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The harmonic plus noise model (HNM) is widely used for spectral modeling of mixed harmonic/noise speech sounds. In this paper, we present an analysis/synthesis system based on a long-term two-band HNM. "Long-term" means that the time-trajectories of the HNM parameters are modeled using "smooth" (discrete cosine) functions depending on a small set of parameters. The goal is to capture and exploit the longterm correlation of spectral components on time segments of up to several hundreds of ms. The proposed long-term HNM enables joint compact representation of signals (thus a potential for low bit-rate coding) and easy signal transformation (e.g. time stretching) directly from the long-term parameters. Experiments show that it can be compared favourably with the shortterm version in terms of parameter rates and signal quality.

Introduction

In speech/music coders and analysis/synthesis systems, spectral parameters are usually extracted and processed on a shortterm (ST) basis, i.e. every 20ms or so. This is mainly due to the non stationarity of audio signals and/or real-time processing constraints. For speech signals, the evolution of the vocal tract shape and glottal source activity is often quite smooth and regular, and it can be captured in terms of slow AM/FM modulations. High correlation between successive ST spectral parameters is actually exploited for two or three consecutive ST frames in, e.g., differential coding, matrix quantization, or recursive coding [START_REF] Gray | Vector Quantization and Signal Compression[END_REF]. But for non-real-time applications (e.g., half-duplex communication, storage, or transformation), the analysis-synthesis process can be applied on a long-term (LT) basis, i.e. much larger signal windows. This is the foundation of the Temporal Decomposition (TD) technique [START_REF]Efficient coding of LPC parameters by temporal decomposition[END_REF], which consists of decomposing the trajectory of spectral parameters into "target vectors" which are sparsely distributed in time and linked by interpolative functions. TD has been recently revisited in [START_REF] Dusan | Speech compression by polynomial approximation[END_REF], where the trajectories of ten consecutive spectral vectors are modeled by fourth-order polynomials.

All those mentioned studies concern Linear Prediction Coding (LPC) parameters, widely used for speech coding. The LT approach can be extended to other spectral models, like sinusoidal models [START_REF] Mcaulay | Speech analysis synthesis based on a sinusoidal representation[END_REF] [START_REF] George | Speech Analysis synthesis and modification using an analysis by synthesis overlap add sinusoidal model[END_REF]. Thus, it was proposed in [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF] to model the LT trajectory of harmonic phases and amplitudes with a Discrete Cosine Model (DCM). In [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF] the LT frames are continuously harmonic sections with very variable size and "shape", and a fitting algorithm was proposed to automatically adjust the LT model according to the speech section content. In [START_REF] Firouzmand | Long-term flexible 2D cepstral modeling of speech spectral amplitude[END_REF], this adaptive scheme was extended to the LT modeling of harmonic amplitudes envelope parameters.

The present paper presents a new extension of [6][7] to the framework of the Harmonic + Noise Model (HNM), which is particularly appropriate for modeling mixed voiced/unvoiced speech signals. We focus on a two-band HNM, inspired by [START_REF] Stylianou | Applying the harmonic plus noise model in concatenative speech synthesis[END_REF], and we present the application of the LT modeling approach to the parameters of this two-band HNM. Those parameters are the spectral envelope (of both harmonic and noise amplitudes), the fundamental frequency F0, and the voicing cut-off frequency FV . Note that in [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF] [START_REF] Firouzmand | Long-term flexible 2D cepstral modeling of speech spectral amplitude[END_REF], only purely voiced sections where considered. In the present study, we generalize the modeling of the spectral envelope to any harmonic/noise combination, we introduce the LT modeling of FV , and we simplify the modeling of F0 (w.r.t. [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF]). We also describe and assess a complete original analysis-synthesis system based on the proposed LT-HNM. This paper is organized as follows. The HNM model is presented in Section 2. The LT modeling of HNM parameters trajectories is described in Section 3, resulting in a complete LT-HNM analysis-synthesis system. Experiments and results are given in Section 4.

The Two-Band Harmonic + Noise Model

In its general non-stationary form, the HNM can be formally expressed as:

s(n) = H h=1 a h (n)cos[φ h (n)] + ν(n), (1) 
where h is the harmonic rank, H is the number of harmonics, a h (n) is the harmonic instantaneous amplitude, φ h (n) is the instantaneous phase, and ν(n) is the noise part of the signal. φ h (n) is (the sampled version of) the summation of instantaneous frequency over time (each frequency being the h-multiple of F0). For speech signals, those parameters are assumed to (slowly) vary in time, with possible "birth" and "death" of sinusoids, as in the more general sinusoidal model [START_REF] Mcaulay | Speech analysis synthesis based on a sinusoidal representation[END_REF].

In the present work, we use a simplified two-band version of the HNM in the spirit of [START_REF] Stylianou | Applying the harmonic plus noise model in concatenative speech synthesis[END_REF]. This version splits the frequency band into a harmonic band in the low frequency (LF) region, and a noise band in the high frequency (HF) region. The noise band is assumed to model HF random components with spectral coloration but no clear temporal structure. Those two bands are separated by a "boundary frequency" called the voicing cut-off (VCO) frequency FV . This two-band HNM model is very flexible in the sense that it can be used to represent purely harmonic frames (FV equal to the Nyquist frequency FNyq), purely unvoiced frames (FV = 0), or mixed voiced-unvoiced frames.

In the present study, the parameters of the two-band HNM are first extracted on a short-term (ST) basis, as in usual ST-HNM modeling, using analysis frames (indexed by k) of length w = 30ms and hop size r = 20ms. The fundamental frequency F0 is first estimated using Praat's autocorrelation method [START_REF] Boersma | Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound[END_REF] (which implicitly provides voiced/unvoiced segmentation). The VCO frequency FV is estimated using the method of [START_REF] Hermus | Estimation of the voicing cut-off frequency contour of natural speech based on harmonic and aperiodic energies[END_REF] based on the maximization of the sum of a cumulative periodic energy for the lower band and a cumulative aperiodic energy for the upper band. The estimated FV value is rounded to the nearest harmonic frequency, which becomes the last harmonic of the frame, indexed by H k . The estimation of the H k harmonic amplitude parameters a h (and initial phases φ h ) of the harmonic band is then made by least-square fitting between the (stationary) harmonic model (using the measured F0) and the signal within the k-th frame [START_REF] George | Speech Analysis synthesis and modification using an analysis by synthesis overlap add sinusoidal model[END_REF]. Finally, the frequencies fn and amplitudes an of the N k spectral components of the noise band are estimated by a peak-picking algorithm [START_REF] Mcaulay | Speech analysis synthesis based on a sinusoidal representation[END_REF], applied on the upper band of the FFT magnitude spectrum.

LT modeling of HNM parameters

3.1. The LT model and associated estimation process LT modeling of HNM parameters consists of 1) defining LT frames: in the present study a LT frame is either a continuously voiced (actually mixed voiced/unvoiced) or continuously unvoiced section of speech (as a sequence of K successive ST frames; LT frame boundaries are provided by the F0 analysis), and 2) Representing the trajectories of the HNM parameters on each LT frame by a sparse P -order time model. The goal is to reduce the data dimension from K to P + 1, with P being significantly lower than K, while preserving the essential shape of data trajectory. In the present study, we use a linear combination of cosine functions (called Discrete Cosine Model -DCM), since this model has provided good fitting and computational properties in previous studies [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF] [START_REF] Firouzmand | Long-term flexible 2D cepstral modeling of speech spectral amplitude[END_REF]:

Sm(n) = P p=0 cm,p cos(pπ n N ). (2) 
Sm is either F0, FV , or a parameter of the spectral envelope of a h and an (see next section). The vector of M spectral parameters extracted at time instant n k = kr is denoted

S k = [S 1,k S 2,k . . . S M,k
] T ( T denotes the transpose operator; M is possibly equal to 1 for F0 or FV ). Thus, we actually have to model M trajectories of K values S m,k which are gathered in the M × K matrix S. Let us denote by M the (P + 1) × K "model matrix" of general term m p,k = cos(pπ n k N ), and let us denote by C the M × (P + 1) vector/matrix of model coefficients cm,p. When the order P is known, C is estimated by minimizing the weighted mean square modeling error (WMSE) at the n k instants, leading to:

C = S • W • M T • (M • W • M T ) -1 , (3) 
W is a diagonal weight matrix that can be introduced to control the contribution of the data in the model computation. Also, a diagonal "regularizing" term can be added to the inverted matrix in (3) to fix possible ill-conditioning problems [START_REF] Cappé | Regularized estimation of cepstrum enveloppe from discrete frequency points[END_REF]. We do not detail this technical aspect here.

Model orders optimization

In the previous subsection, P is assumed to be known. In fact, for each LT speech section and each HNM parameter, the goal of efficient LT modeling is to automatically set the model order to a value that ensures a good trade-off between data compression (ideally P << K) and good modeling accuracy. For this aim, we propose the following algorithms.

LT modeling of F0

For F0 modeling, we define a target ratio D F 0 t for the modeling error (e.g. 1%) and apply the dichotomic search of Algorithm 1. Note that the last iteration is validated only if it leads to lower the error, and since all time frames are here assumed to have the same importance, all weights of W are set to 1. Of course, more refined fitting criteria and strategy can be used, e.g. perceptual criteria with adaptive time-weights [START_REF] Girin | Perceptual long term variable rate sinusoidal modeling of speech[END_REF]. 

Algorithm

LT modeling of FV

LT modeling of FV is similar to the LT modeling of F0, resulting in optimal CF V vector and PF V order. However, the modeled vectors Fv = C • M are rounded to the closest harmonic frequency, and the target error D F V t is expressed in terms of maximal deviation in (integer) number of harmonics, i.e. PF V is found as the minimum order so that the maximum modeling error remains within ±Q harmonic (Q can be set to 1 or 2).

2D-DCM modeling of the spectral amplitudes

The (harmonic and noise) amplitudes are LT modeled using a 2D modeling approach similar to the one presented in [START_REF] Firouzmand | Long-term flexible 2D cepstral modeling of speech spectral amplitude[END_REF] for purely harmonic spectra. This technique is here extended to mixed harmonic/noise sections of speech. The general principle is a two-step modeling: For each ST frame k of a given LT frame, a first DCM model of order M is applied in the frequency dimension, covering both harmonic and noise amplitudes. This model is similar to the discrete cepstrum proposed in [START_REF] Cappé | Regularized estimation of cepstrum enveloppe from discrete frequency points[END_REF] [START_REF] Galas | An improved cepstral method for deconvolution of source-filter systems with discrete cepstra: Application to musical sound signals[END_REF]. Then a second DCM of order P is applied on the resulting coefficients along the time dimension. M is variable from one LT section to the other but it is the same for all ST frames of the LT section. This enables (i) to switch from a H k + N k variablesize set of ST amplitudes to a fixed-size set of parameters that is suitable for LT modeling with (2), and (ii) to reduce the size of the parameter set to be time-modeled, since M is generally significantly lower than H k + N k . This is a major point for potential coding applications. For the same reason, we also want P to be significantly lower than K, as for F0 and FV modeling.

Therefore we propose the two-step Algorithm 2 to find an optimal joint setting for both M and P , ensuring both compact representation and modeling quality. In this algorithm, M k is the concatenation of the H k × M matrix of general term m h,m = cos(mπhF0(k)/Fnyq) and the N k × M matrix of general term mn,m = cos(mπfn(n, k)/Fnyq). Et1 and Et2 are user-defined target errors with Et1 < Et2. The search intervals are set to reasonable values, adapted to speech signals and LT frame length K. The algorithm can be refined with a dichotomic search similar to the one in Algorithm 1 for faster convergence. Also, because of the two-step structure, the al-gorithm may miss a better (M, P ) combination in the area of (Mopt, Popt). It can thus be completed with additional search within, e.g., (Mopt + i, Popt -j) or (Mopt -i, Popt + j) with i, j ∈ [START_REF] Gray | Vector Quantization and Signal Compression[END_REF][START_REF]Efficient coding of LPC parameters by temporal decomposition[END_REF]. Finally, W is here used in the first part of Algorithm 2 to give more importance to the harmonic amplitudes (weights set to 10) than to the noise peaks (weights set to 1). This was shown to ensure higher global quality for synthesized signals. In future works, a more rigorous criterion will have to be defined and tested regarding this important point. 

A k = [a h (1, k), • • • , a h (H k , k), an(1, k), • • • , an(N k , k)] T
and calculate the corresponding model matrix M k . Calculate the coefficients vector D k of the frequency-DCM using a transposed version of (3) applied to A k and M k : 

D k = (M T k • W • M k ) -1 • M T k • W • A k .

Synthesis of LT modeled signals

As for the signal synthesis, the harmonic part sh (n) is obtained in a very straightforward manner: the phase of each h-harmonic is obtained by summation of the h-multiple of the modeled F0 trajectory provided by (2) (plus the initial phase of the first ST frame of the LT section to preserve natural sounding). The modeled harmonic amplitudes are linearly interpolated between ST frames and sh (n) is obtained by components summation as in [START_REF] Gray | Vector Quantization and Signal Compression[END_REF]. The noise part ν(n) is generated with the overlap-add random phase sinusoid technique of [START_REF] Macon | Sinusoidal modeling and modification of unvoiced Speech[END_REF], using amplitudes sampled from the modeled spectral envelope in the noise band every ∆f = 70 Hz. Note that the modeled F0 and FV trajectories are independent, thus the upper harmonic trajectories may be "interrupted" by noise regions. This is managed using a "birth and death" process (involving local interpolation of a h to 0) [START_REF] Mcaulay | Speech analysis synthesis based on a sinusoidal representation[END_REF].

Experimental results

Data

We report the results of the LT modeling of 24 speech sentences sampled at 16kHz (13 male and female speakers and 4 languages), of total duration 50s. LT segmentation resulted in 291 LT sections with a mean duration of 0.17s and a maximum duration of 1.24s [136 voiced sections (33s) and 155 unvoiced sections (17s)]. The ST analysis hop size is r =20ms.

Compression gain of the LT modeling

We provide here the coefficient rates for the ST-HNM parameters set and the LT-HNM model, respectively denoted RST and RLT . We also compare the LT-HNM with a ST version with DCM modeling of the spectral envelope only, denoted 1D-HNM. For fair comparison, the envelope model of this 1D-HNM is calculated with a target error equal to E LT t2 . The coefficient rate of the 1D-HNM is denoted R1D and we have, for a given LT section,

RST = [ K k=1 (2 + 2(H k + N k ))]/(K.r), R1D = [K(Mopt + 3) + K k=1 H k ]/(K.r) and RLT = [(Mopt +1)(Popt +1)+PF 0 +PF v +H0 +3]/(K.r),
where H0 is the number of initial phases (issued from the first ST frame).

For the used database, the mean rate is RST = 6298 coeff/s. For example, when applying the LT-HNM with target errors (E LT t1 , E LT t2 ) = (0.6, 0.7)dB, we obtain RLT = 530 coeff/s, while R1D = 983 coeff/s (with 1D-target error E 1D t1 = 0.7dB). Hence, the LT-modeling achieves a rate gain of 91.5% compared to the ST-HNM1 and 46% compared to the 1D-HNM. To evaluate the compression gain due to 2D-DCM amplitude modeling only, we provide in Table1 the corresponding coefficients rates R A 1D and R A LT for different target error settings. It can be seen that the coefficient rates decrease when the target errors increase (as expected) and that, for a given E LT t2 , the best LT combination is systematically the one with E LT t1 immediately higher (i.e. the lower diagonal). This suggests that a more efficient overall LT modeling is obtained when the modeling of the spectral envelope is not much constrained. When comparing the optimal R A LT with R A 1D , we observe important rate gains that increase with target errors (up to 38%).

To illustrate the efficiency of the proposed LT-HNM, we plot in Fig. 1 gain is illustrated on Fig. 2 which depicts the LT model orders Mopt and Popt as a function of the mean value of (H k + N k ) over the LT section and K, respectively. The average coefficients gain is also around 2 for time-modeling, while it is more important (around 4) for frequency modeling, although with a significantly scattering. Fig. 3 provides an example of original and modeled trajectories of F0 and of the first harmonic amplitude. Both plots show that the modeled trajectories follow the original ones quite fairly given the low number of coefficients.

Quality of synthesis signals

The perceptual quality of the speech test signals modeled with the LT-HNM [for (E LT t1 , E LT t2 , D F 0 t , D Fv t ) = (0.6, 0.7, 1%, 8%)] and the reference 1D-HNM [for E 1D t1 = 0.7dB] was assessed with PESQ2 . The obtained mean scores are 2.4 and 2.3 respectively, while the ST-HNM score is 2.9. These results indicate that the LT-HNM model provides nearly the same signal quality than the 1D-HNM, while significantly reducing the coefficients rate.

Conclusion-Perspectives

A "flexible" LT-HNM model was presented, using DCM models for F0, FV and spectral amplitudes. Compared to the ST and 1D versions, a significant gain in coefficients rate was obtained. The proposed algorithms for setting the DCM orders enable a trade-off between coefficients rate gain and modeling quality. Future works will concern i) the use of perceptual criteria for LT model fitting, ii) a better LT modeling of the phase trajectories, iii) the use of the proposed model for speech transformation (e.g. time-stretching) and iv) the design of a lowbitrate LT speech coder based on the proposed LT-HNM, with "LT-quantization" of HNM parameters in the line of the one proposed in [START_REF] Girin | Adaptive long term coding of LSF parameters trajectories for large-delay/very-to utra-low bit rate speech coding[END_REF] for LPC parameters. 
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 1 Figure 1: LT model order of F0 (.) and FV (o) trajectories as a function of LT section length K for all test sections. The dashed lines are the 1 st and 2 nd bisectors. D F 0 t = 1%, D F V t = 8%.

Figure 2 :

 2 Figure 2: 2D amplitude modeling: Mopt as a function of ST amplitude vectors length (left) and Popt as a function of LT frame length K (right). (E LT t1 , E LT t2 ) = (0.6, 0.7)dB.

Figure 3 :

 3 Figure 3: Trajectories of LT-modeled F0 (left) and of the 1 st 2D-modeled harmonic amplitude (right) (E LT t1 , E LT t2 ) = (0.6, 0.7)dB.

  the DCM orders PF 0 and PF V as a function of the voiced LT sections length (number of ST frames K). An average gain of about 2 is obtained. The 2D-amplitude modeling

	E LT t1 /E LT t2	0.6	0.7	0.8	0.9	1.0	1.1
	0.4	858 738 648 585 544 496
	0.5	648 531 466 418 383 351
	0.6	-	433 367 324 296 269
	0.7	-	-	315 274 246 225
	0.8	-	-	-	246 217 197
	0.9	-	-	-	-	202 181
	1.0	-	-	-	-	-	173
	R A 1D	668 512 420 358 315 284
	Gain (%)	2	15	25	31	35	38
	Table 1: Coefficient rate R A LT of 2D-DCM amplitude modeling for different target errors (E LT t1 , E LT 1D t2 ), and coefficient rate R A of the reference 1D-HNM with E 1D t1 =E LT t2 .

Here the gain is not only due to the LT-modeling of F 0 , Fv and the spectral amplitudes, but also because the noise frequencies fn and the harmonic phases φ h do not need to be sent to the decoder.

Perceptual Evaluation of Speech Quality, ITU-T Recom. P.862.