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Abstract

In two previous papers, we proposed an audio Informed Source
Separation (ISS) system which can achieve the separation of
I > 2 musical sources from linear instantaneous stationary
stereo (2-channel) mixtures, based on audio signal’s natural
sparsity, pre-mix source signals analysis, and side-information
embedding (within the mix signal). In the present paper and
for the first time, we apply this system to mixtures of (up to
seven) simultaneous speech signals. Compared to the reference
MPEG-4 Spatial Audio Object Coding system, our system pro-
vides much cleaner separated speech signals (consistently 10–
20 dB higher Signal to Interference Ratios), revealing strong
potential for audio conference applications.

Index Terms: underdetermined source separation, speech mix-
ture, speech signals sparsity, signal compression

1. Introduction

Source separation aims at recovering I unobserved source sig-
nals si[n], i ∈ [1, I], from J observations of their mixture
xj [n], j ∈ [1, J ]. In this paper, we consider speech sig-
nals, and we address the stereo underdetermined configura-
tion, where I > 2 speech signals have to be separated from
only J = 2 channels. This is a difficult configuration, that
cannot be processed by Blind Source Separation (BSS) / In-
dependent Components Analysis (ICA) methods developed for
(over)determined mixtures (J ≥ I) [1, 2], and that is better ad-
dressed with techniques based on sparse Time-Frequency (TF)
representations of audio signals [3, 4, 5], or other a priori infor-
mation on the source signals and the mixture process.

In [6] we proposed an Informed Source Separation (ISS)
system, based on audio signals sparsity and a two-step coder-
decoder structure, and dedicated to music demixing. The coder
corresponds to the music signal production level (e.g., music
recording/mixing in studio) where the source signals are as-
sumed to be available and the mixing process is controlled. The
decoder corresponds to the personal music player, where only
the stereo mix signal is available. Parameters that characterize
the source signals and the mixing process are embedded into the
mixture signal at the coder level, so that they can be retrieved
at the decoder and exploited for source signals separation from
the mix signal. For instance, the mixture process is Linear In-
stantaneous Stationary Stereo (LISS) (aka constant-gain stereo
panning) and the side-information consists of i) the mixture ma-
trix, and ii) the indexes of the two predominant sources in each
TF bin as provided by “Oracle” estimation at the coder. The de-
coder uses those information to perform local mixture inversion
in each TF bin. The separation performances obtained by this
system are quite impressive: Signal to Distortion Ratio (SDR)
[7] gains about 20 dB are obtained for all sources of 5-source
music mixtures, enabling realistic applications such as general-
ized karaoke/soloing.

Such ISS system also has a strong potential for audio con-
ference applications, to separate and respatialize different si-
multaneous speakers. Therefore, in the present paper, and for
the first time, we apply the ISS system to speech signals, and
assess the separation performances for “difficult” mixtures of
continuous speech with many speakers (up to 7). Also, we com-
pare our system with the MPEG-4 Spatial Audio Object Coding
(SAOC) system [8], which is also a system dedicated to resti-
tute audio sources (“audio objects”) from downmix signals and
side-information (composed of inter-object spatial cues). The
technical positioning of our system with respect to SAOC is
briefly discussed in Section 3. Note that SAOC applications
also concern both music and speech demixing/remixing.

This paper is organized as follows. The proposed system is
described in Section 2. Results obtained for speech mixtures as
well as comparison with SAOC are presented in Section 3, and
Section 4 concludes the paper.

2. The ISS system

The ISS system used in this work is depicted in Fig. 1. It is
similar to the one presented in [6]. However, the parameters
of the ISS process are adapted to speech signals. Also, in [6],
uncompressed (16-bit PCM) mixture signals were considered
(and the side-information was embedded into the mix signal us-
ing a high-capacity watermarking technique [9]). In the present
framework, the speech mixture signal generally has to be trans-
mitted in dedicated channels, hence we consider the use of both
uncompressed (16-bit PCM) and compressed mixture signals
(MPEG-2/4 AAC [10]). The side-information is assumed to be
either embedded into the bitstream or transmitted on a dedicated
channel.
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Figure 1: Diagram of the ISS system.



2.1. Time-frequency decomposition

The speech source signals are non-stationary, with quite large
temporal and spectral variability, and they possibly strongly
overlap in the time domain. Using TF representation is known
to exhibit their natural sparsity, i.e., much lower overlapping of
signals in the TF domain, a foundation for “sparse separation”
methods [4, 5]. A linear invertible transform is required, so that
the source separation problem remains linear/instantaneous in
the transformed domain. And preferably, the transform sparsi-
fies signals maximally and suppresses the blocking artifact in-
trinsically. In this regard, we select the Modified Discrete Co-
sine Transform (MDCT [11]), a lapped orthogonal transform
widely used in audio compression and processing. This trans-
formation is applied on each source signal at the coder, and on
each mixture channel at both coder and decoder, while the cor-
responding inverse transform (IMDCT) is used at the decoder
to regenerate estimated time-domain source signals from sep-
arated MDCT coefficients (Fig. 1). We use here time frames
of W=768 samples (approximately 48 ms for 16 kHz speech
signals), with a 50% overlap between consecutive frames. This
setting enables to follow the time-dynamics of speech signals
while providing a frequency resolution of about 21 Hz suitable
for the separation.

2.2. Local inversion of the mixture and sources selection

As in the blind method of [3] and in our previous works [6],
the estimation of source signals is processed by a local inver-
sion of the mixture signal. “Local” means that the process is
considered for each TF bin [f, t], and at this level, only at most
J = 2 sources are assumed to be contributing significantly to
the mixture signal. Therefore, in the MDCT domain, the mix-
ture X[f, t] = A·S[f, t] at each TF bin is assumed to be locally
reduced to:

X[f, t] ≈ AIft
· SIft

[f, t], (1)

where Ift denotes the set of J = 2 most relevant sources at
TF bin [f, t], i.e., the two source signals that locally “better ex-
plain” the mixture. AIft

represents the 2×2 mixing sub-matrix
made with the Ai columns of A, i ∈ Ift (which is assumed to
be invertible and well-conditioned). If Īft denotes the comple-
mentary set of non-active (or at least poorly active) sources at
TF bin [f, t], the source signals are estimated by:

{

ŜIft
[f, t] = A

−1

Ift
·X[f, t]

ŜĪft
[f, t] = 0

. (2)

The side-information that is transmitted between ISS coder and
decoder (in addition to the mix signal) consists of i) the coef-
ficients of the mixing matrix A, and ii) the optimal combina-
tion of source indexes Ift for each TF bin. This contrasts with
(semi-)blind separation methods where this information have to
be estimated from the mix signal only, generally in two steps
which can both be a challenging task and source of significant
errors.

As for the mixing matrix, the number of coefficients to
be transmitted is quite low in the present LISS configuration
(only I fixed coefficients for each mixing configuration, if A is
made of normalized column vectors). Therefore, the transmis-
sion cost of A is negligible compared to the transmission cost
of Ift, and in the following we do not detail the encoding and
transmission of A.

As for the source indexes, in the specific ISS framework,
the optimal Ift is estimated using the source signals, the matrix

A, and the mixture signals. This is done using an Oracle esti-
mator, as introduced in [12] for providing upper bounds for the
performances of source separation algorithms. Exploiting the
reconstruction properties of the MDCT, the overall best separa-
tion in the time domain in the mean squared error (MSE) sense
is obtained by finding the optimal combination of source signals
at each TF bin separately [12]:

Ĩft = arg min
Ift∈P

I
∑

i=1

(

Ŝi[f, t]− Si[f, t]
)

2

, (3)

where P represents the set of all possible combinations Ift and

the I estimated source signals Ŝi(f, t) are provided by (2). If I

is limited to a reasonable number of sources, Ĩft can be found
by exhaustive search, and coded with a very limited number of
bits before being embedded into the mixture signal stream (see
Section 2.4).

2.3. Separation from transmitted mixtures

The separation at the decoder consists of applying (2) using the
MDCT coefficients XC [f, t] of the transmitted mix signal xC ,
instead of the coefficients of the original mix signal X[f, t]:







Ŝ
Ĩft

[f, t] = A
−1

Ĩft
·XC [f, t]

Ŝ
Ĩft

[f, t] = 0
. (4)

In the current system (Fig. 1), the mix signal at the output of the
coder is either PCM or AAC bitstreams. In our previous stud-
ies, 16-bit PCM conversion has been shown to have negligible
effects on separation performances. In contrast, audio compres-
sion is expected to perturb the MDCT coefficients of the mix
signal significantly, depending on bitrate, and is thus likely to
impair the separation performance. Also, the sparsity assump-
tion may not hold perfectly, in which case, non-predominant
but active sources will interfere as noises in the local inversion
process. In Section 3, we report separation results for speech
signals mixed with the LISS configuration and compressed with
different settings.

2.4. Side-information coding and embedding

Instead of embedding the side-information (A and Ĩft) into
the mix signal waveform through a high-capacity watermark-
ing technique [6, 9], in the current system we transmit the side-
information using metadata segments of the compressed binary
stream. It can also be transmitted using a dedicated channel.
This is similar to the spirit of SAOC [8] (see Section 3).

Since A is fixed and only needs to be transmitted once for
the entire signal, we consider only Ĩft here. Suppose that I
is fixed for all frames and frequencies for a given mix signal,
with basic entropy-coding, the side-information occupies ap-
proximately 2fmax/Fs log2(Ift) bits per sample, where fmax

is the maximal frequency processed, and Fs is the sampling fre-
quency of the mix signal. For example, for a 5-source mixture,
we have 10 combinations of 2 active sources out of 5, lead-
ing to log

2
10 = 3.3 bit per sample, or 53 kbps for the side-

information, given fmax = 8 kHz and Fs = 16 kHz.
This basic coding scheme can be refined by exploiting the

fact that musical/speech sources also generally have some tem-
poral sparsity. Before mixing, each source signal is then labeled
into non-silent/silent sections, and for each MDCT frame, a I-
bit code c1 is transmitted to provide the combination of non-
silent sources. For each frequency bin f , the estimation of Ĩft



by (3) is then carried out only among the non-silent sources,
leading to a lower bitrate. For example, if only 4 sources out of
5 are non-silent on a given frame, Ĩft only concerns 2 sources
out of 4, then maximally log

2
(6) = 2.6 bits per sample. In

addition, only c1 has to be transmitted if the number of non-
silent sources is lower or equal to 2. Such refinement has been
shown to save up to 40% of bitrate depending on the number of
sources and their degree of temporal sparsity. Finally, it appears
that the distribution of Ĩft in the TF plane is highly structured,
and many lossless coding strategies can be applied to the side-
information.

In the present paper, we do not detail the format of the meta-
data segment in the compressed bitstream, and the correspond-
ing embedding strategy. We, however, provide in Section 3 the
typical ISS side-information bitrates obtained for our test sig-
nals (and we compare them with the SAOC side-information
bitrates for the same test signals).

3. Experiments on speech mixtures

3.1. Experimental settings

The ISS system has been applied to mixtures of I = 3, 5, and
7 simultaneous talks, downmixed to stereo (2-channel) signals.
All test speech signals are 16-kHz signals taken from the TIMIT
database [13], concatenated and level-adjusted to form contin-
uous (non-stop) 5s-clips with the same volume. In the mixed
stereo signal, each source signal is panned to a different az-
imuth, governed by a constant mixing matrix A, to simulate
speakers from different angles. To ensure good conditioning of
each sub-matrix of A and spatial (perceived) separation of the
speakers, we have

A =

[

cos θ1 cos θ2 · · · cos θI
sin θ1 sin θ2 · · · sin θI

]

, (5)

where θk = (2k − 1)π/(4I). In such mix of dense simulta-
neous talks of the same volumes, we observed that in case of
I = 3, normal people could barely understand who was saying
what; in case of I = 7, the mix is very messy and close to cafe-
teria noises. So our experiments presented hard cases for the
separation task, even for human beings.

We evaluated the ISS system in terms of Signal to Interfer-
ence Ratios (SIRs) and SDRs as defined in [7], with and without
encoding the mixture signals by AAC. When encoding mixture
stereo signals, we used the AAC codecs from Nero 1. and bi-
trates were set to 16, 32, and 64 kbps employing the AAC Low
Complexity (LC) profile [10] (this was to avoid spectral distor-
tion resulting from parametric coding enabled at lower bitrates).

For comparison, we also evaluated the SIRs and SDRs of
SAOC using the same source and mix signals. As mentioned
in the introduction, SAOC is a system dedicated to restitute
“audio objects” from downmix signals and side-information.
SAOC is built on the former MPEG Surround or Spatial Au-
dio coding (SAC) system [14], which was initially designed for
the respatialization of multichannel audio from downmix sig-
nals using interchannel spatial cues (transmitted as low-bitrate
side-information). SAOC extends the respatialization concept
of SAC to audio objects (e.g., musical instruments or individ-
ual speech signals), thus leading de facto to source separation
through respatialization. However, because it was initially de-
signed for spatialization, the SAOC decoder may not ensure
sufficient separation quality for any kinds of audio scenes. In

1http://www.nero.com/eng/technologies-aac-codec.html
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Figure 2: Waveforms of the stereo mix (a), and the I = 5 sepa-
rated signals (b)–(f) (ISS system, AAC 32 kbps).

contrast, even if the overall spirit is close, our ISS system is
designed specifically for source separation (of LISS mixtures)
and uses specific parameters. Note that for those comparative
experiments, we used the SAOC reference system provided on
the MPEG website 2, which may not be an optimized version.
Note also that downmixing by matrices defined in (5) fits well
the model of SAOC — sources are spatialized significantly and
stably — a sweet point for SAOC.

3.2. Separation results

As an example, the stereo mix signals and speech signals sep-
arated by the ISS system are shown in Fig. 2 for I = 5 and
bitrate = 32 kbps. They come from male and female American
speakers with different accents.

The SIRs and SDRs obtained on our test signals are pro-
vided in Fig. 3 and Fig. 4 respectively. In Fig. 3, we find that
mean (across sources) SIRs obtained with the ISS system are
almost all higher than or close to 30 dB, even for the extreme
case of 7 simultaneous speakers. This indicates that the sparsity
assumption is well hold for multiple simultaneous speech sig-
nals. The SIRs are remarkably robust to compression: differ-
ences from PCM to AAC-64 kbps and then to AAC-32 kbps are
generally small (however, a large decrease to 16 kbps, of about
10 dB). This implies that mix signal compression at relatively
low bitrate, say 32 kbps, is sufficient to ensure good separa-
tion of sources. The ISS system outperforms the SAOC system
by 10–25 dB in SIRs. This is also clearly verified by informal
listening tests: cross-talks are much more apparent in SAOC. It
should also be noted that the SIRs of SAOC are almost the same
for PCM and AAC at different bitrates, but depend on the num-
ber of speakers, suggesting that SIRs in SAOC are more limited
by the SAOC spatialization model than by AAC encoding dis-
tortion.

Compared to the SIRs, SDRs of both the ISS system and
SAOC in Fig. 4 are 5–30 dB lower. Therefore, processing ar-
tifacts dominate the overall distortions. These artifacts come
from both AAC encoding and source separation. And gener-
ally, the more numerous the speakers, the more dominant the
artifacts from source separation, the less important the artifacts
from compression. This is shown as SDRs of the ISS system
drop about 7 dB from PCM to AAC-64 kbps for I = 3, but
drop only about 2 and less than 1 dB for I = 5 and 7, respec-
tively. For I = 7, AAC at 64 kbps is a good trade-off between
source separation quality and mix bitrate, compared to PCM.

2http://www.itscj.ipsj.or.jp/sc29/29w42911.htm
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Informal listening tests reveal that except for the case of
I = 7 and bitrate = 16 kbps, speech signals separated by
the ISS system are well intelligible (of course, they are of
better quality when going toward smaller I and higher bi-
trates). For SAOC, intelligibility is ensured for all separated
sources only when the mixtures are compressed at bitrate no
less than 32 kbps (or not compressed) and the number of speak-
ers is no more than 5. Demo sequences can be downloaded
from http://www.gipsa-lab.inpg.fr/∼laurent.girin

/demo/ISS-SAOC-speech.zip.

With basic entropy coding, the side-information bitrates of
the ISS system are 15.6, 40.0, 56.9 kbps for I = 3, 5, and 7, re-
spectively. These bitrates can be significantly reduced by taking
the advantages of the structure of the indexes and redundancy
among them. The side-information bitrates of the SAOC sys-
tem are about 3/4 lower, thanks to its advanced entropy coding
scheme.

4. Conclusions

We have extended the ISS system proposed in [6] for the in-
formed separation of uncompressed music signals to the case
of uncompressed or compressed speech signals. Experiments
with the extended system applied to continuous simultaneous
talks of up to 7 speakers has demonstrated that local sparsity,
the core assumption of the system, withstands dense mixtures
of many speech signals that are impossible to distinguish for
normal listeners. At different compression levels and with dif-
ferent numbers of speakers, the extended system is capable to
separate stereo mix signals into intelligible individual speech

signals, and maintains SIRs higher than 30 dB (except for one
condition) while SDRs are dominated by encoding and sepa-
ration artifacts. Therefore, reducing spectral artifacts due to
the ISS processing is key to improving its performance. Also
we will refine the entropy coding scheme of the indexes to re-
duce side-information bitrate and integrate the ISS system more
closely into AAC to reduce computational complexity.
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