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ABSTRACT

Sparse representations have proved a very useful tool in a variety of domain, e.g. speech/music source
separation. As strictly sparse representations (in the sense of ℓ0) are often impossible to achieve, other
ways of studying signals sparsity have been proposed. In this paper, we revisit the irrelevance filtering
analysis-synthesis approach proposed in (Balazs et al., IEEE Trans. ASLP, 18(1), 2010), where the TF
coefficients that are below some masking threshold are set to zero. Instead of using the Gabor transform and
a specific psychoacoustic model, we use tools directly inspired from perceptual audio coding, for instance
MPEG-AAC. We show that significantly better “sparsification performances” are obtained on music signals,
at lower computational cost. We then apply the sparsification process to the informed source separation
(ISS) problem and show that it enables to significantly decrease the computational cost at the ISS decoder.

1. INTRODUCTION

Sparse representations of signals are representations

where most of the signal coefficients are zero (or close

to zero, in the weak sense). They are interesting in signal

processing algorithms because the “useful” information

to be processed is concentrated in a small proportion of

the representation space. Additionally, in some cases,

the coefficients corresponding to different signals can be

disjoint. Sparsity is thus used in a large variety of audio

applications, such as enhancement [1], source separation

[2, 3, 4], or music transcription [5]. Sparsity is also the

core principle of compressed sensing.

Many works have been dedicated to studying sparse rep-

resentations [6, 7, 8]. In the audio case, signals may

sometimes be sparse in the time domain (e.g., with silent

portions and/or Laplacian or Gaussian distribution) but

it is well-known that they are far more sparse in the

Time-Frequency (TF) domain (see Fig.1 for an exam-

ple). When unicity of decomposition is not at stake, it has

been shown that even more sparse representations can be

found using overcomplete bases (e.g., “8∗MDCT" [9]).

The intuitive way of measuring the sparsity of a given
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Fig. 1: Samples distribution in the time (1a) and time-

frequency (1b) domains for a rock music signal (each

distribution is represented on its total support).
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signal representation x is to use the ℓ0 norm:1

‖x‖0 = #
{

j,x j 6= 0
}
. (1)

However, in the strict sense of ℓ0, “real-life” audio sig-

nals are generally not sparse at all: even if some co-

efficients are close to zero they are generally non zero.

To overcome this problem, different measures have been

proposed to study signals sparsity, using tools such as

ℓp norms/quasinorms, tanh function, kurtosis or Gini in-

dex [10]. However as shown in [11], one must be care-

ful when using those measures as they can lead to quite

wrong assessments in certain circumstances.

In [12], the authors use a different approach: instead of

looking for a representation that is strictly sparse (in the

sense of ℓ0), they use a representation where the audio

signals are sparse in the weak sense (the TF domain us-

ing the Gabor transform2) and they set the lower coeffi-

cients to zero so that the representation becomes strictly

sparse. Then, the “sparsified” time-domain signal in ob-

tained using the inverse TF transform. To ensure preser-

vation of audio quality, their algorithm uses a PsychoA-

coustic Model (PAM) based on simultaneous frequency

masking3 to adjust the selection threshold of what they

call the “irrelevance filter”.

Although different in implementation and destination,

this algorithm is related to Perceptual Audio Coding

(PAC) [14], such as MPEG AAC [15]. PAC uses a PAM

to estimate the maximum noise power that can be intro-

duced by quantization at each frequency, and then adjusts

the allocation of binary resource accordingly: the less

relevant (i.e. more masked) a coefficient is, the coarser

its quantization can be (and some low but non-zero coef-

ficients are actually coded to zero).

Despite the more or less clear link between the irrele-

vance filter algorithm and PAC, or maybe because of this

more or less clear link, the authors of [12] have used spe-

cific TF transform and PAM, with specific settings. In

the present paper, we revisit their algorithm using tools

that are much closer to the PAC approach and more ef-

ficient: instead of the Gabor transform, we use either

1Actually ℓ0 is not a norm but the limit of (ℓp)p when p → 0 with

ℓp the usual norms/quasinorms. However this is not important here.
2Basically, the Gabor transform is a discrete Short-Term Fourier

Transform (STFT) with specific conditions for analysis-synthesis sig-

nal reconstruction.
3When two pure tones or narrow-band noises close in frequency

and with significantly different power are produced simultaneously, the

human hear may perceive only the loudest [13]).

a Modified Discrete Cosine Transform (MDCT) or its

integer version (IntMDCT), similar to the one used in

AAC (MPEG-4), and we use a PAM also directly in-

spired from AAC. Using those PAC tools, we show that

a better “sparsification” of audio signals can be obtained

when compared to the results of [12], with a simpler

and more efficient signal decomposition/reconstruction

framework.

Finally, we show that the proposed sparsification process

can be exploited efficiently in the audio informed source

separation (ISS) system proposed in [4]. In this system,

the source signals are assumed to be available and the

(linear instantaneous) mixing process is assumed to be

controlled at the so-called ISS encoder. An a priori in-

formation about those sources and the mixing process

is extracted and embedded within the mixture signal us-

ing a high-capacity data hiding technique [16]. At the

ISS decoder, where only the mix signal is available, the

side-information is extracted and used to help the sepa-

ration process to deliver high-quality separated sources.

We show that the sparsification process can be used as a

pre-processing step for such ISS system to significantly

reduce the computational cost of the separation.

This paper is organized as follows: Section 2 presents

the irrelevance filter algorithm in a general manner. Sec-

tion 3 provides the details of our implementation us-

ing the MDCT and AAC-inspired PAM. Section 4 and

5 present experiments and results, and conclusions are

drawn in Section 6.

2. THE BASIC “IRRELEVANCE FILTER” ALGO-

RITHM

The block diagram of the irrelevance filter/sparsification

algorithm is presented in Fig. 2. A time-frequency repre-

sentation X of the signal x is calculated (block ①) (using

the Gabor transform in [12] and the (Int)MDCT in the

present study). A masking threshold Mx is derived us-

ing a psychoacoustic model (block ②). The signal power

spectral density (PSD) Sx is calculated (as the square

of TF coefficients; block ③) and is compared with the

masking threshold Mx (block ④). This yields a binary

mask m that is used to set to zero the coefficients of X

that are below the masking threshold (block ⑤):

∀(t, f ), m(t, f ) =

{
0 if Sx(t, f )< M(t, f ),

1 else.
(2)
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Fig. 2: Block diagram of the system.

∀(t, f ), Xs(t, f ) = X(t, f ) ·m(t, f ). (3)

This binary masking process leads to the sparsified rep-

resentation Xs in the TF domain. The signal is finally

transformed back into the time-domain sparsified signal

xs using the inverse TF transform (block ⑥).

Following the same line as in [12], a parameter α (in dB)

controls an arbitrary translation of the masking thresh-

old Mx. As mentioned by the authors of [12], “this shift

gives a conservative way to deal with uncertainty effects

resulting from removing time-frequency components and

with inaccuracies in the masking model.” The goal is to

experimentally find the α value that provides the sparsest

representation without impairing the audio quality. Dif-

ferent values of α will be tested and discussed in Sec-

tion 4.

3. IRRELEVANCE FILTER REVISITED

3.1. MDCT and IntMDCT

As mentioned before, the Gabor transform was used

as the TF transform in [12]. In the present study, we

propose to use the Modified Discrete Cosine Trans-

form (MDCT) or its integer version (IntMDCT). We

first explain the foundations of this proposition, and

then we provide a very brief technical presentation of

the MDCT/IntMDCT (technical details can be found in

many papers, e.g., the foundation paper [17].)

The MDCT is a real-valued time-frequency transform

commonly used in audio signal processing, since it

presents several interesting properties: i) the MDCT is

critically sampled (it has the same overall number of co-

efficients in the time domain and the time-frequency do-

main), while being a lapped transform (with 50% over-

lap), and ii) under simple conditions, the MDCT en-

sures perfect reconstruction of the signal (when the trans-

formed coefficients are not modified); more generally,

even if the coefficients are modified, it has very good ro-

bustness against block effects during signal reconstruc-

tion by inverse MDCT (IMDCT). This property is intrin-

sically exploited in AAC compression to minimize the

effects of MDCT coefficients quantization.

The combination of i) and ii) makes the MDCT a

very interesting transform in the present study, since

it has the potential for a very efficient decomposi-

tion/reconstruction of the signal, while ensuring the au-

dio quality of the reconstructed sparsified signal. Also,

and perhaps more importantly, the MDCT is character-

ized by the time-domain aliasing cancellation (TDAC)

property: if the MDCT coefficients of a given signal are

modified and the time-domain signal is reconstructed,

the time-domain signal is modified as compared to the

original signal, but when reapplying the transform to the

modified signal the same modified coefficients are ex-

actly recovered, despite the overlap process of the recon-

struction. In other words the cross-frame influence of the

overlap cancels out when returning to the transformed

domain. Consequently, going anew to the TF domain

from a sparsified reconstructed signal leads to a strictly

sparse representation, i.e. the coefficients that have been

zeroed by the irrelevance filter remain strictly equal to

zero.

This property is not easily ensured by the Gabor trans-

form: if a window with good frequency resolution is

needed (as is the case here for applying the PAM and

accurate irrelevance filter), a high level of redundancy
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with specific windows is required to ensure perfect re-

construction (which is actually not exactly perfect but

very close to it). In [12] the hop size is set to 1/8

of the analysis window size and therefore, it requires

a quite larger amount of computations compared to the

critically-sampled MDCT.

Finally, the preservation of zeroed coefficient values

when chaining IMDCT and MDCT is verified if the time-

domain signal is not modified. In practice, we deal with

16-bit PCM signals, and the mix signal is generally con-

verted to this format (for storage and transmission; we

assume that we work with uncompressed signals here).

It can be shown that the 16-bit quantization introduces

an additive white Gaussian noise (AWGN) on the MDCT

coefficients, thus the zeroed coefficients can actually be

corrupted by this noise. The use of the integer version

of the MDCT (IntMDCT) can solve this problem. The

IntMDCT is close to the MDCT (and it is also TDAC)

but it is an integer-to-integer transform, so that PCM sig-

nals are transformed into integer MDCT coefficients, and

conversely, integer coefficients are transformed back to

integer PCM values. Therefore, the sparsification pro-

cess directly leads to strictly sparse PCM signals, and we

use this transform when the signals are to be stored in the

.wav format.

Technically, the MDCT coefficients of a given frame t of

N samples (N being even) of the host signal x is given

for each f ∈
[
0, N

2
−1

]
by:

X(t, f ) =
2√
N

N−1

∑
n=0

x(t,n)wa(n)cos

(
2π

N
n′ f ′

)
, (4)

where wa is the analysis window, x(t,n) = x
(
n+ t N

2

)
,

n′ = n+ N
4
+ 1

2
, and f ′ = f + 1

2
. The inverse transfor-

mation (IMDCT) of the same frame is given for each

n ∈ [0,N −1] by:

x̃(t,n) =
2√
N

ws(n)

N
2 −1

∑
f=0

X(t, f )cos

(
2π

N
n′ f ′

)
, (5)

with ws the synthesis window. To ensure perfect re-

construction of the signal, wa and ws must satisfy the

Princen-Bradley conditions [17]. When wa = ws = w

(which is often the case), those conditions can be writ-

ten as:

∀n ∈
[

0,
N

2
−1

]




w2 (n)+w2

(
n+

N

2

)
= 1

w(n) = w(N −1−n)

(6)

In this paper we use the Kaiser-Bessel Derived window,

commonly used with the MDCT (for example in MPEG-

AAC). The window length N is set to 2048, an usual

choice for 44.1kHz audio signals.

As for the IntMDCT, as said earlier this transform is an

integer approximation of the classical MDCT. The tech-

nique to achieve this approximation is called the lifting

scheme and is described in several papers, e.g., [18]. The

basic principle is to decompose the MDCT matrix (and

the windowing process) into a product of matrices com-

posed of 2×2 matrices of the form:

La =

(
1 0

a 1

)
, (7)

with a ∈ R. This matrix La (which inverse is L−a) repre-

sents the linear application:

La :

{
R

2 −→ R
2

(x,y)−→ (x,y+ax)
(8)

The principle of the lifting scheme is to replace all these

applications by their integer approximation:

intLa :

{
Z

2 −→ Z
2

(x,y)−→ (x,y+[ax])
(9)

where [.] denotes the integer rounding operation. The

inverse of intLa is intL−a but as the application is an

automorphism of Z
2, it is exactly invertible, even with

finite-accuracy computations.

3.2. PAM

The PAM used in our implementation is directly inspired

from the PAM of the MPEG-AAC standard, and simi-

lar to the one that we used in [16]. The calculations are

made in the time-frequency domain, however the trans-

form used for the computations of the PAM is not the

MDCT but the FFT. The main computations consist in

a convolution of the FFT power spectrum of the host

signal with a spreading function that models elementary

frequency masking phenomenons, to obtain a first mask-

ing curve. This curve is then adjusted according to the
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tonality of the signal.4 After that, some pre-echo con-

trol is applied, and finally the threshold is translated by

the “conservative factor” α (in dB), resulting in the final

masking threshold Mx. As mentioned earlier, different

values of α will be tested in Section 4.

4. EXPERIMENTS ON SPARSIFICATION

4.1. Settings

As in [12], the algorithm has been evaluated in a lis-

tening experiment which goal is to find the value of the

threshold translation parameter α . In those experiments,

the MDCT is used; note that the two transforms provide

quite close coefficient values, so that the sparsification

results obtained with those two transforms are similar.

The tested values of α are selected to -3, -4.5 and -6 dB

after preliminary listening experiments. 10 musical ex-

cerpts (of different musical styles) of 5 seconds duration

were used and 8 normal hearing subjects completed the

experiments. The test was a classical ABX test: for each

configuration (one excerpt and one alpha, unknown to the

subject), the listener was presented a reference (the orig-

inal signal) and two other signals in a random order. One

of the signal was the reference and the other the sparsi-

fied signal. The subject had to chose which one was the

original.

4.2. Results

For α = −6 dB, the percentage of correct answer (i.e.

identification of reference signal) is 53.75%; for α =
−4.5 dB, it is 55%; and for α = −3 dB, it is 78.75%.

Therefore, these results show that on average, the spar-

sification is inaudible for α = −6 dB and −4.5 dB,

or at the very least, it is inaudible for most of the ex-

cerpt/subject combinations. However, a difference can

generally clearly be made for α =−3 dB.5

Table 1 shows the average proportion of suppressed co-

efficients and suppressed energy, for an extended set of

α values. It can be seen from this table that α = −6

dB (resp. α =−4.5 dB) corresponds to a suppression of

about 74% of the TF coefficients (resp. 78%), represent-

ing only less than 3% (resp. 4%) of the signal energy.

4The main reason why the PAM of the AAC works with the FFT

and not the MDCT is because the phase information given by the FFT

can be used to estimate the tonality of the signal in a better way than

with the MDCT.
5The PAM is not the same as the one used in [12] so the range of

α values and the inaudibility limit may slightly differ from the one

reported in [12].

α (dB) -3 -4.5 -6 -7.5 -9

Suppressed co-

efficients (%)
82.3 78.6 74.4 69.4 65.4

Suppressed en-

ergy (%)
4.8 3.4 2.4 1.7 1.2

Table 1: Proportion of Suppressed coefficients and sup-

pressed energy for several values of α .
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Fig. 3: PSD (in dB) of a classical music excerpt before

and after sparsification. The higher the amplitude the

brighter the representation.

When analyzing those results, several remarks must be

made:

• 74% of suppressed coefficients may seem a huge

proportion, but it must be mentioned that a quite

large proportion of those suppressed coefficients

were generally already very low before sparsifica-

tion (as they only represent a few percents of the

total energy of the original signal). This is the case

for most high-frequency coefficients for example, as

illustrated by Fig. 3. This clearly illustrates the nat-

ural sparsity of audio signals, in the weak sense.

• Most of the test subjects were untrained listeners,

hence even if the test seems to show that for α =−6

dB, the sparsification is inaudible, this result is an

average result valid for naive ears. The sparsifica-

tion at α = −6 dB may sometimes be audible for
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“good” listeners after a few training period and sev-

eral listenings. For example one of the author that

is familiar with the test signals and sparsification ef-

fects can hear differences for α up to −7.5 dB for

some excerpts. In particular, some specific effects

on specific instruments can be detected after careful

listening, e.g. typical musical noise on cymbals.

• However, even the “best” listeners (including the

authors) could not find any difference for α = −9

dB and lower. In this case an average proportion of

about 65% of the coefficients are suppressed (rep-

resenting 1.2% of the energy), which remains quite

impressive.

• In [12], a proportion of 32% of suppressed Gabor

coefficients, representing less than 2% of signal en-

ergy, is reported (however, quite surprisingly, 16-

kHz music signals were considered in [12], leading

to a lower amount of high-frequency low-energy co-

efficients). Therefore, our PAC-inspired modifica-

tion of the irrelevance filter algorithm using MDCT

and PAM seems to lead to a significant improve-

ment in signal sparsification, whereas the analy-

sis/synthesis process is much more efficient.

5. APPLICATION TO THE INFORMED SOURCE
SEPARATION PROBLEM

5.1. Informed Source Separation of linear in-
stantaneous mixtures

In previous papers [4, 19], we presented an Informed

Source Separation (ISS) system that is able to separate

I > 2 sources from stereo linear instantaneous mixtures.

This system is designed with a specific coder-decoder

configuration. At the coder, source signals are assumed

to be available and the mixing process is assumed to be

controlled. In each time-frequency (TF) bin, the mixture

signal is assumed to be composed of at most two predom-

inant sources, and the coder looks for the two sources

that provide the best separation results by local 2×2 ma-

trix inversion applied to MDCT coefficients (the other

separated sources are set to zero). The side-information

transmitted to the decoder is the index of those two pre-

dominant sources for each TF bin (and the mixing matrix

parameters). In [4, 19] the side-information is embedded

in the mix signal using a high-capacity data-hiding tech-

nique similar to the one presented in In previous papers

[16]. At the decoder, where the original source signals

are unknown, the extraction of this side-information en-

ables to invert the (embedded) mixture in each TF bin to

recover the source signals. This system is summarized in

the diagram of Fig. 4. With such informed approach, it

has been shown in [4, 19] that 5 instruments and singing

voice signals can be efficiently separated from 2-channel

stereo musical mixtures, with a quality that significantly

overcomes the quality obtained by a semi-blind reference

method and that enables separate manipulation of the

source signals during stereo music restitution (i.e. remix-

ing).

5.2. Sparsification as a pre-process for ISS

In the ISS system of [4, 19], the separation is made by lo-

cal matrix inversion applied to the MDCT coefficients of

the mixture signal, since the linear instantaneous mixture

in the time-domain results in an identical linear instanta-

neous mixture on the source MDCT coefficients. There-

fore, if the sparsification process of Section 3 is first ap-

plied to the signals involved in the separation process,

this can lead to a reduced number of non-zero MDCT

coefficients and a significant simplification of this sepa-

ration process. Here, we propose to apply the sparsifi-

cation process independently to each source signal at the

coder level before the mixing process. This sparsifica-

tion is assumed to have no consequence on the quality of

each source signal taken separately, and it is very likely

to have no (or not much) consequence on the quality of

the resulting mix. For each TF bin, we can thus mention

the following cases:

Case 1: The MDCT coefficient of each source has been

zeroed by the sparsification process; this results in

a zero-coefficient for each channel of the mixture;

in such case, the separation process by matrix in-

version is unnecessary, all separated sources can be

directly set to zero.

Case 2: The MDCT coefficient of at least one source has

not been zeroed; in that case, the matrix inversion is

needed, but we can distinguish the following sub-

cases:

Case 2.1: If the MDCT coefficient of only one or

two sources are non-zero, then the separation

leads to the exact reconstruction of the MDCT

coefficient of every (sparsified) sources (as op-

posed to the original system in [4, 19], where
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Fig. 4: Block diagram of the ISS system.

the weakest but non-zero sources can corrupt

the inversion process).

Case 2.2: If the MDCT coefficient of more than

two sources are non-zero, then the inversion

of the two predominant sources can be dis-

turbed by the other non-zeroed sources, as in

[4, 19], but also as in [4, 19], those non-zero

sources are assumed to be small compared to

the two predominant sources and their influ-

ence on the separation process is assumed to

be reasonable.

Note that after sparsification of the sources, the mix-

ing process is carried out in the TF domain. Because

the mixture coefficients are generally not integer (usu-

ally between 0 and 1), the resulting mixed TF coefficients

are first rounded and then the mix signal is transformed

back in the time-domain. This ensures the preservation

of the values zeroed by the sparsification process (case

1 above), as mentioned in Section 3.1. The rounding er-

ror on non-zero coefficients is assumed to be negligible

compared to their dynamics.

In the next subsection, we lead some experiments that

measure the occurrence of each of those cases on realistic

musical mixtures, and thus provide a first estimation of

the computational gain that can be obtained at the ISS

decoder

5.3. Experiments on sparsified ISS

The experiments were performed using 4 real music

tracks of different styles (pop-rock, new-wave, funk,

electro-jazz; duration 3, 4, 5 and 6 min) of 5 sources

each (among guitar, bass, drums, lead vocals, saxophone,

synthesizer, percussions). Table 2 shows the effect of the

pre-mix source sparsification on the overlapping of the

sources in the mix. It can be seen that on the average:

• Approx. 32% of the mix coefficients are zero (Case

1), leading directly to 32% of computational cost

saving for the 2 × 2 matrix inversion of the sep-

aration process. Since approx. 65% of the co-

efficients are zeroed by the sparsification for each

source taken separately, it can be deduced that ap-

prox. half of these sparsified coefficients are zeroed

simultaneously for the 5 sources of the mix signal.

• Approx. 43% of the mix coefficients contain only 1
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Number of non-zero

sources
3 4 5

Average % of energy

in the 2 predominant

sources

97.92 96.53 95.70

Table 3: Sources overlapping in the mix after sparsifica-

tion of each source.

or 2 sources (Case 2.1), meaning that the separation

in those TF bin will be perfect (exact reconstruction

of the sparsified sources).

To further complement those results, Table 3 shows that

even in the case of more than 2 non-zero sources, the en-

ergy of the 2 most energetic sources represents on aver-

age more than 95% of the energy of all the sources (con-

firming the similar results presented in [19]). This con-

firms the two-predominant sources assumption on which

the ISS method is based. In fact, as also shown in Ta-

ble 2, the perfect reconstruction cases (Case 1 and Case

2.1) represent only about 10% of the total energy of

the mix signal. Therefore, the sparsification as a pre-

process for informed source separation yields only few

improvements in separation quality. Its main interest in

the present case lies in the very significant computational

gain (32% on the average).

6. CONCLUSIONS AND PERSPECTIVES

The present study shows that it is possible to largely

sparsify musical signals in the TF domain (in the strict

sense of ℓ0, and in a conservative manner, i.e. with sev-

eral back-and-forth transformations from time domain to

TF domain), with more than 65% of zeroed coefficients

without impairing audio quality. This is made possible

by the use of PAC tools (MDCT and PAM), here bor-

rowed from MPEG, which seem to be more efficient than

the Gabor transform and specific PAM used in the previ-

ous inspiring study [12].

The sparsification as a pre-process has been applied

within the informed source separation system presented

in [4, 19]. The sparsification of instrument/voice signals

before making the mix leads to approx. 1/3rd compu-

tational cost saving at the ISS decoder where the separa-

tion is processed (for 5 sources). In addition, this process

contributes to reduce the overlapping of the source sig-

nals in the TF domain, and thus enables sparsity-based

source separation algorithms to yield better results than

when applied on normal mix.
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