Modularity-Based Clustering for Network-Constrained Trajectories - Archive ouverte HAL Access content directly
Conference Papers Year : 2012

Modularity-Based Clustering for Network-Constrained Trajectories


We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical clustering and gives a brief insight to visualization of the clustering results.
Fichier principal
Vignette du fichier
article.pdf (293.07 Ko) Télécharger le fichier
Poster.pdf (1.27 Mo) Télécharger le fichier
Poster_spotlight.pdf (757.17 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other
Format : Other

Dates and versions

hal-00695753 , version 1 (09-05-2012)
hal-00695753 , version 2 (04-10-2012)



Mohamed Khalil El Mahrsi, Fabrice Rossi. Modularity-Based Clustering for Network-Constrained Trajectories. 20-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012), Apr 2012, Bruges, Belgium. pp.471-476. ⟨hal-00695753v2⟩
182 View
222 Download



Gmail Facebook Twitter LinkedIn More