
Performance Analysis for Segment Stretch
Transformation of Parallel Real-time Tasks

Manar Qamhieh, Frédéric Fauberteau, Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
5 bd Descartes 77454 Marne la vallée CEDEX 2

{manar.qamhieh,frederic.fauberteau,serge.midonnet}@univ-paris-est.fr

Abstract—The Segment Stretch Transformation (SST) is an
algorithm that transforms parallel Fork-Join (FJ) tasks into
sequential tasks on multiprocessor systems when possible, in
order to increase the schedulability of the tasksets of this model.
SST is based on Task Stretch Transformation (TST) which is a
transformation for the same model of tasks, but it uses segment
migrations while SST eliminates their use.

In this paper, we prove that SST transformation has the same
performance of TST transformation by providing a detailed
analysis based on Demand Bound Function (DBF) and by
showing that SST has a resource augmentation bound of 3.42,
same as TST, which means that if a taskset is feasible on m speed
processors, then it is schedulable using the transformation on m
processors that are 3.42 times faster.

I. INTRODUCTION

Parallelism in normal systems is widely used for a long
time, and it is created specially to cope with the tendency
of chip manufacturers to build multiprocessor systems. But
in real-time systems, the integration of parallelism is more
complicated when it is to be compared with ordinary se-
quential tasks even if they are executed on multiprocessor
systems. Parallelism in real-time systems can be defined as
the execution of the same task at the same time on multiple
processors while respecting certain time constraints like period
or deadline.

Parallelism has many models and theories that are applied
in actual programming languages, like the MapReduce model
which is designed by Google in order to speed up the execution
of massive data on multiple processors. Another model is the
fork-join model “FJ”, which is a common parallel computing
model and it is the base of OpenMP parallel programming C
library [1].

The remainder of this paper is organized as follows: in
Section II, we present our task model. Section III describes the
transformations TST and SST. Section IV contains the analysis
of the demand bound function and resource augmentation
bound done on the SST, and we finish with the conclusion
in section V.

II. FORK-JOIN MODEL

The parallel real-time task of fork-join model is a task in
which certain parts are executed simultaneously on multiple
processors. As shown in Figure 1, FJ task consists of segments,
both sequential and parallel. The task always starts by a

sequential segment which is executed on one processor, and
then it forks into a specific number of parallel segments, which
they join together into a sequential segment, and so on. The
number of segments are defined by the model, as well as the
number of parallel processors, which means that all the parallel
regions in the task share the same number of processors.

An implicit-deadline FJ task is described as the following:
τi = ((C1

i , P
2
i , C

3
i , . . . , P

si−1
i , Csii),mi, Ti) where:

• si is the total number of segments (sequential and par-
allel) and it is an odd number according to definition of
the model,

• mi is the number of parallel segments in each parallel
region fixed by the model. mi > 1 for parallel segments,
and equal to 1 for sequential segments.

• Cki is the Worst Case Execution Time (WCET) of the
kth sequential segment, and k is an odd number and 1 ≤
k ≤ si,

• P ki is the WCET of the parallel segments in the kth par-
allel region, where k is an even number and 1 ≤ k ≤ si,
and P ki = P k,1i = P k,2i = . . . = P k,mi

i

• Ti is the period of the task which is equal to the deadline
Di.

7 8 9 10 11 12 13

S1 S3P11 P12 P21

P’22

14 15 16 171 4

P13

3

S2 P23P’’22

Deadline Di

Ci
1

Pi
2,1

Ci
3 Ci

5 Ci
kPi

2,2

Pi
2,n

Pi
4,1

Pi
4,2

Pi
4,n

Fig. 1. Task of FJ model.

Definition II.1 (Master string). The master string of a parallel
FJ task is a collection of segments that executes within the
master thread of the task, starting by the first sequential
segment and then the intermediate parallel and sequential
segments, and ending by the last sequential segment. In
numerical notations, master string can be represented as:

τ1i , τ
2,1
i , τ3i , . . . , τ

(si−1),1
i , τsii

Definition II.2 (Parallel execution length). The parallel exe-
cution length Pi is the sum of worst execution time of parallel

segments in the master string of τi, where:

Pi =

si−1

2∑
k=1

P 2k
i (1)

Definition II.3 (Minimum execution length). The minimum
execution length ηi represents the minimum time a FJ task τi
needs to execute when all parallel segments are executed in
parallel. It is equal to the sum of WCET of all segments in
the master string of task τi:

ηi = (

si−1

2∑
k=0

(C2k+1
i)) + Pi (2)

Definition II.4 (Maximum execution length). The maximum
execution length Ci, which is the sum of WCET of all sequen-
tial and parallel segments in task τi:

Ci = (

si−1

2∑
k=0

(C2k+1
i)) +mi ∗ Pi (3)

Definition II.5 (Slack time). The slack time Li is the temporal
difference between the deadline and the minimum execution
time.

Li = Di − ηi (4)

Definition II.6 (Capacity). The capacity fi is defined as the
capacity of the master string to execute parallel segments from
all parallel regions within itself without missing its deadline.

fi =
Li
Pi

(5)

III. RELATED WORK

A. Task Stretch Transformation

According to Lakshmanan et al. in [2], the parallel real-time
tasks of FJ model on multiprocessor systems can have schedu-
lable utilization bound slightly greater than and arbitrarily
close to uniprocessor schedulable utilization bound. Therefore
they proposed an algorithm called TST.

The main objective of TST is to convert the parallel
FJ task into sequential when possible, by creating a fully
stretched master string where its execution time is equal to
its deadline. Part of the parallel segments execute within
the master string and the remaining ones are scheduled by
a specific partitioned scheduling algorithm called FBB-FFD
({Fisher,Baruah,Baker}–First-Fit Decreasing) [3].

TST is proved to have a resource augmentation bound of
3.42, which means any taskset that is feasible on m unit speed
processors is feasible using the TST on m processors of speed
3.42.

B. Segment Stretch Transformation

Since segment migrations are used heavily in the TST
which limits its implementation by using a special Linux
kernel called Linux/RK which supports semi-partitioning, we
proposed earlier a modification to the algorithm called SST
for the same FJ model of parallelism [4].

SST also tries to convert the parallel tasks into sequential
ones by creating a master string, which in this case can be
either fully stretched or not, in order to provide a partitioned
scheduling for the parallel FJ tasks by eliminating the segment
migration. As a result the new transformation algorithm can
be implemented directly on a RT Linux kernel with no specific
patches.

For a parallel implicit deadline task τi of FJ model, with
maximum execution time of Ci, deadline of Di, SST has 3
scenarios:

1) Ci ≤ Di: the task will be fully converted from parallel
task to sequential,

2) Ci > Di and the master string will be fully stretched.
The slack Li of the master string will be completely
filled by parallel segments and its execution time will
be equal to the deadline,

3) Ci > Di and the master string will not be fully stretched,
some of the slack time will remain unfilled.

In this paper we prove that SST have the same resource
augmentation bound as TST, by providing a performance
analysis on these 3 scenarios which is inspired by the analysis
performed on TST algorithm in [2].

IV. ANALYSIS

A. Demand Bound Function “DBF”

Definition IV.1 (DBF [5]). DBF is defined as the largest
cumulative execution requirement of all jobs that can be
generated by τi to have both their arrival times and their
deadlines within a contiguous interval of length t.

For a task τi with a total execution time of Ci, period of
Ti and a deadline of Di ≤ Ti DBF is given by:

DBF (τi, t) = max(0, (b t−Di

Ti
c+ 1)Ci) (6)

Theorem IV.1 (DBF). DBF of a stretched task τstretchedi

using SST is:

DBF (τstretchedi , t) ≤ Ci
Ti − ηi

t

where 0 ≤ ηi ≤ Ti.

Proof: In order to generalize DBF for the stretched task,
the three cases of SST (Section III-B) have to be analyzed.

1) For the first case, the parallel task is transformed totally
into a sequential one which is the master string, and
Dmaster
i = Tmasteri and Cmasteri = Ci (Equation (3)).

DBF is calculated as the following:

DBF (τstretchedi , t) = DBF (τmasteri , t)

DBF (τstretchedi , t) = max

(
0,

(⌊
t−Di

Ti

⌋
+ 1

)
Cmasteri

)
DBF (τstretchedi , t) = max

(
0,

(⌊
t

Ti

⌋)
Ci

)
≤ Ci
Ti
t

DBF (τstretchedi , t) ≤ Ci
Ti − ηi

t

where 0 ≤ ηi ≤ Ti.
2) The second case is when the master string is fully

stretched but there exist parallel constrained deadline
segments that are not part of the master string and will
be scheduled using FBB-FFD:

τstretched = τmaster + {τ cd}

DBF will be as the following:

DBF (τstretchedi , t) ≤ DBF (τmasteri , t)+DBF ({τ cdi }, t)

DBF for the master string can be calculated knowing
that the master string is fully stretched, and Cmasteri =
Dmaster
i :

DBF (τmasteri , t) ≤ Cmasteri

Dmaster
i

t

DBF (τmasteri , t) ≤ t

The group of segments {τ cdi } consists of segments from
all the parallel regions in τi, and only one parallel region
is activated at time instant t. The maximum number of
parallel segments in each region is (qi− 1), where qi =
mi−bfic. Figure 2 shows an example of a stretched task
of the second case, with constrained-deadline parallel
segments of 3 different parallel regions.
Therefore, DBF can be calculated as the following:

DBF ({τ cdi }, t) ≤ δmaxi (qi − 1)t (7)

The density of a constrained deadline task τi is given
by:

δi =
Ci
Di

As shown also in Figure 2, the SST algorithm starts
by filling the slack of the master string by bfic-
parallel segments from each parallel region, and then
we add other parallel segments if their WCET fits in
the remaining slack. For a k parallel region, all τ cd

have the same WCET P ki , and deadline Dk
i where

Dk
i = (1+nbfic)P ki , and 1 ≤ n < mi according to the

number of parallel segments from region which execute
within the master string.
The maximum density of the parallel constrained dead-
line tasks τ cd can be calculated as the following:

δmax =
si−1

2
max
k=1

P 2k
i

(1 + nbfic)P 2k
i

δmax =
si−1

2
max
k=1

1

(1 + nbfic)

δmax =
1

1 + bfic
Since there exist at least one parallel region where n =
1, this region is the one with the highest density.
Using this result in Equation (7), the DBF is as the
following:

DBF ({τ cdi }, t) ≤
1

1 + bfic
(qi − 1)t

SST

Segment Stretch Transformation (1st case)
Cmax = C1,1 + C2,1 + ... + C2,4 + C3,1

Cond: Cmax <= Deadline
Output: a master string (implicit deadline).

Same as TST,
DBFstretched <= [C / (T - η)] * t

Segment Stretch Transformation (2nd case)
Cmax = C1,1 + C2,1 + ... + C2,4 + C3,1 + ... + C7,1

ηi = C1,1 + C2,1 + C3,1 + ... + C7,1 Pi = C2,1 + C4,1 + C6,1 fi = (D - ηi) / Pi = (13 - 8)/4 = 1,5
Cond: Cmax > Deadline, master string fully stretched.
Output:
! 1- a master string (implicit deadline)/ fully stretched. [Cmaster = Dmaster]
 [Same as TST, DBF(Tmaster, t) <= t]
 2- {Τcd}: parallel segments that were not included in the master string
 Τcd = {Τ2,2, Τ2,3, Τ4,2, Τ6,2, Τ6,3}
 max. number of Τcd in each parallel region = (qi -1) = (m - floor(f) -1) = 4 -1 -1 = 2
 for each parallel segment i in Τcd => Di = Ci * ([n * floor(f)] +1), where n is the number of parallel
segments that included in the master string from this parallel region.
Since these parallel segments have offsets, and at each instant of time t, only on parallel region can execute.
Then, DBF(Tcd , t) = (qi -1) * (maximum density of Τcd)
 where density = Execution time / Deadline, Densitymax = 1 / (1 + floor(fi)).
As shown in the example, the maximum density of parallel segments is when the minimum number of parallel
segments is included into the master string from each region (which is the value of floor(f))
(in the example, the first and third parallel region have the maximum density = 0.5)

Density= 2/4 = 0.5

Density= 1/3 = 0.33

Output:
! 1- a master string (implicit deadline)/ not fully stretched.
 2- {Τcd}: parallel segments that were not included in the master string -- Same as Case 2 above.
!
For the master string, it is a task with execution time Cmaster = ηi + Pi * floor(fi) which is definitely less than the
period. (Cmaster / Period < 1)
So, DBF(Tmaster, t) <= [Cmaster / Period] * t <= t
which leads us to the same results of TST, that in all cases,
DBFstretched <= [C / (T - η)] * t

Details of the analysis and equations are included in the draft sent before.
DBF is used to calculate the Resource augmentation bound, equations included in the draft.

Segment Stretch Transformation
(3rd case)

Cmax = C1,1 + C2,1 + ... + C2,4 + C3,1

Cond:
Cmax > Deadline && [fi - floor(fi) != 0]
fi = (7 - 4) / 2 = 1.5

T2,1T1,1

T2,2

T2,3

T2,4

T4,1

T4,2

T4,3

T4,4

T7,1 T2,1T1,1

T2,2

T2,4

T2,3

T4,1

T4,2

T4,4 T7,1

parallel region parallel region parallel region

Fig. 2. SST: Parallel regions and constrained-deadline tasks {τcd}.

In order to eliminate the use of bfic in our calculations,
we will use the following approximation:

δmaxi =
1

1 + bfic
fi − bfic < 1 =⇒ 1 + bfic > fi

δmaxi <
1

fi

which will lead to the following:

DBF ({τ cdi }, t) ≤
1

fi
(qi − 1)t

fi =
Ti − ηi
Pi

DBF ({τ cdi }, t) ≤
(qi − 1)Pi
Ti − ηi

t (8)

DBF of the whole stretched task can be calculated as
the sum of both the master string and the group of
constrained deadline, as the following:

DBF (τstretchedi , t) ≤ DBF (τmasteri , t) +DBF ({τ cdi }, t)

DBF (τstretchedi , t) ≤ t+ (qi − 1)Pi
Ti − ηi

t

DBF (τstretchedi , t) ≤ Ti − ηi + (mi − bfic − 1)

Ti − ηi
t

DBF (τstretchedi , t) ≤ miPi
Ti − ηi

t ≤ Ci
Ti − ηi

t

3) For the third case, the stretched task τstretchi consists of
a collection of constrained deadline tasks, including the
master string, which will not be fully stretched.
The execution time of the master string in this case will
be as the following:

ηi + Pibfic ≤ Cmasteri < Ci ≤ Ti

Cmasteri < Ti =⇒
Cmasteri

Ti
< 1

DBF (τmasteri , t) = max(0, b t
Ti
cCmasteri)

DBF (τmasteri , t) ≤ Cmasteri

Ti
t

DBF (τmasteri , t) ≤ t

For the group of constrained deadline segments τ cd, it
is the same as in the second case, then we can use the
previously calculated DBF (Equation (8)):

DBF (τstretchedi , t) ≤ DBF (τmasteri , t) +DBF ({τ cdi }, t)

DBF (τstretchedi , t) ≤ t+ (qi − 1)Pi
Ti − ηi

t

DBF (τstretchedi , t) ≤ Ci
Ti − ηi

t

To sum up, the three cases of τstretched by SST share the
same DBF.

B. Resource Augmentation Bound

Lakshmanan et al. have analyzed the resource augmen-
tation bound for their partitioned scheduling algorithm FJ-
DMS (Fork-Join–Deadline-Monotonic Scheduling) [2]. The
partitioning of the transformed set of tasks is carried out by
FBB-FFD scheduling algorithm proposed by Fisher et al. [3].
The schedulability test for FBB-FFD is given by:

m ≥ δsum + usum − δmax
1− δmax

(9)

For a processor that is v times faster, the following can be
applied:

∀1 ≤ i ≤ n, ηvi ≤
Ti
v

=⇒ (Ti − ηvi) ≥ Ti(1−
1

v
)

Cvi =
Ci
v

uvsum =
usum
v

δvmax =
δmax
v

n∑
i=1

Ci
Ti
≤ m

δvsum = max
t>0

(

∑n
i=1DBF (τ

stretched
i , t)

t
)

δvsum ≤
n∑
i=1

Cvi
Ti − ηvi

In order to simplify the equation, the following can be
applied:

usum =

n∑
i=1

Ci
Ti

δvsum ≤
n∑
i=1

Cvi
Ti − ηvi

≤
n∑
i=1

Cvi
Ti(1− 1

v)
≤ 1

v − 1
usum

By substituting the previous equations in Equation (9), a
taskset is schedulable if:

m ≥
m
v−1 + m

v −
δmax

v

1− δmax

v

This is an increasing function of δmax for m ≥ v
2 .

The density of any parallel thread with constrained deadline
in SST is:

∀fi ≥ 0 =⇒ δmaxi =
1

1 + bfic
0 ≤ bfic =⇒ 1 ≤ 1 + bfic

then δmaxi ≤ 1
1+bfic ≤ 1.

Using this in Equation (9) and when m ≥ v
2 , the schedula-

bility is ensured if:

m ≥
m
v−1 + m

v −
1
v

1− 1
v

Applying the same calculations used on TST in [2], and for
all m ≥ v

2 , we got the following result:

=⇒ v ≥ (2 +
√
2) ≈ 3.42

This approximated value of resource augmentation bound for
SST is the same as the one in TST, and it means if a taskset is
feasible on a m speed processors, then it is guaranteed that the
transformation will schedule the same taskset on m processors
with 3.42 times faster.

V. CONCLUSION

In a previous paper [4], we presented SST, which is an
algorithm design specially for parallel real-time tasks of FJ
model based on another transformation called TST, which can
be found in literature. Both algorithms enhance the schedula-
bility of parallel tasks while the segment stretch has a practical
implementation advantage gained by preventing the use of
segment migration.

All the analysis we provided previously was an extensive
simulation as a tool to measure the performance of SST in
comparison with the TST, so as to see the effects of the pro-
posed modifications. But in this paper, we provide a detailed
analysis to calculate the demand bound function of the SST
and to prove that it also has the same approximated resource
augmentation bound 3.42, the same as TST. This analysis
proved that SST does not only have the same performance
as TST, but it also reduced the cost of segment migration.

In the future, we will continue working on parallel tasks of
FJ model by providing a response time analysis, taking into
account the specific constraints of this model of parallel tasks.

REFERENCES

[1] “Openmp.” [Online]. Available: http://www.openmp.org
[2] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar, “Scheduling parallel

real-time tasks on multi-core processors,” in Proceedings of the 31st IEEE
Real-Time Systems Symposium (RTSS). San Diego, CA, USA: IEEE
Computer Society, November-December 2010, pp. 259–268.

[3] N. W. Fisher, S. K. Baruah, and T. P. Baker, “The partitioned scheduling
of sporadic tasks according to static-priorities,” in Proceedings of the
18th Euromicro Conference on Real-time Systems (ECRTS). Dresden,
Germany: IEEE Computer Society, July 2006, pp. 118–127.

[4] F. Fauberteau, S. Midonnet, and M. Qamhieh, “Partitioned scheduling of
parallel real-time tasks on multiprocessor systems,” in Proceedings of the
Work in Progress session of the 23rd Euromicro Conference on Real-Time
Systems (WiP ECRTS), Porto, Portugal, July 2011, p. 4pp.

[5] S. K. Baruah, A. K.-L. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proceedings of the
11th IEEE Real-Time Systems Symposium (RTSS). Orlando, Florida,
USA: IEEE Computer Society, December 1990, pp. 182–190.

http://www.openmp.org

	Introduction
	Fork-Join Model
	Related work
	Task Stretch Transformation
	Segment Stretch Transformation

	Analysis
	Demand Bound Function ``DBF''
	Resource Augmentation Bound

	Conclusion
	References

