
HAL Id: hal-00695818
https://hal.science/hal-00695818

Submitted on 10 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parallelizing Algorithm for Real-Time Tasks of
Directed Acyclic Graphs Model

Manar Qamhieh, Serge Midonnet, Laurent George

To cite this version:
Manar Qamhieh, Serge Midonnet, Laurent George. A Parallelizing Algorithm for Real-Time Tasks
of Directed Acyclic Graphs Model. RTAS’12 : The 18th IEEE Real-Time and Embedded Technology
and Applications Symposium. Work-In-Progress Session, Apr 2012, Beijing, China. pp.45-48. �hal-
00695818�

https://hal.science/hal-00695818
https://hal.archives-ouvertes.fr


A Parallelizing Algorithm for Real-Time Tasks of Directed Acyclic Graphs
Model

Manar Qamhieh, Serge Midonnet
Université Paris-Est, France

{manar.qamhieh,serge.midonnet}@univ-paris-est.fr

Laurent George
ECE-Paris, France

lgeorge@ece.fr

Abstract

In this paper, we consider parallel real-time tasks follow-
ing a Directed Acyclic Graph (DAG) model. This task model
is classical in embedded and industrial system applications.
Each real-time task is defined by a set of subtasks under
precedence constraints. With each subtask being associated
a worst case execution time and a maximal degree of paral-
lelism. We propose a parallelizing algorithm based on the
critical path concept, in which we find the best parallelizing
structure of the task according to the response time and the
required number of processors, considering the worst case
execution time of the subtasks.

1. Introduction
Multi-core processors are widely produced nowadays in

order to cope with the physical constraints of the manu-
facturing process, which makes the development of parallel
softwares more and more important. The same concept can
be applied to real-time systems. Those systems have been
thoroughly studied over the last forty years but were mostly
focused on sequential processing. In order to get advantage
of the new hardware developments in real-time systems, a
new challenge towards integrating parallelism in real-time
systems has appeared.

Many models of parallelism have been used in program-
ming languages and APIs, but few of them have been stud-
ied in real-time systems. In our work, we propose a more
general model of parallel tasks following a Directed Acyclic
Graph (DAG) with 2 levels of parallelism. This type of
model can be used to represent real industrial applications
like video surveillance network and complex 3D games, in
which many images are processed at the same time. Then,
we propose a parallelism algorithm in order to execute the
DAG task with the best parallel structure of the task while
taking the response time in consideration.

In this paper, we start by presenting other related paral-
lel task models already studied in the literature in section

2. Then we present our task model in section 3. Section 4
describes the parallelizing algorithm applied to a DAG. Fi-
nally, we finish the paper with conclusion and perspectives
in section 5.

2 Related Work
Parallelism in real-time systems is a new domain with

many open issues to be studied. There exist many pro-
gramming APIs which support parallelism like OpenMP
[1], Cilkplus, Go, etc. The fork-join parallelism model is
used in OpenMP. It is defined as a sequence of sequential
and parallel segments, since the main thread of the task
forks into many parallel threads during the execution, and
when they finish their execution, they join the main thread
again. This model is studied in [2] and a stretching algo-
rithm has been proposed to transform parallel tasks into se-
quential tasks when possible.

However, a more general model of parallel tasks has been
recently proposed in [4] which overcomes the restrictions
of the fork-join model. It replaces the sequential-parallel
segment ordering with parallel segments. Those segments
have an arbitrary number of threads, but the execution time
of all the threads in the same segment is the same. In their
work, they propose a decomposition algorithm to assign lo-
cal deadlines for the different parallel segments and to trans-
form them into sporadic sequential tasks. They also provide
a resource augmentation bound for this decomposition algo-
rithm of 4 when the tasks are scheduled using global EDF
and of 5 for partitioned deadline monotonic scheduling, re-
spectively.

The latter model has been generalized in [3], they pro-
pose sporadic parallel real-time tasks with constrained
deadlines. It differs from the model in [4] by allowing
threads in the same segment to have different worst case
execution time. As a result of the paper, they optimize the
number of processors needed to schedule this model of tasks
while applying the same resource augmentation bounds per-
formed before.



3. Task Model
In this paper, we deal with parallel implicit-deadline real

time tasks, where the deadline of a task equals to their pe-
riod, and each task of this model is represented by a directed
acyclic graph (DAG), which is a collection of subtasks and
directed edges, which represents the execution flow of the
task and the precedence constraints between the subtasks.
Precedence constraint means that each node can start its ex-
ecution when all of its predecessors have finished theirs. If
there is an edge from subtask τi,u to τi,v , then we can say
that τi,u is a parent of τi,v , and τi,v has to wait for τi,u to
finish its execution before it can start its own. Each vertex
in the graph may have multiple parents, and multiple child
vertices as well, but each graph should have single source
and sink vertices.

Each parallel real-time task τi consists of a set of qi sub-
tasks, τi = {τi,1, τi,2, ..., τi,qi}, and each subtask τi,k is rep-
resented as the following:
τi,k = {ei,k,mi,k}, where ei,k is the worst execution time
of the subtask, and mi,k is the maximal degree of paral-
lelism of τi,k, which means that the subtask τi,k can be
scheduled on mi,k parallel processors at most.

Figure 1 shows an example of a parallel real-time task τi
of 6 subtasks. τ1 = {τ1,1, τ1,2, ..., τ1,6}. τ1 has a single
source subtask τ1,1 and a single sink subtask τ1,6. Each
subtask is characterized by an ordered pair, the first is the
total execution time of the subtask and the second is the
maximal degree of parallelism. As shown in Figure 1, τ1,4
for example, has a total execution time of 3, and it can be
parallelized at most on 3 processors with 1 execution time
unit on each processor.

This parallel real-time tasks of graph model have 2 levels
of parallelism; a inter-subtask parallelism and intra-subtask
parallelism. The inter-subtask parallelism is caused by the
precedence constraints between the different subtasks in the
task. Subtasks sharing the same parent means that they are
activated at the same time (when the parents finish their ex-
ecution), allowing them to execute in parallel on multiple
processors. τ1,2 and τ1,3 in Figure 1 are an example of
this subtask parallelism. The intra-subtask parallelism is
denoted by the possibility of parallelizing each subtask τi,k
on x number of processors, where 1 ≤ x ≤ mi,k. A par-
allel subtask τi,k with maximal degree of parallelism mi,k

equals to 1 can be considered as a sequential subtask.
In this paper, we chose to work with a generalized

model of parallel tasks, a model that describes the indus-
trial and embedded systems applications. We are different
from the parallel models of [4] and [3] by proposing the
intra-subtask parallelism within the real-time task model of
graphs. While in the other models, a parallel real-time task
starts as a collection of segments and then they propose the
possibility of transforming it into a DAG, while the same
decomposition algorithm and feasibility analysis remain ap-

plied.
1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)

Pr
oc
es
so
rs

Time


���


���


���


���


���


��	

�����
�����

�	���

�����

�����

�����

Figure 1. Example of the task model.

4 Parallelizing algorithm for a parallel real-
time task

4.1 Critical Path Calculations:
This general parallel task model of graphs has many pos-

sibilities regarding the execution flow of the subtasks in the
same task due to the intra-subtask parallelism described be-
fore in 3. Task τ1 from Figure 1 has 3 parallelizable sub-
tasks (τ1,2, τ1,3, τ1,4), they can either be parallelized or ex-
ecuted sequentially. The simplest solution will be to paral-
lelize them all up to their maximum degree of parallelism.
However, this solution will achieve the minimum response
time of τ1 when compared with other parallelizing struc-
tures, but with no consideration for the precedence con-
straints within the subtasks or the number of processors
needed.

In this section, we propose a parallelizing algorithm that
uses the critical path of a graph technique which is based on
the depth-first search algorithm, and finds the best parallel
structure of the task with minimum response time and num-
ber of processors. We assume a univocal task to processor
assignment (the processors assigned to a task will only run
this task). This leads to consider that the number of pro-
cessor is high compared to the number of tasks. We plan to
remove this restriction as a further work.

The algorithm we propose considers first a system with
unlimited number of processors. We finally obtain with
the algorithm the exact number of processors required for
a given task.

Definition. Critical path Pi of a parallel real-time task is
the path through task τi with the longest sequential execu-
tion time when τi is executed without intra-subtask paral-
lelism on a system with infinite number of processors.

For a real-time graph task, Pi can be considered as the
maximum execution time of τi, that τi will need at least Pi



units of time to finish its execution when all its subtasks
execute sequentially without parallelism. Subtasks in the
critical path are called the critical subtasks.

According to task τ1 shown before in Figure 1, Figure
2(a) shows its critical path, P1 = {τ1,1, τ1,2, τ1,6}. We can
notice that this path has the longest consecutive execution
time of the task which is 8, while the other possible paths
{τ1,1, τ1,3, τ1,4, τ1,6} and {τ1,1, τ1,3, τ1,5, τ1,6} have execu-
tion time of 7 and 6 respectively.

According to Algorithm 1, we can calculate the criti-
cal path and the slack time of the non-critical subtasks by
performing forward and backward calculations, the forward
calculation of a subtask x is denoted as F (x), for each sub-
tasks in the graph starting from the source of the graph,
F (x) is the maximum sum of the execution time of its pre-
ceding subtasks. F (τi,sink) is the response time of τi.

Backward calculationR(x) is performed on each subtask
starting from the sink of the graph, we calculate the mini-
mum available time for the path of subtasks to execute from
the x until the source of the graph. For each subtask τi,j ,
the difference between the backward and forward calcula-
tions is its slack time, if it equals to 0, then τi,j is a critical
subtask.

In order to perform the calculations proposed in Algo-
rithm 1, we need to find the subtask flow in the graph, by
determining depth levels of each subtask. The source sub-
task will be in the first level, and its children are in 2, and
so on...

For any subtask τi,k in the graph, its depth is denoted as
h(k) and is calculated as the following:

h(k) = max
u parent of k

h(u) + 1

If a subtask τi,k has multiple parents, it will follow the par-
ent subtask with the maximum depth. The maximum depth
of the graph is denoted by H = h(τi,sink).

In our algorithm and while calculating the critical path
of a graph, we give a higher priority for the parallel nodes,
that if we have 2 different critical paths, we choose the one
with the highest probability of parallelism. In this case, we
increase the number of parallelized subtasks while keeping
the same response time or reduce it.

The critical path method is not new, it is used in opera-
tion analysis of graph tasks and based on depth-first search
algorithm, in order to choose the sequence of actions that
will define the execution of the task as whole, and any de-
lay in these actions will delay the total execution time of the
operation.

4.2 Parallelizing algorithm:
By using the critical path algorithm and as shown in Fig-

ure 2, we can find the critical subtasks in τi that determine
the response time of the task, where the rest of the “non-
critical subtasks” has certain amount of slack time calcu-

Algorithm 1 Calculating the critical path of a graph
for depth h = 1→ H do

for each subtask k in h do
F (k) = max

u parent of k
F (u) + ei,k

end for
end for
R(H) = F (H)
for h = (H − 1)→ 1 do

for each subtask k in h do
R(k) = min

u child of k
F (u)− ei,u

end for
end for
for i = 1→ si do

if F (i) = R(i) then
subtask i is a critical subtask.

else
Slack(i) = R(i) - F(i).

end if
end for

lated by Algorithm 1. Since we are concerned with par-
allelizing the parallel subtasks of the graph while keeping
the best possible response time of the task, we will start by
parallelizing the critical subtasks.

Figure 2 shows the parallelizing process of the task τ1
shown before. The first step is to find the critical path of
the task, which is P ′

1 = {τ1,1, τ1,2, τ1,6}, which has a sin-
gle parallel critical subtask τ1,2, and it can be executed on
2 processors (m1,2 = 2). So, we will divide it into 2 se-
quential subtasks of execution time = 6/2 = 3. This paral-
lelizing process will modify the structure of the graph and
its response time, so we can calculate a new critical path
P ′′
1 = {τ1,1, τ1,3, τ1,4, τ1,6} which can be also parallelized

as shown in Figure 2(b). This process will be repeated until
we get a graph with critical path that can’t be parallelized
any more, like in Figure 2(c).

This parallelizing process will change the structure of the
graph and reduce the response time of the task as well. As
shown in Figure 2, τ1 had a response time of 8 when exe-
cuted on 3 processors in the first iteration, but in the final
iteration, it has 5 units of response time when executed on
6 processors. We believe that reducing the response time
of the task on the behalf of the number of processors is
acceptable since multi-processor systems are widely man-
ufactured. However, in the next section we will optimize
the number of processors resulted from the parallelizing al-
gorithm.

4.3 Optimization:
As mentioned before, the previous parallelizing algo-

rithm tends to parallelize the real-time subtasks to their



1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)

Pr
oc
es
so
rs

Time

(a) First iteration

1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)

Pr
oc
es
so
rs

Time

(c) Final iteration

1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)

Pr
oc
es
so
rs

Time

(b) Second iteration

Figure 2. Example of the parallelizing algorithm.

maximal degree of parallelism in order to reduce the re-
sponse time of the task, without considering the place-
ment of these parallel subtasks or the number of proces-
sors needed for scheduling. As a final step of the algorithm
we tend to find a better placement of the generated paral-
lelized subtasks so as to reduce the number of processors
without affecting the calculated response time. Optimizing
the placement of the non-critical subtasks depends on 2 fac-
tors; the execution time of the subtask and the slack time.

According to algorithm 1, critical subtasks have no slack
time, and they have to execute without delay in order to get
the best response time of the task. But this is not the case
for the non-critical subtasks, their paths through the graph
will have strictly an execution time equal to the critical path
at most, and algorithm 1 can calculate the slack time of all
the non-critical subtasks in the graph.

Figure 3(a) shows the final placement of the subtasks of
τ1 after applying the parallelizing algorithm, and we can
notice that task τ1 can be fully executed on 6 processors
with 5 units of time. However, this placement of subtasks
is not the optimal, since there exists a non-critical subtask
in the graph with slack time S1,4 = 1. So, the 3rd thread
of the subtask can be placed in the slack time of the subtask
without increasing the response time of the τ1.

The advantage of this optimizing process is to occupy
the idle time of processors with non-critical subtasks with
sufficient slack time. This optimizing step will reduce the
overall number of processors needed by the task in order to
execute within the same response time.

5 Perspective and Conclusion
In this paper, we have introduced a parallel real-time

tasks graph model, and we have proposed a parallelizing
algorithm for this model which gives the best parallelizing
structure of the task according to the response time when
executed on a specific number of processors. Until now,
we only considered a univocal task to processor associa-
tion, but we aim to extend our work to take into account

1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)


���


���


���


���


��	


��


�����
�����

�
���

�����

�����

�����

Pr
oc
es
so
rs

Time

��������

Time

Pr
oc
es
so
rs

1,1 6,2 1,1

2,2 3,3

2,1

2(3,1)

1,1 2,2 1,13,3

2,1

1,1 1,1

2(3,1)

2(1,1) 2,1

3(1,1)


���


���


���


���


��	


��


�����
�����

�
���

�����

�����

�����

Pr
oc
es
so
rs

Time

��������

Time

Pr
oc
es
so
rs

Figure 3. Optimizing the parallelized graph
using slack time.

several parallel graph tasks on a processor, and study their
schedulability and interference.

The parallelized task can be seen as a set of parallel seg-
ments with arbitrary number of threads execute on multiple
processors, feasibility analysis studies used before in [4]
and [3] can be adapted on our task model, and in the fu-
ture we will work on proposing feasibility analysis for the
schedulability of tasks parallelized using the proposed DAG
model.

References
[1] Openmp, http://www.openmp.org.
[2] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar. Schedul-

ing parallel real-time tasks on multi-core processors. In IEEE
RTSS, 2010.

[3] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Opti-
mizing the number of processors to schedule multi-threaded
tasks. In IEEE RTSS WiP Session, 2011.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-
time scheduling for generalized parallel task models. In IEEE
RTSS, 2011.


