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Abstract. We present a novel clustering approach for moving object
trajectories that are constrained by an underlying road network. The
approach builds a similarity graph based on these trajectories then uses
modularity-optimization hiearchical graph clustering to regroup trajecto-
ries with similar profiles. Our experimental study shows the superiority of
the proposed approach over classic hierarchical clustering and gives a brief
insight to visualization of the clustering results.

1 Introduction

Traffic congestion has become a major problem affecting many human activities
on a daily basis and resulting in both serious transportation delays and envi-
ronmental damages. Continuously collecting information about the state of the
road network (e.g. occupancy rates of the road segments) can be valuable for a
better understanding of the traffic flow and a wiser planning and restructuring
of the road network. Due to the high deployment and maintenance costs of
dedicated traffic sensors, a more attractive approach to achieve this aim is to
collect traces directly from GPS-equipped vehicles. The collected data can be
map matched to corresponding road segments and can be used to deduce the
state of the network in real time. It can also be stored and used later to conduct
further, more complex data analysis tasks. .

The problem addressed throughout this article is how to discover clusters
of network-constrained trajectories, i.e. how to group together trajectories that
moved along the same parts of the road network. This post-analysis step is
conducted on a considerable amount of collected data. It can lead to a better
understanding of global movement patterns and tendencies that go unnoticed on
the individual level as well as a better grasp of the reasons that lead to congestion
situations.

Section 2 presents our formulation of the network-constrained moving object
trajectories clustering problem. Our approach to solve this problem is presented
in Section 3. Experimental results are exposed in Section 4 whereas related work
is briefly discussed in Section 5. Finally, Section 6 concludes this paper.



2 Data Model and Problem Statement

A road network can be represented as a directed graphG = (V,E). V is the set of
nodes (or vertices) representing the road intersections in the network whereas E
is the set of edges denoting road segments that interconnect these intersections.
The direction of a given edge e = (v1, v2) linking two vertices v1 and v2 indicates
that the corresponding road segment can be travelled from v1 to v2 and not the
other way around. A trajectory T traveling along this road network can be
modeled as the ordered sequence of visited segments. If travel times are to be
taken into account, each segment ei can be timestamped with the date ti the
trajectory T visited it: T = {(t1, e1), ..., (ti, ei), ..., (tn, en)} (n being the number
of segments contained in T ).

Given a dataset of trajectories T that travelled along a road network G,
the network-constrained trajectory clustering problem consists in discovering
sub-groups (or clusters) C = {C1, C2, ..., Cm} of trajectories exhibiting similar
behavior. Resemblance between trajectories of the same cluster Ci should be as
high as possible and trajectories across two different clusters Ci and Cj should
be as different as possible.

3 Clustering Approach

Our clustering approach proceeds in two steps. First, it calculates a similarity
graph from T . Then, in the second step, the graph is used to conduct modularity-
based graph clustering and regroup similar trajectories together.

3.1 Similarity between trajectories

We consider trajectories as bags-of-segments: comparisons between trajectories
are done on a segment-basis (i.e. each segment is checked individually, without
taking account of the order or the presence of other segments). This choice
comes from the fact that: i. in a context of traffic analysis, congestion situations
appear first on the level of individual, isolated segments then spread naturally
among adjacent road segments. Inspecting each segment apart is, therefore,
sufficient to detect these situations; and ii. even if the approach bag-of does not
directly take into account the order of the segments, thanks to the fact that the
underlying network is a directed graph the order of travel through the segments
is implicitly respected.

To assess their relevance to each trajectory, we assign weights to road seg-
ments based on their frequency in the data set in a TF-IDF (Term Frequency

- Inverse Document Frequency) fashion: the spatial weight of a segment e in a
trajectory T is defined, analogously to the TF-IDF weight, as follows:

ωe,T =
length(e)

∑

e′∈T length(e′)
· log

|T |

|{T ′ : e ∈ T ′}|

length(e) is the spatial length of the segment e, |T | is the cardinality of the
dataset T and |{T ′ : e ∈ T ′}| the cardinality of the subset of trajectories con-



taining the segment e. The first term of the multiplication is the equivalent to
the term frequency whereas the second is the equivalent to the inverse document
frequency.

To compare two trajectories Ti and Tj we calculate their cosine similarity:

Similarity(Ti, Tj) =

∑

e∈E ωe,Ti
· ωe,Tj

√

∑

e∈E ω2

e,Ti
·
√

∑

e∈E ω2

e,Tj

This weighting and similarity calculation approach takes only the spatial
dimension into consideration. The reason is that, for traffic monitoring and
optimization purposes, decision making might involve rerouting traffic from a
portion of the network to another. Thus affecting all trajectories that passed by
the concerned zone whether they travelled together or at different dates.

3.2 Clustering Algorithm

As mentioned before, the first step of our clustering algorithm consists in con-
structing a weighted, undirected similarity graph GSim = (T , E′,W ). Each
trajectory from the dataset T corresponds to a node in GSim. An edge e ∈ E′

links two trajectories Ti and Tj if and only if Similarity(Ti, Tj) > 0 in which case
the similarity is assigned as a weight (ωe ∈ W ) to the edge. The choice of graph
representation is not only natural but it also puts extra emphasis on the fact
that two trajectories that have nothing in common should never be put directly
into the same cluster (since no edge provides a direct link between the two).

Since we are interested in analyzing an important number of trajectories and
since an edge links two trajectories together if they share at least one road seg-
ment in common, GSim tends to be very large and its vertices have generally high
degrees. For these reasons, modularity-based community detection algorithms
are efficient for clustering such graphs [1]. Modularity measures the classifica-
tion quality by inspecting the arrangement of edges within clusters (commonly
called communities) of vertices. A high modularity indicates that the edges
within communities are more numbered (or have more important weights) than
in the case of randomly distributed edges.

We opted for an implementation of the modularity-based hierarchical graph
clustering algorithm proposed in [2] for our clustering step. The algorithm per-
forms modularity optimization on the nodes of the similarity graph and the
structure of the discovered communities is validated by means of comparison
against random graphs generated with the same set of nodes. If validated, the
communities are retained and the algorithm proceeds recursively on each iso-
lated community (i.e. considering only the sub-graph including the nodes of the
community). The final result is a hierarchy of nested clusters that can either be
explored level by level or using a greedy approach that expands, at each given
step, the cluster that induces the minimal loss of modularity.



4 Experimental Results

For our experimental study, we used a synthetic dataset1 of 10000 trajecto-
ries generated with the Brinkhoff generator [3] using the Oldenburg map which
contains 6105 nodes and 7035 undirected edges that can be travelled in both
directions.

We started by comparing different similarity calculation approaches: we com-
pared our cosine similarity using spatial weighting (cf. Section 3.1) with the
Jaccard index and cosine similarity with classic TD-IDF weighting. The clus-
tering step achieved the highest modularity optimization with spatial weighting
(0.5635 vs 0.5251 for Jaccard index and only 0.4861 for classic TF-IDF). The
algorithm produced a hierarchy of clusters that spans on 6 levels with 9 clusters
on the top level and 648 clusters in the lowest level. Figure 1 shows examples of
clusters produced by our algorithm on the third level of the clustering hierarchy
(we chose to expand level by level since this approach seemed to give the most
balanced clusters for this dataset). Each sub-figure shows the distribution of
departure and arrival points of the trajectories, in a given cluster, that moved
along the most visited road segment.

Fig. 1: Departures points (crosses) and arrival points (empty squares) of some
clusters that travelled along the most occupied road segment.

Visualization of the generated clusters shows promising results as of the capa-
bility of the clustering approach to divide trajectories into well separated groups.
Moreover, the fact that the algorithm produces a hierarchy of nested clusters can
be very useful for the understanding and visualization of traffic: one can start
with a given level and locate interesting clusters (e.g. clusters that crossed a
given area of interest) and see how these clusters are expanded into sub-clusters
on lower levels.

We also compared our clustering approach to classic hierarchical agglomer-
ative clustering. To this end, we used a distance that is complementary to our
similarity measure: distance(T1, T2) = 1 − Similarity(T1, T2). We calculated an
adjacency matrix based on this distance and we used it for the agglomerative

1The dataset is available at: http://perso.telecom-paristech.fr/~mahrsi/ESANN2012/



clustering (with single, average and full linkage). Comparisons were conducted
for the same number of cluster: for each of the 6 hierarchy levels produced in our
approach, we cut the hierarchical clustering at the same number of clusters and
we compared the two. Quality measures that we used are: i. interclass and intr-
aclass inertia of the start points of the trajectories; ii. interclass and intraclass
inertia of the end points of the trajectories; and 3. interclass and intraclass over-
lap of the trajectories. The first two are used to assess the compactness of the
regrouped trajectories start/end points . Overlap measures give an appreciation
of how much road segments trajectories share among and across the resulting
clusters (C being the set of resulting clusters, and |C| the number of trajectories
in the cluster C):

intraclass ovelap =
∑

C∈C

1

|C|

∑

Ti,Tj∈C

∑

e∈Ti,e∈Tj
length(e)

∑

e∈Ti
length(e)

interclass overlap =
∑

Ci∈C

1

|T | − |Ci|

∑

Cj∈C,j 6=i

∑

T∈Ci,T ′∈Cj

∑

e∈T,e∈T ′ length(e)
∑

e∈T length(e)

Due to lack of space, we only show the results of our interclass and intraclass
overlap comparison (Table 1). Modularity-optimization clustering achieves the
best intraclass overlap among the tested approaches. This indicates that tra-
jectories within a same cluster are more similar and share more road segments
than in the case of classic hierarchical clustering. The lower (at first glance bet-
ter) interclass overlap achieved by single linkage hierarchical clustering comes
from the fact that this approach produces very unbalanced clusters (it tends to
produce a huge cluster regrouping most of the trajectories in the dataset while
the other clusters are very small). This problem is also visible with average
and full linkage hierarchical clustering but only when the number of clusters
is small. When the number of clusters gets bigger, average and full linkage as
well as modularity-optimization clustering all behave in a similar manner w.r.t.
interclass overlap.

Nbr. of Intraclass overlap Interclass overlap
clusters HC(S) HC(A) HC(F) Mod. HC(S) HC(A) HC(F) Mod.

9 111 111 123 608 0.5 0.2 38.9 42.8

45 149 155 349 1768 5.1 2.9 78.4 62.2

159 270 1594 1877 3121 8.8 59.1 97.9 79.4

419 569 3073 3682 4264 22.4 69.5 87.1 87.9

621 822 3999 4419 4780 30.3 76.2 85.8 89.7

648 881 4106 4491 4823 35.4 76.5 85.8 89.8

Table 1: Interclass and intraclass overlaps achieved by modularity-optimization
trajectory clustering and hierarchical agglomerative clustering (with S: single
linkage, A: average linkage and F: full linkage).



5 Related Work

Clustering trajectory data attracted many research in the last few years. Ex-
isting proposals include TraClus [4], convoy [5] and flock [6] patterns and many
others. These are mainly density-based approaches that suppose that the mov-
ing objects can move freely on an euclidean space. Therefore, these approaches
are substantially different from the problem at hand where the movement is con-
strained. The case of constrained trajectories started to attract attention only
recently. In [7], the authors propose a density-based approach to discover dense
paths in such trajectories. Like all density-based method, the approach is very
sensitive to the configuration of the minPts and ǫ parameters. Furthermore,
the approach clusters sub-trajectories together and does not conserve trajectory
participation on the whole dense path (i.e. a trajectory might participate only
partially in the path). Our approach, on the contrary, regroups whole trajecto-
ries. To our knowledge, our work is the first to apply modularity-optimization
graph clustering in the context of trajectory data.

6 Conclusion

In this article, we presented a novel approach to cluster trajectories constrained
by an underlying road network. The approach starts by computing a similarity
graph between trajectories based on the cosine spatial similarity that we de-
fined. The graph is then used to conduct hierarchical modularity-optimization
clustering to discover communities of trajectories that exhibited similar behav-
ior. Results on synthetic trajectory data are promising and showed that the
proposed approach yields better, more relevant clusters than the classic hierar-
chical clustering. For future research directions, we are mainly interested in the
visual exploitation of the clustering results as well as the study of their relevance
in decision making in a context of traffic rerouting and optimization.
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