequel, the spinor field ϕ∗ can be decom-
posed as a series of basic spinor fields using a suitable Clifford Fourier
transform. This series corresponds to an harmonic decomposition of the
surface Σ adapted to the Riemannian geometry. This is in fact the main
novelty of this paper since usual Fourier analysis doesn’t involve geo-
metric data.

5. One can envisage to perform diffusion in this context. The usual Laplace
Beltrami operator can be replaced by the squared Atiyah Singer Dirac
operator (the Atiyah Singer Dirac operator acting as an elliptic operator
of order one on spinor fields).

To illustrate some of these ideas, we investigate rapidly in Sec. 3 applications
to segmentation and more precisely to edge and texture detection. As said
before, the basic idea is to replace the order 1 usual structure tensor by an
order 2 structure tensor called spinor tensor obtained from the derivative
of the spinor field ϕ∗. This spinor tensor measures to the variations of the
unit normal of the image surface. Experiments show that this approach is
particularly well adapted to texture detection.
We define in Sec. 4 the Clifford Fourier transform of a spinor field. For this,
we follow the approach of [3] that relies on a spin generalization of the usual
notion of group character. We are led to compute the group morphisms from
Z/MZ × Z/NZ to Spin(3). Since this last group acts on the sections of the
spinor bundle, a Clifford Fourier transform can be defined by averaging this
action. One of the key ideas here is to split the spinor bundle of the surface
according to the Clifford multiplication by the bivector coding the tangent
plane to the surface. This has two advantages: the first one is to involve
the geometry in the process, the second one is to reduce the computation
of the Clifford Fourier transform to two usual complex Fourier transforms.
It is important to notice that although the Fourier transform we propose
is as usual a global transformation on the image, the way it is computed
takes into account local geometric data. We finally introduce the harmonic
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decomposition mentioned above and show results of filterings on standard
images.
The reader will find in the appendix the mathematical definitions and results
used throughout the text.

2. Spinor Representation of Images

This section is devoted to the explicit computation of the spinor field ϕ∗ of a
given surface immersed in the Euclidean space. It is obtained as the restriction
of a constant spinor field of R3 the components of which are determined using
period forms.

2.1. Spinors and Graphs

Let I : Ω −→ R be a differentiable function defined on a domain Ω of R2. We
consider the surface Σ immersed in R3 by the parametrization:

χ(x, y) = (x, y, I(x, y)) (2.1)

Let also g be the metric on Σ induced by the Euclidean metric of R3. The
couple (Σ, g) is a Riemannian surface of global chart (Ω, χ). We denote M
the Riemannian manifold (R3, ‖ ‖2) and (z1, z2,ν) an orthonormal frame
field of M with (z1, z2) an orthonormal frame field on Σ and ν the global
unit field normal to Σ. One can choose (z1, z2,ν) with the following matrix
representation

Ix√
(I2
x + I2

y )(I2
x + I2

y + 1)

−Iy√
I2
x + I2

y

−Ix√
I2
x + I2

y + 1

Iy√
(I2
x + I2

y )(I2
x + I2

y + 1)

Ix√
I2
x + I2

y

−Iy√
I2
x + I2

y + 1

I2
x + I2

y√
(I2
x + I2

y )(I2
x + I2

y + 1)
0

1√
I2
x + I2

y + 1


(2.2)

Note that z2 is not defined when Ix = Iy = 0. This has no consequence in
the sequel since we deal only with the normal ν.
Following [6] the surface Σ can be represented by a spinor field ϕ∗ with
constant length satisfying the Dirac equation:

Dϕ∗ = Hϕ∗ (2.3)

where H denotes the mean curvature of Σ. We recall here the basic idea (see
Appendix A. for notations and definitions). Let φ be a parallel spinor field
of M , i.e. satisfying

∇MX φ = 0 (2.4)
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for all vector fields X on M . Let also ϕ be the restriction φ|Σ of φ to Σ. The
spinor field ϕ decomposes into

ϕ = ϕ+ + ϕ− (2.5)

with

ϕ+ =
1

2
(ϕ+ iν · ϕ) ϕ− =

1

2
(ϕ− iν · ϕ) (2.6)

and satisfies

Dϕ = −H · ν · ϕ (2.7)

This last equation reads

D(ϕ+ + ϕ−) = −H · ν · (ϕ+ + ϕ−) (2.8)

and implies

Dϕ+ = −iHϕ− Dϕ− = iHϕ+ (2.9)

If we set ϕ∗ = ϕ+ − iϕ− then Dϕ∗ = Hϕ∗ and ϕ∗ is of constant length.

Proposition 2.1. The spinor fields ϕ+, ϕ− and ϕ∗ are given by

ϕ+ =
1

2



1− Iy√
1 + I2

x + I2
y

u+

 Ix − i√
1 + I2

x + I2
y

 v

1 +
Iy√

1 + I2
x + I2

y

 v +

 Ix + i√
1 + I2

x + I2
y

u


(2.10)

ϕ− =
1

2



1 +
Iy√

1 + I2
x + I2

y

u−

 Ix − i√
1 + I2

x + I2
y

 v

1− Iy√
1 + I2

x + I2
y

 v −

 Ix + i√
1 + I2

x + I2
y

u


(2.11)

and

ϕ∗ =
1

2
(1− i)



1− iIy√
1 + I2

x + I2
y

u+

 1 + iIx√
1 + I2

x + I2
y

 v

1 +
iIy√

1 + I2
x + I2

y

 v +

 iIx − 1√
1 + I2

x + I2
y

u


(2.12)

where u and v are (constant) complex numbers.
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Proof. Since φ is a parallel spinor field on M , φ = (u, v) where u and v are two
(constant) complex numbers. Let ρ2 be the irreducible complex representation
of Cl(3) described in Appendix A.1. Recall that

ν =
1

∆
(−Ixe1 − Iye2 + e3) (2.13)

where ∆ =
√
I2
x + I2

y + 1, so that

ρ2(ν) = −Ix
∆

(
0 i
i 0

)
− Iy

∆

(
−i 0
0 i

)
+

1

∆

(
0 −1
1 0

)
(2.14)

By definition:

ν · ϕ = ρ2(ν)

(
u
v

)
(2.15)

Simple computations lead now to the result. �

The next step consists in computing the components (u, v) of the constant
field φ. This is done by considering a quaternionic structure on the spinor
bundle S(Σ) of the surface Σ and period forms.

2.2. Quaternionic Structure and Period Forms

Let I be the complex structure on S(Σ) given by the multiplication by i. A
quaternionic structure on S(Σ) is a linear map J that satisfies J2 = −Id and
IJ = −JI. In the sequel J is given by

J

(
ϕ1

ϕ2

)
=

(
−ϕ2

ϕ1

)
(2.16)

If we write ϕ1 = α1 + iβ1 and ϕ2 = α2 + iβ2, the corresponding quaternion
is given by

ϕ1 + ϕ2j = (α1 + iβ1) + (α2 + iβ2)j = α1 + iβ1 + α2j + β2k (2.17)

and

j(ϕ1 + ϕ2j) = −ϕ2 + ϕ1j (2.18)

i.e. J is the left multiplication by j. Since

S+(Σ) =

{(
ϕ1

ϕ2

)
, ϕ1 =

Ix − i
Iy + ∆

ϕ2

}
(2.19)

and

S+(Σ) =

{(
ϕ1

ϕ2

)
, ϕ1 =

Ix − i
Iy −∆

ϕ2

}
(2.20)

then JS+(Σ) ⊂ S−(Σ) and JS−(Σ) ⊂ S+(Σ). We denote also J the quater-
nionic structure (obtained in the same way) on S(M).
Let us consider φ = (u, v) a constant spinor field on M and ϕ∗ its restriction
on Σ. Let also f : R3 −→ R and g : R3 −→ C be the functions defined by

f(m) = −=(m · φ, φ) (2.21)

and

g(m) = i(m · φ, J(φ)) (2.22)
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where ( , ) denotes the Hermitian product. Using the representation ρ2, one
can check that

m · φ =

 −im2u+ (im1 −m3)v

(im1 +m3)u+ im2v

 (2.23)

for m = (m1,m2,m3). The equations f(m) = m1 and g(m) = m2 + im3 are
equivalent to:

|u|2 = |v|2 uv = −1

2
(2.24)

and

uv = −1

2
u2 + v2 = 1 u2 = v2 (2.25)

This implies u = ±1/
√

2 and v = −u.

Definition 2.2. The spinor representation of the image given by the parametriza-
tion (2.1) is defined by

ϕ∗ =
1

2
√

2
(1− i)



1− 1 + i(Ix + Iy)√
1 + I2

x + I2
y



−

1 +
1 + i(−Ix + Iy)√

1 + I2
x + I2

y




(2.26)

This means that u = 1/
√

2 and v = −1/
√

2 in the expression (2.12).

The two 1-forms

ηf (X) = 2<(X · (ϕ∗)+, (ϕ∗)−) = −=(X · ϕ,ϕ) (2.27)

ηg(X) = i(X · (ϕ∗)+, J((ϕ∗)+)) + i(X · (ϕ∗)−, J((ϕ∗)−))

= i(X · ϕ, J(ϕ)) (2.28)

are exact and verify d(f|Σ) = ηf , d(g|Σ) = ηg. The generalized Weierstrass
parametrisation is actually given by the isometric immersion:∫

(ηf , ηg) : Σ −→M (2.29)

2.3. Dirac Equation and Mean Curvature

We only mention here some result that can be used when dealing with diffu-
sion. We do not go into further details since we will not treat of this problem
in the present paper. Let (Σ, g) be an oriented 2-dimensional Riemannian
manifold and ϕ a spinor field without zeros solution of the Dirac equation
Dϕ = λϕ. Then ϕ defines an isometric immersion

(Σ̃, |ϕ|4g) −→ R3 (2.30)

with mean curvature H = λ/|ϕ|2 (see [6]).
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3. Spinors and Segmentation

The aim of this section is to introduce the spinor tensor corresponding to the
variations of the unit normal and to show its capability to detect both edges
and textures.

3.1. The Spinor Tensor

We propose here to deal with a second order version of the classical approach
of edge detection based on the so-called structure tensor (see [5]). Instead of
measuring edges from eigenvalues of the Riemannian metric, we focus here
on the eigenvalues of the tensor obtained from the derivative of the spinor
field ϕ∗. More precisely let

ϕ =

(
ϕ1

ϕ2

)
(3.1)

be a section of the spinor bundle S(Σ) given in an orthonormal frame, i.e.
|ϕ|2 = |ϕ1|2 + |ϕ2|2 and let X = (X1, X2) be a section of the tangent bundle
T (Σ). We consider the connexion ∇ on S(Σ) given by the connexion 1-form
ω = 0. Thus

∇Xϕ =


X1

∂ϕ1

∂x
+X2

∂ϕ1

∂y

X1
∂ϕ2

∂x
+X2

∂ϕ2

∂y

 (3.2)

and

|∇Xϕ|2 = X2
1

∣∣∣∣∂ϕ1

∂x

∣∣∣∣2 + 2X1X2<
(
∂ϕ1

∂x

∂ϕ1

∂y

)
+X2

2

∣∣∣∣∂ϕ1

∂y

∣∣∣∣2
+ X2

1

∣∣∣∣∂ϕ2

∂x

∣∣∣∣2 + 2X1X2<
(
∂ϕ2

∂x

∂ϕ2

∂y

)
+X2

2

∣∣∣∣∂ϕ2

∂y

∣∣∣∣2 (3.3)

If we denote

Gϕ =


∣∣∣∣∂ϕ1

∂x

∣∣∣∣2+ ∣∣∣∣∂ϕ2

∂x

∣∣∣∣2 <
(
∂ϕ1

∂x

∂ϕ1

∂y
+
∂ϕ2

∂x

∂ϕ2

∂y

)

<
(
∂ϕ1

∂x

∂ϕ1

∂y
+
∂ϕ2

∂x

∂ϕ2

∂y

) ∣∣∣∣∂ϕ1

∂y

∣∣∣∣2+ ∣∣∣∣∂ϕ2

∂y

∣∣∣∣2
 (3.4)

then
(X1 X2)Gϕ(X1 X2)T = |∇Xϕ|2 (3.5)

Gϕ is a field of real symmetric matrices.
As in the case of the usual structure tensor (i.e. Di Zenzo tensor, see [5]) the
optima of |∇Xϕ|2 under the constraint ‖X‖ = 1 (for the Euclidean norm)
are given by the field of eigenvalues of Gϕ. Applying the above formula to
the spinor ϕ∗ of Definition 2.2 leads to

Gϕ∗ =
1

2(1 + I2
x + I2

y )2

 G11
ϕ∗ G12

ϕ∗

G21
ϕ∗ G22

ϕ∗

 (3.6)
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with

G11
ϕ∗ = I2

xx + I2
xy + I2

xxI
2
y + I2

xyI
2
x − 2IxxIxyIxIy

G22
ϕ∗ = I2

yy + I2
xy + I2

yyI
2
x + I2

xyI
2
y − 2IyyIxyIxIy

G12
ϕ∗ = IxxIxy + IxyIyy + IxxIxyI

2
y + IxyIyyI

2
x − I2

xyIxIy − IxxIyyIxIy

G21
ϕ∗ = G12

ϕ∗

(3.7)

Definition 3.1. The tensor Gϕ∗ is called the spinor tensor of the surface Σ.

Note that as already mentioned this last tensor corresponds to the tensor
involved in the measure of the variations of the unit normal ν introduced in
Sec. 2.1. Indeed, we have

(X1 X2)Gϕ∗(X1 X2)T = ‖dXν‖2 (3.8)

3.2. Experiments

We compare on Fig. 1 the edge and texture detection methods based on the
usual structure tensor (Fig. 1(b) and 1(d)) and on the spinor tensor (Fig.
1(e) and 1(f)).
The structure tensor only takes into account the first order derivatives of
the function I. The subsequent segmentation method detects the strongest
grey-level variations of the image. As a consequence, this method provides
thick edges, as can de observed.
The spinor tensor takes into account the second order derivatives of the func-
tion I too. By definition, it measures the strongest variations of the unit
normal to the surface parametrized by the graph of I. We observe that this
new approach provides thiner edges than the first one. It appears also to be
more relevant to detect textures.

4. Spinors and Clifford Fourier Transform

We first define a Clifford Fourier transform using spin characters that is
group morphisms from R2 to Spin(3). Then, we introduce the spinor field
decomposition leading to the harmonic decomposition of the image. Finally
we show results of filterings.

4.1. Clifford Fourier Transform with Spin Characters

Let us recall the idea of the construction of the Clifford Fourier transform
for color image processing introduced in [3]. From the mathematical view-
point, a Fourier transform is defined through group actions and more precisely
through irreducible and unitary representations of the involved group. This
is closely related to the well known shift theorem stating that:

Ffα(u) = eiαuFf(u) (4.1)
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(a) (b)

(c) Segmentation of (a) via structure tensor (d) Segmentation of (b) via structure tensor

(e) Segmentation of (a) via spinor tensor (f) Segmentation of (b) via spinor tensor

Figure 1. Segmentation: structure tensor vs spinor tensor
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where fα(u) = f(α+ u). The group morphism

α 7−→ eiαu (4.2)

is a so-called character of the additive group (R,+), that is an irreducible
unitary representation of dimension 1.
The definition proposed in [3] relies on a Clifford generalization of this notion
by introducing spin characters. It can be shown that the group morphisms
from Z/MZ× Z/NZ to Spin(3) are given by

ρu,v,B : (m,n) 7−→ e2π(um/M+vn/N)B (4.3)

where

e2π(um/M+vn/N)B = cos 2π(um/M+vn/N)+sin 2π(um/M+vn/N)B (4.4)

(u, v) ∈ Z/MZ× Z/NZ, and

B = γ1e1e2 + γ2e1e3 + γ3e2e3 (4.5)

is unit, i.e. γ2
1 + γ2

2 + γ2
3 = 1. The map ρu,v,B is called a spin character of

the group Z/MZ×Z/NZ. Recalling that Spin(3) acts on the sections of the
spinor bundle, we are led to propose the following definition.

Definition 4.1. The Clifford Fourier transform of a spinor ϕ of S(Σ) is given
by

F(ϕ)(u, v) =
∑

n∈Z/NZ
m∈Z/MZ

ρu,v,z1∧z2 (m,n)(−m,−n) · ϕ(m,n) (4.6)

where (z1, z2) is an orthonormal frame of T (Σ).

Since the spinor bundle of Σ splits into

S(Σ) = S+
z1∧z2(Σ)⊕ S−z1∧z2(Σ) (4.7)

we have

ρu,v,z1∧z2(m,n)(−m,−n) · ϕ(m,n) =

e2πi(um/M+vn/N)ϕ+(m,n) v−i(m,n) + e−2πi(um/M+vn/N)ϕ−(m,n) vi(m,n)
(4.8)

where v−i, resp. vi is the unit eigenspinor field of eigenvalue −i, resp i rel-
atively to the operator z1 ∧ z2 · (here · denotes the Clifford multiplication).
Consequently

F(ϕ)(u, v) =
(
ϕ̂+
−1

(u, v), ϕ̂−(u, v)
)

(4.9)

in the frame (v−i, vi), where ̂ and ̂−1 denote the Fourier transform on
L2(Z/MZ×Z/NZ,C), also called discrete Fourier transform, and its inverse.
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4.2. Spinor Field Decomposition

The inverse Clifford Fourier transform of ϕ reads

F−1(ϕ)(u, v) =
∑

n∈Z/NZ
m∈Z/MZ

ρu,v,z1∧z2(m,n)(m,n) · ϕ(m,n) (4.10)

This means that every spinor field ϕ may be written as a superposition of
basic spinor fieds, i.e.

ϕ =
∑

ϕm,n (4.11)

where
ϕm,n : (u, v) 7−→ ρu,v,z1∧z2(m,n)(m,n) · F(ϕ)(m,n) (4.12)

Following the splitting S(Σ) = S+
z1∧z2(Σ)⊕ S−z1∧z2(Σ), we have

ϕm,n =
(
ϕ+
m,n, ϕ

−
m,n

)
in the frame (v−i, vi), with

ϕ+
m,n : (u, v) 7−→ e−2πi(um/M+vn/N)ϕ̂+

−1
(m,n)

and
ϕ−m,n : (u, v) 7−→ e2πi(um/M+vn/N)ϕ̂−(m,n)

Moreover,
|ϕm,n|2 = |ϕ+

m,n|2 + |ϕ−m,n|2

since S+
z1∧z2(Σ) and S−z1∧z2(Σ) are orthogonal.

4.3. Experiments

Let us give now an example of applications of the Clifford Fourier transform
on spinor fields to image processing. In order to perform filterings with the
decomposition (4.11), we proceed as follows. Let I be a grey-level image, and
ϕ∗ be the corresponding spinor representation given in Def. 2.2. We apply
a Gaussian mask Tσ of variance σ in the spectrum Fϕ∗ of ϕ∗. Then, we
consider the norm of its Fourier inverse transform, i.e. |F−1TσFϕ∗| and the
function |F−1TσFϕ∗| I.
Fig. 2 and Fig. 3 show results of this process for different values of σ (left
column |F−1TσFϕ∗| and right column |F−1TσFϕ∗| I). It is clear that for
σ sufficiently high, we have |F−1TσFϕ∗| I ' I and |F−1TσFϕ∗| ' 1 since
|ϕ∗| = 1. This explains why the two left bottom images are almost white and
the two right bottom images are almost the original ones.
We can see on the left columns of Fig. 2 and Fig. 3 that the filtering acts
through ϕ∗ as a smoothing of the geometry of the image. More precisely,
when σ is small, the modulus |F−1TσFϕ∗| is small on points corresponding
to nearly all the geometric variations of the image. When σ increases the
modulus is affected only on points corresponding to the strongest geometric
variations, i.e. to both edges and textures (and also where the noise is high).
The right columns of Fig. 2 and Fig. 3 show that the filtering acts through
|F−1TσFϕ∗| I as a diffusion that leaves the geometric data untouched (the
higher is σ the more important is the diffusion). This appears clearly on
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Fig. 4 (compare the plumes of Lena’s hat) or on Fig. 5 (compare the hair of
Tiffany).
These experiments show that our approach is pertinent to deal with harmonic
analysis together with Riemannian geometry.

Conclusion.

Spin geometry is a powerful mathematical tool to deal with many theoretical
and applied geometric problems. In this paper we have shown how to take
advantage of the generalized Weierstrass representation to perform grey-level
image processing, in particular edge and texture detection. Our main contri-
bution is the definition of a Clifford Fourier transform for spinor fields that
relies on a generalization of the usual notion of character (the spin charac-
ter). One important fact is that this new transform takes into account the
Riemannian geometry of the image surface by involving the spinor field that
parametrizes the normal and the bivector field coding the tangent plane. We
have also introduced what appears to be a harmonic decomposition of the
parametrization and investigated applications to filtering.
Note that there are only two cases where the Grassmannian Gn,2 of 2-
planes in Rn admits a rational parametrization. In fact, one can show that
G3,2 ' CP 1 and G4,2 ' CP 1 × CP 1 (see [10]). The case treated here corre-
sponds to G3,2. As a consequence the generalization to color images is not
straightforward. Nevertheless, a quite different approach is possible to tackle
this problem and will be the subject of a forthcoming paper.
Let us also mention that one may envisage to perform diffusion on grey-level
images through the heat equation given by the Dirac operator. This last one
is well known be a square root of the Laplacian. Preliminary results are dis-
cussed in [2] that show that this diffusion better preserves edges and textures
than the usual Riemannian approaches.

Appendix A. Mathematical Background

We recall here some definitions and results concerning spin geometry. The
reader may refer to [8] for details and conventions. We focus on the particular
case of an oriented surface immersed in R3.

A.1. Complex Representations of C`3,0 ⊗ C
Let (e1, e2, e3) be an orthonormal basis of R3. The Clifford algebra C`3,0
is the quotient of the tensor algebra of the vectorial space R3 by the ideal
generated by the elements u⊗ u+Q(u) where Q is the Euclidean quadratic
form. It can be shown that C`3,0 is isomorphic to the product H×H of two
copies of the quaternion algebra. The complex Clifford algebra C`3,0 ⊗ C is
isomorphic to C(2) ⊕ C(2) where C(2) denotes the algebra of 2×2-matrices
with complex entries. This decomposition is given by

C`3,0 ⊗ C ' (C`3,0 ⊗ C)+ ⊕ (C`3,0 ⊗ C)− (A.1)
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Figure 2. Left: |F−1(Tσ Fϕ∗)| for σ = 100, 1000, 10000,
100000 (from top to bottom). Right: |F−1(Tσ Fϕ∗)|I
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Figure 3. Left: |F−1(Tσ Fϕ∗)| for σ = 100, 1000, 10000,
100000 (from top to bottom). Right: |F−1(Tσ Fϕ∗)|I
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Figure 4. Left: original. Right: |F−1TσFϕ∗| I with σ = 100

Figure 5. Left: original. Right: |F−1TσFϕ∗| I with σ = 100

where

(C`3,0 ⊗ C)± = (1± ω3)C`3,0 ⊗ C (A.2)

and ω3 is the pseudoscalar e1e2e3. More precisely, the subalgebra (C`3,0⊗C)+

is generated by the elements

α1 =
1 + e1e2e3

2
, α2 =

e2e3 − e1

2
, α3 =

e2 + e1e3

2
, α4 =

e3 − e1e2

2
(A.3)

and an isomorphism with C(2) is given by sending these elements to the
matrices

A1 =

(
1 0
0 1

)
, A2 =

(
0 i
i 0

)
, A3 =

(
i 0
0 −i

)
, A4 =

(
0 1
−1 0

)
(A.4)
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In the same way, (C`3,0 ⊗ C)− is generated by

β1 =
1− e1e2e3

2
, β2 =

e2e3 + e1

2
, β3 =

e1e3 − e2

2
, β4 =

−e3 − e1e2

2
(A.5)

and an isomorphism is given by sending these elements to the above matrices
A1, A2, A3 and A4.
Let us denote ρ the natural representation of C(2) on C2. The two equivalent
classes ρ1 and ρ2 of irreducible complex representations of C`3,0⊗C are given
by

ρ1(ϕ1 + ϕ2) = ρ(ϕ1) ρ2(ϕ1 + ϕ2) = ρ(ϕ2) (A.6)

They are characterized by

ρ1(ω3) = Id and ρ2(ω3) = −Id (A.7)

For the sake of completeness, let us explicit these representations:

ρ1(1) = ρ(α1) = A1, ρ1(e1) = ρ(−α2) = −A2

ρ1(e2) = ρ(α3) = A3, ρ1(e3) = ρ(α4) = A4

ρ1(e1e2) = ρ(−α4) = −A4, ρ1(e1e3) = ρ(α3) = A3

ρ1(e2e3) = ρ(α2) = A2, ρ1(ω3) = ρ(α1) = A1

(A.8)

and

ρ2(1) = ρ(β1) = A1, ρ2(e1) = ρ(β2) = A2

ρ2(e2) = ρ(−β3) = −A3, ρ2(e3) = ρ(−β4) = −A4

ρ2(e1e2) = ρ(−β4) = −A4, ρ2(e1e3) = ρ(β3) = A3

ρ2(e2e3) = ρ(β2) = A2, ρ2(ω3) = ρ(−β1) = −A1

(A.9)

The complex spin representation of Spin(3) is the homomorphism

∆3 : Spin(3) −→ C(2) (A.10)

given by restricting an irreducible complex representation of C`3,0⊗C to the
spinor group Spin(3) ⊂ (C`3,0⊗C)0 (see for example [4] for the definition of
the Spin group). Note that ∆3 is independant of the chosen representation.

A.2. Spin Structures and Spinor Bundles

Let us denote M the Riemannian manifold R3 and PSO(M) the principal
SO(3)-bundle of oriented orthonormal frames of M . A spin structure on M
is a principal Spin(3)-bundle PSpin(M) together with a 2-sheeted covering

PSpin(M) −→ PSO(M) (A.11)

that is compatible with SO(3) and Spin(3) actions. The Spinor bundle S(M)
is the bundle associated to the spin structure PSpin(M) and the complex
spin representation ∆3. More precisely, it is the quotient of the product
PSpin(M)× C2 by the action

Spin(3)× PSpin(M)× C2 −→ PSpin(M)× C2 (A.12)

that sends (τ, p, z) to (pτ−1,∆3(τ)z). We will write

S(M) = PSpin(M)×∆3 C2 (A.13)
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It appears that the fiber bundle S(M) is a bundle of complex left modules
over the Clifford bundle Cl(M) = PSpin(M)×Ad Cl(3) of M . In the sequel

(u, φ) 7−→ u · φ (A.14)

denotes the corresponding multiplication for u ∈ T (M) and φ a section of
S(M).
We consider now an oriented surface Σ embedded in M . Let us denote (z1, z2)
on orthonormal frame of T (Σ) and ν the global unit field normal to Σ. Using
the map

(z1, z2) 7−→ (z1, z2,ν) (A.15)

it is possible to pull back the bundle PSpin(M)|Σ to obtain a spin structure

PSpin(Σ) on Σ. Since C`2,0 ⊗C is isomorphic to (C`3,0 ⊗C)0 under the map
α defined by

α(η0 + η1) = η0 + η1ν (A.16)

the algebra C`2,0⊗C acts on C2 via ρ2. This representation leads to the com-
plex spinor representation ∆2 of Spin(2). It can be shown that the induced
bundle

S(Σ) = PSpin(Σ)×∆3◦α C2 (A.17)

coincides with the spinor bundle of the induced spin structure on Σ. Once
again S(Σ) is a bundle of complex left modules over the Clifford bundle Cl(Σ)
of Σ: the Clifford multiplication is given by the map

(v, ϕ) 7−→ v · ν · ϕ (A.18)

for v ∈ T (Σ) and ϕ a section of T (Σ).
The Spinor bundle S(Σ) decomposes into

S(Σ) = S+(Σ)⊕ S−(Σ) (A.19)

where

S±(Σ) = {ϕ ∈ S(Σ), i · z1 · z2 · ϕ = ±ϕ} (A.20)

(cf [6]). Since ρ2(z1z2ν) is minus the identity, this is equivalent to

S±(Σ) = {ϕ ∈ S(Σ), iν · ϕ = ±ϕ} (A.21)

A.3. Spinor Connections and Dirac Operators

Let ∇M and ∇Σ be the Levi Civita connections on the tangent bundles T (M)
and T (Σ) respectively. The classical Gauss formula asserts that

∇MX Y = ∇Σ
XY − 〈∇MX ν, Y 〉ν (A.22)

where X and Y are vector fields on Σ. A similar formula exists when deal-
ing with spinor fields. Let us first recall that one may construct on S(M)
and S(Σ) some spinor Levi Civita connections compatible with the Clifford
multiplication, that is connections still denoted ∇M and ∇Σ verifying

∇MX (Y · ϕ) = (∇MX Y ) · ϕ+ Y · ∇MX ϕ (A.23)
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when X and Y are vector fields on M and ϕ is a section of S(M) and a
similar formula for ∇Σ. The analog of Gauss formula reads

∇MX ϕ = ∇Σ
Xϕ−

1

2
(∇MX ν) · ν · ϕ (A.24)

for ϕ a section of S(Σ) and X a vector field on Σ (see [1] for a proof). If
(z1, z2) is an orthonormal frame of T (Σ), following [6], the Dirac operator on
S(Σ) is defined by

D = z1 · ∇Σ
z1 + z2 · ∇Σ

z2 (A.25)

and it can be verified that DS±(Σ) ⊂ S∓(Σ).
Let now φ and ϕ be respectively a section of S(M) and the section of S(Σ)
given by the restriction φ|Σ. We obtain from Gauss spinor formula

z1 ·∇Mz1φ+ z2 ·∇Mz2φ = Dϕ− 1

2
(z1 · (∇Mz1ν) ·ν ·ϕ+ z2 · (∇Mz2ν) ·ν ·ϕ) (A.26)

Since

z1 · (∇Mz1ν) + z2 · (∇Mz2ν) = −2H (A.27)

where H is the mean curvature of Σ, it follows that

Dϕ = z1 · ∇Mz1φ+ z2 · ∇Mz2φ−H · ν · ϕ (A.28)
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