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Abstract

The out-of-equilibrium situation in which an initially sharp-edged cylindrical elec-
tron beam, that could e.g. model electrons flowing within a wire, is injected into a
plasma is considered. A detailed computation of the subsequently produced magnetic
field is presented. The control parameter of the problem is shown to be the ratio of the
beam radius to the electron skin depth. Two alternative ways to address analytically
the problem are considered: one uses the usual Laplace transform approach, the other
one involves Riemann’s method in which causality conditions manifest through some
integrals of triple products of Bessel functions.
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1 Introduction

1.1 Motivations

Beam-plasma interactions are nowadays receiving some considerable renewed interest es-
pecially in the relatively unexplored regimes of high beam intensities and high plasma
densities. One particular motivation lies in the fast ignition schemes (FIS) for iner-
tial confinement fusion ([Tabak et al.(1994), Deutsch et al.(1996), Deutsch et al.(1997)]).
These should involve in their final stage the interaction of an ignition beam composed
of MeV electrons laser generated at the critical density surface with a dense plasma tar-
get. The exploration of the electron beam transport into the overdense plasma is es-
sential to assess the efficiency of the beam energy deposit. In this matter, transverse
beam-plasma instabilities could be particularly deleterious in preventing conditions for
burn to be met. Related theoretical studies have been mostly devoted to the linear
regime of instabilities originating from current and charge neutralized equilibria (See
e.g. Refs. ([Bret et al.(2004), Bret et al.(2005a), Bret et al.(2005b), Bret et al.(2005c),
Bret et al.(2007), Bret et al.(2008)])). However, one may argue that the physics of the
fast ignition is intrinsically out-of-equilibrium. This was the motivation to consider in
([Firpo et al.(2006)]) the out-of-equilibrium initial value dynamical problem taking place
when a radially inhomogeneous electron forward current is launched into a plasma. The
aim of this article is to tackle this problem in a rigorous and detailed way in order to
obtain a precise picture of the early-time electromagnetic fields produced. Apart from the
general inertial fusion and FIS contexts, discussed respectively e.g. by [Deutsch(2004),
Hoffmann et al.(2005)] and [Deutsch et al.(2008), Norreys et al.(2009)], this study should
be interesting to general physics research studies involving the propagation of a charged
particle beam into a plasma such as the very active field of plasma-based accelerators
(See e.g. ([Esarey et al.(2009), Kumar et al.(2010)])). Interestingly enough, the appar-
ently purely academic case of an electron beam with sharp edges considered here happens
moreover to be truly relevant to model electron beams constrained to move along a wire.
For instance, the recent study presented in ([Green et al.(2007)]) involves an experimental
implementation of a wire plasma that may be relevant to fast-ignition inertial fusion.

1.2 Framework

The physical system considered is that of a radially inhomogeneous electron forward cur-
rent launched at an initial time into a plasma with no initial current compensation. The
direction of the beam is along the z-axis. This study will be devoted to the extreme case
where the beam is cylindrical with sharp edges so that the current may be written

jb(r, z, t) = j0H(rb − r)H(t)ez, (1)

where H denotes the Heaviside function. The focus is put on this early stage where colli-
sions may be neglected. Ions will be assumed to form a fixed neutralizing background. In
order to simplify the analysis, the system is taken to be invariant along the beam direction,
z, as in ([Firpo et al.(2006), Taguchi et al.(2001), Firpo & Lifschitz(2007)]). The plasma
density np will be taken as uniform and constant.
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Maxwell equations in cylindrical coordinates read

1

r

∂Ez

∂θ
− ∂Eθ

∂z
= −∂Br

∂t
, (2)

∂Er

∂z
− ∂Ez

∂r
= −∂Bθ

∂t
, (3)

1

r

[
∂

∂r
(rEθ)−

∂Er

∂θ

]
= −∂Bz

∂t
, (4)

1

r

∂Bz

∂θ
− ∂Bθ

∂z
= µ0jpr + µ0jbr +

1

c2
∂Er

∂t
, (5)

∂Br

∂z
− ∂Bz

∂r
= µ0jpθ + µ0jbθ +

1

c2
∂Eθ

∂t
, (6)

1

r

[
∂

∂r
(rBθ)−

∂Br

∂θ

]
= µ0 (jpz + jbz) +

1

c2
∂Ez

∂t
, (7)

1

r

∂

∂r
(rEr) +

1

r

∂Eθ

∂θ
+
∂Ez

∂z
=

e

ϵ0
(Zni0 − np − nb) , (8)

1

r

∂

∂r
(rBr) +

1

r

∂Bθ

∂θ
+
∂Bz

∂z
= 0. (9)

where the beam current jb acts as a given source term. Provided that the density of plasma
electrons, that are initially at rest, is much larger that the density of beam electrons, the
electron plasma current jp = −enpvp is given by linear fluid theory in some initial transient
stage, so that

∂jp
∂t

= ϵ0ω
2
pE (10)

with ω2
p = npe

2/(meϵ0). The Reader is referred to the Appendix sections A and B for a
detailed derivation of Eq. (10) as well as for a discussion on its validity domain.

We Fourier decompose any field g (r, θ, z, t) through

g (r, θ, z, t) =
∑
m

g(m) (r, z, t) exp (imθ) .

After manipulating Eqs. (2)-(7), in order to express the electric field components as
functions of the magnetic field components, one is left with a single wave equation for the
magnetic field on m = 0, namely one has to solve, for t > 0,

1

c2

(
ω2
p +

∂2

∂t2
− c2

∂2

∂z2

)
B

(0)
θ − ∂

∂r

(
1

r

∂

∂r

(
rB

(0)
θ

))
+ µ0

∂j
(0)
bz

∂r
= 0. (11)

We focus here on the rotationally invariant part of the magnetic field. The m ̸= 0 com-
ponents, that are initially vanishing, would only become non-zero as a result of a possible
beam-plasma instability that may appear in a later stage. Putting τ = ct and introducing
the electron skin depth λs = c/ωp, the equation (11), that is to be solved for t > 0, reads[

1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
− ∂2

∂τ2
− 1

r2
− λ−2

s

]
ψ = µ0

∂jbz
∂r

≡ S (r, z, τ) , (12)

with ψ ≡ B
(0)
θ for jbz given by (1).
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2 Calculation of the poloidal magnetic field: The Laplace
transform’s approach

Equation (12) may be further simplified by introducing the reduced radial variable r̃ =
r/rb, the dimensionless variables z̃ = z/rb, τ̃ = ct/rb, ψ̃ = ψ/(µ0j0rb) and ratio η ≡ rb/λs.
It reads then [

1

r̃

∂

∂r̃

(
r̃
∂

∂r̃

)
+

∂2

∂z̃2
− ∂2

∂τ̃2
− 1

r̃2
− η2

]
ψ̃ = −δ (1− r̃)H(τ̃). (13)

This dimensionless system will be used in this Section. For the sake of clarity, we shall
drop the tildes writing, from now on in this Section, r, z, τ and ψ in place of r̃, z̃, τ̃ and
ψ̃. Let us now proceed to a Laplace transform in time of Eq. (13) and define

ĝ(r, s) =

∫ ∞

0
exp(−sτ)g(r, τ)dτ.

Taking into account the invariance of the problem along z, one is left with

L1ψ̂ ≡
[
1

r

∂

∂r

(
r
∂

∂r

)
− s2 − η2 − r−2

]
ψ̂ = −s−1δ (1− r) . (14)

The Green function g(r | a) ([Duffy(2001)]) solving L1g = −δ (r − a) is readily computed

as g(r | a) = I1

(√
s2 + η2r<

)
K1

(√
s2 + η2r>

)
with r< = min(r, a) and r> = max(r, a).

The solution of Eq. (14) is then

ψ̂(r, s) =

{
−s−1I1(

√
s2 + η2r)K1(

√
s2 + η2) for 0 < r < 1

−s−1I1(
√
s2 + η2)K1(

√
s2 + η2r) for r ≥ 1

. (15)

This must be Laplace inverted to obtain the solution in the real time space. From this
expression, let us note that it would be possible to obtain the radial behaviour of an ap-
proximate solution to our problem in separated time-space variables, valid at large enough
times, by using that limt→∞ ψ(r, t) = lims→0 sψ̂(r, s) (See e.g. ([Kuppers et al.(1973),
Firpo et al.(2006)]) ). That this would be only an approximate solution will become ex-
plicit in Section 3. However, this enables to estimate the large time behaviour of them = 0
component of the poloidal magnetic field for large values of η using, for x≫ 1,

I1(x) ∼ ex√
2πx

(
1− 3

8x
+ . . .

)
, (16)

K1(x) ∼ e−x

√
π

2x

(
1− 1

8x
+ . . .

)
. (17)

One obtains

lim
s→0

sψ̂(r, s) =

{
−I1(ηr)K1(η) ∼ − e−η(1−r)

2η
√
r

for 0 < r < 1

−I1(η)K1(ηr) ∼ − e−η(r−1)

2η
√
r

for r ≥ 1
. (18)

Therefore, except in the vicinity of the border of the beam (for r ≃ 1), the magnetic field
decreases strongly when the ratio η becomes large, which will be apparent on Figure 1.

The problem of the analytical obtention of B
(0)
θ (r, t) = ψ(r, t) will be addressed in

the following section using an alternative approach. Here we shall present results com-
ing from numerical Laplace inversions of (15). Figure 1 presents the time evolution of
the axisymmetric component of the poloidal magnetic field measured at three different
radii, namely at r = 0.5, r = 1 and r = 2, for three values of η. Curves have been ob-
tained using a Gaver-Wynn-Rho algorithm for Laplace transform’s inversion presented by
[Valkó & Abate(2004)].
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Figure 1: Initial time behaviour of the m = 0 component of the poloidal magnetic field for
three different values of η, namely η = 1 (bold), η = 5 (plain) and η = 10 (dashed line) at
different radius: r = 0.5 (upper plot), r = 1 (middle plot) and r = 2 (bottom plot).
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3 Calculation of the poloidal magnetic field: The Riemann’s
method

3.1 Implementation of Riemann’s method

In this Section, the problem will be addressed through a Hankel transform in the radial
variable followed by the use of Riemann’s method for hyperbolic differential equations in
the two independent variables z and τ . In this respect, the present study follows the line
of approach pursued in particular in several papers by [Borisov & Simonenko(1994)] and
[Borisov(2002)].

The Fourier-Bessel transform, also called Hankel transform, of orderm of some function
F is defined by

F̂m (s, z, τ) =

∞∫
0

rJm (sr)F (r, z, τ) dr,

while its inverse transform is obtained through

F (r, z, τ) =

∞∫
0

sJm (sr) F̂m (s, z, τ) ds.

Applying the Hankel transform of order 1 to Eq. (12) yields[
∂2

∂z2
− ∂2

∂τ2
− s2 − λ−2

s

]
ψ̂1 (s, z, τ) = Ŝ1 (s, z, τ) . (19)

3.2 First possible expression for the solution

The Riemann function R of the equation[
∂2

∂z2
− ∂2

∂τ2
− s2 − λ−2

s

]
ψ̂1 (s, z, τ) = 0 (20)

may be written, by the virtue of Olevsky’s theorem (See ([Borisov(2002), Olevsky(1952)]))
, as the following sum of terms

R
(
s, z, τ ; z′, τ ′

)
= R1

(
z, τ ; z′, τ ′

)
+

z−z′∫
τ−τ ′

dξR1

(
z, ξ; z′, 0

) ∂
∂ξ
R2

(
s, ξ, τ ; 0, τ ′

)
, (21)

where R1 (z, τ ; z
′, τ ′) = J0

(
λ−1
s

√
(τ − τ ′)2 − (z − z′)2

)
is the Riemann function of (20)

taking s = 0 and R2 (s, z, τ ; z
′, τ ′) = J0

(
s
√

(τ − τ ′)2 − (z − z′)2
)
is the Riemann function

of (20) taking λ−1
s = 0. Eq. (21) reads then

R
(
s, z, τ ; z′, τ ′

)
= J0

(
λ−1
s

√
(τ − τ ′)2 − (z − z′)2

)

+

z−z′∫
τ−τ ′

dξJ0

(
λ−1
s

√
ξ2 − (z − z′)2

)
∂

∂ξ
J0

(
s

√
(τ − τ ′)2 − ξ2

)
.
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Using Riemann’s formula, the solution of Eq. (19) reads

ψ̂1 (s, z, τ) = −1

2

τ∫
0

dτ ′
−τ ′+z+τ∫
τ ′+z−τ

dz′R
(
s, z, τ ; z′, τ ′

)
Ŝ1 (s, z, τ) .

It remains to inverse Hankel transform through

ψ (r, z, τ) =

∞∫
0

sJ1 (sr) ψ̂1 (s, z, τ) ds (22)

= −1

2

τ∫
0

dτ ′
−τ ′+z+τ∫
τ ′+z−τ

dz′
∞∫
0

sJ1 (sr)R
(
s, z, τ ; z′, τ ′

)
Ŝ1 (s, z, τ) ds, (23)

where one has used

Ŝ1 (s, z, τ) = µ0

∞∫
0

rJ1 (sr)
∂jbz
∂r

dr.

The definition of the beam current given in Eq. (1) gives

∂jb0z
∂r

= −j0δ (rb − r)H(τ),

which yields
Ŝ1 (s, z, τ) = −µ0j0rbJ1 (srb)H(τ).

Eq. (23) becomes

ψ (r, z, τ) = −1

2

τ∫
0

dτ ′
−τ ′+z+τ∫
τ ′+z−τ

dz′
∞∫
0

sJ1 (sr) J0

(
λ−1
s

√
(τ − τ ′)2 − (z − z′)2

)
Ŝ1 (s, z, τ) ds

−1

2

τ∫
0

dτ ′
−τ ′+z+τ∫
τ ′+z−τ

dz′
∞∫
0

sJ1 (sr)

z−z′∫
τ−τ ′

dξJ0

(
λ−1
s

√
ξ2 − (z − z′)2

)
∂

∂ξ
J0

(
s

√
(τ − τ ′)2 − ξ2

)
Ŝ1 (s, z, τ) ds,

that is
ψ (r, z, τ) = ψ1 (r, z, τ) + ψ2 (r, z, τ) (24)

with τ > 0. The expressions of the two contributions in Eq. (24) may be simplified since,
as expected, they may be put in a form explicitly independent on z when moving from
variables τ ′ and z′ to variables t = τ − τ ′ and u = z − z′. This yields

ψ1 (r, τ) ≡ µ0j0rb
2

τ∫
0

dt

t∫
−t

duJ0

(
λ−1
s

√
t2 − u2

) ∞∫
0

sJ1 (sr) J1 (srb) ds, (25)

ψ2 (r, τ) ≡ µ0j0rb
2

τ∫
0

dt

t∫
−t

du

u∫
t

dξJ0

(
λ−1
s

√
ξ2 − u2

) ∞∫
0

dssJ1 (sr) J1 (srb)
∂

∂ξ
J0

(
s
√
t2 − ξ2

)
.(26)

Let us begin with the calculation of ψ1. Using [Gradshteyn & Ryzhik(2007)] (6.512),

∞∫
0

sJn(as)Jn(bs)ds =
1

a
δ(b− a) (27)
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gives

ψ1 (r, τ) =
µ0j0
2
δ (r − rb)

τ∫
0

dt

t∫
−t

duJ0

(
λ−1
s

√
t2 − u2

)
.

The integral
t∫

−t

duJ0

(
λ−1
s

√
t2 − u2

)
= t

π∫
0

sin θJ0

(
t sin θ

λs

)
dθ

is evaluated using the identity

π∫
0

sin (2µx) J2ν (2a sin θ) dx = π sin (µπ) Jν−µ(a)Jν+µ(a).

This yields
t∫

−t

duJ0

(
λ−1
s

√
t2 − u2

)
= πtJ− 1

2

(
t

2λs

)
J 1

2

(
t

2λs

)
.

Using then
∫ X
0 xJ−1/2 (x) J1/2 (x) dx = sin2X/π finally gives

ψ1 (r, τ) =
πµ0j0
2

δ (r − rb)

τ∫
0

tJ− 1
2

(
t

2λs

)
J 1

2

(
t

2λs

)
dt

= 2λ2sµ0j0δ (r − rb) sin
2

(
τ

2λs

)
.

This is just
ψ1 (r, t) = λ2sµ0j0 [1− cos (ωpt)] δ (r − rb) . (28)

The second contribution to the field involves an integral of a triple product of Bessel
functions of the type

I (r, rb, α) ≡
∞∫
0

sJ1 (sr) J1 (srb) J0 (sα) ds, (29)

for r, rb, α > 0, through which causality relations will come into play. From [Gradshteyn & Ryzhik(2007)]
(6.578 et 8.75), this yields

I (r, rb, α) =
P

1/2
1/2 (cos v)

rrb
√
2π sin v

=
cos v

πrrb sin v
for |r − rb| < α < r + rb,

= 0 if not,

where P
1/2
1/2 (.) is the Legendre function of the first kind, and the angle v satisfies

cos v =
r2 + r2b − α2

2rrb
∈ [−1; 1] ,

and

sin v =

√
1−

(
r2 + r2b − α2

)2
4r2r2b

∈ [0; 1] .
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It happens that the expression of I (r, rb, α), as written in [Gradshteyn & Ryzhik(2007)],
should be completed by the singular special case

I (r, rb, 0) =
1

rb
δ(r − rb) (30)

due to Eq. (27). Let us consider now this second component of the poloidal magnetic field

ψ2 (r, τ) = −µ0j0rb
2

τ∫
0

dt

t∫
−t

du

u∫
t

dξJ0

(
λ−1
s

√
t2 − ξ2

) ∞∫
0

dssJ1 (sr) J1 (srb)
∂

∂ξ
J0

(
s
√
ξ2 − u2

)

=
µ0j0rb

2

τ∫
0

dt

t∫
−t

du

u∫
t

dξ
ξJ0

(
λ−1
s

√
t2 − ξ2

)
√
ξ2 − u2

∞∫
0

dss2J1 (sr) J1 (srb) J1

(
s
√
ξ2 − u2

)
.

Putting y =
√
ξ2 − u2, it comes

ψ2 (r, τ) = −µ0j0rb

τ∫
0

dt

t∫
0

du

√
t2−u2∫
0

dyJ0

(
λ−1
s

√
t2 − u2 − y2

) ∞∫
0

dss2J1 (sr) J1 (srb) J1 (sy) .

We have to compute, from Eq. (29),

U ≡ −

√
t2−u2∫
0

dyJ0

(
λ−1
s

√
t2 − u2 − y2

)
∂yI (r, rb, y) . (31)

Let us integrate U by part. Equation (31) yields

U = −
[
J0

(
λ−1
s

√
t2 − u2 − y2

)
I (r, rb, y)

]√t2−u2

0
+

√
t2−u2∫
0

dy∂yJ0

(
λ−1
s

√
t2 − u2 − y2

)
I (r, rb, y)

= −I
(
r, rb,

√
t2 − u2

)
+ J0

(
λ−1
s

√
t2 − u2

)
I (r, rb, 0) +

√
t2−u2∫
0

dy
λ−1
s yJ1

(
λ−1
s

√
t2 − u2 − y2

)
√
t2 − u2 − y2

I (r, rb, y) .

The second term in this last expression will yield the opposite of the singular term obtained
for ψ1 in Eq. (28), ensuring thereby the regularity of the field. We are thus left with

ψ (r, τ)

µ0j0rb
=

τ∫
0

dt

t∫
0

duI
(
r, rb,

√
t2 − u2

)
−

τ∫
0

dt

t∫
0

du

√
t2−u2∫
0

dy
yJ1

(
λ−1
s

√
t2 − u2 − y2

)
λs
√
t2 − u2 − y2

I (r, rb, y) .

(32)
Expression (32) may have been obtained more directly by using Olevsky’s theorem inter-
changing R1 and R2 in Eq. (21). The former decomposition was amenable to a - relatively
- easy estimation of the ”purely plasma” component ψ1 (r, τ) leading to a singular solution
with time and space separated. This singular part of the solution was however canceled
in ψ2 (r, τ). Eq. (32), that decomposes into two integrals involving I, expresses in partic-
ular the fact that an exact solution in separated variables, time and space, cannot exist.
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The relevant decomposition (32) shows that the poloidal magnetic field component is the
superposition of a ”purely vacuum” term

ψv (r, τ) ≡ µ0j0rb

τ∫
0

dt

t∫
0

duI
(
r, rb,

√
t2 − u2

)
, (33)

and of a term involving the plasma contribution

ψp (r, τ) ≡ −µ0j0rb

τ∫
0

dt

t∫
0

du

√
t2−u2∫
0

dy
yJ1

(
λ−1
s

√
t2 − u2 − y2

)
λs
√
t2 − u2 − y2

I (r, rb, y) . (34)

3.3 Solution decomposing into a vacuum and a plasma parts

Part 3.2 eventually turned into a sort of pedagogically digression. The interchangeability
between R1 and R2 in Eq. (21) appears as a fake one and one is left with the need to
estimate the vacuum contribution (33) and the plasma contribution (34).

3.3.1 Vacuum contribution

Let us first estimate ψv (r, τ). We have

τ∫
0

dt

t∫
0

duI
(
r, rb,

√
t2 − u2

)
=

τ∫
0

tdt

π/2∫
0

cosαdαI (r, rb, t cosα) .

Let us evaluate
π/2∫
0

cosαdαI (r, rb, t cosα) =

∫
Dα

dα
cosα cos v

πrrb sin v

with
2rrb cos v − r2 − r2b

t2
= − cos2 α

and where the definition domain Dα of the integral is given by the condition |r − rb| <
t cosα < r + rb. Three cases are to be considered: If t ≤ |r − rb|, then Dα = ∅, from
which it will follow that ψv = 0 for τ ≤ |r − rb|. If |r − rb| < t and r + rb > t, then
Dα = [0; arccos (|r − rb| /t)[. Finally, if r + rb ≤ t, then Dα = ∅. A change of variables
yields

ψv (r, τ)

µ0j0rb
= − 1

π

τ∫
0

dt

∫
Dv

cos v√
t2 − r2 − r2b + 2rrb cos v

dv,

where Dv is the definition domain of the integral in the v variable. The last integral is
defined provided that cos v + a > 0, where a is given by a(r, rb, t) ≡

(
t2 − r2 − r2b

)
/(2rrb)

and reads then ∫
Dv

cos v√
t2 − r2 − r2b + 2rrb cos v

dv =
1√
2rrb

∫
Dv

cos v√
cos v + a

dv.

We shall use the primitive (See [Gradshteyn & Ryzhik(2007)], 2.571 p.180)∫
cosx√
cosx+ a

dx =
√
2

{
2E

(
γ,

1

ϱ

)
− F

(
γ,

1

ϱ

)}
, (35)

10



for |a| < 1 and 0 ≤ x < arccos(−a), with γ = arcsin
(√

1−cosx
1+a

)
and ϱ =

√
2/(1 + a).

Here E is the elliptic integral of the second kind E(ϕ, k) =
∫ ϕ
0

√
1− k2 sin2 αdα and F

the elliptic integral of the first kind F (ϕ, k) =
∫ ϕ
0 dα/

√
1− k2 sin2 α. Consequently, in the

time and space domain satisfying |r − rb| < t and r + rb > t, one will use the expression
(35) for the primitive. Using reduced (dimensionless) variables, one puts

g
(
r̃, t̃
)
≡
∫
Dv

cos v√
cos v + a

dv,

with, for |r̃ − 1| < t̃ and r̃ + 1 > t̃,

g
(
r̃, t̃
)
= −2

√
2E

√ t̃2 − (r̃ − 1)2

4r̃

+
√
2K

√ t̃2 − (r̃ − 1)2

4r̃

 ,

where E and K denote respectively the complete elliptic integral of the second and first
kind, and elsewhere, namely for t̃ ≤ |r̃ − 1| or r̃ + 1 ≤ t̃,

g
(
r̃, t̃
)
= 0.

Finally, the vacuum contribution to the poloidal magnetic field is obtained as a time
integral of g, namely through

ψ̃v (r̃, τ̃) ≡
ψv (r̃, τ)

µ0j0rb
= − 1

π
√
2r̃

τ̃∫
0

dt̃g
(
r̃, t̃
)
. (36)

Figure 2 represents the evaluation of ψ̃v in the time-space domain whereas Figure 3 shows
the comparison between the evaluation of the vacuum contribution of the poloidal magnetic
field at the radius r = rb using Eq. (36) and its evaluation through the numerical Laplace
transform inversion of Eqs. (15) for η = 0.

3.3.2 Plasma contribution

Let us now consider the plasma contribution to the poloidal magnetic field (34). The
plasma contribution involves the double integral

K (r, rb, t) ≡
t∫

0

du

√
t2−u2∫
0

dy
yJ1

(
λ−1
s

√
t2 − u2 − y2

)
λs
√
t2 − u2 − y2

I (r, rb, y)

=
t2

πrrbλs

π/2∫
0

cos2 αdα

π/2∫
0

sinβJ1
(
tλ−1

s cosα cosβ
) r2 + r2b − t2 cos2 α sin2 β√

4r2r2b −
(
r2 + r2b − t2 cos2 α sin2 β

)2dβ,
in which the product cosα sinβ is constrained by the condition |r − rb| /t < cosα sinβ <
(r + rb) /t. Let us make the following change of variables: u = cosα cosβ, v = cosα sinβ.
One gets

K (r, rb, t) =
t2

πrrbλs

∫ ∫
Duv

dudv
J1
(
tλ−1

s u
)

√
1− u2 − v2

v
[
r2 + r2b − t2v2

]√
4r2r2b −

(
r2 + r2b − t2v2

)2
11
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Figure 2: Contribution of the vacuum to the poloidal magnetic field. The representation
is given in non-dimensional variables.

1 2 3 4 5
ct�rb

0.1

0.2

0.3

0.4

0.5

0.6

ΨvHr=1L

Figure 3: Contribution of the vacuum to the poloidal magnetic field taken at the radius
r̃ = 1 using expression (36) (plain line) and inverting Laplace transform (15) putting η = 0
(bold dashed line). The representation is given in non-dimensional variables.
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where the integration domain Duv is contained into the upper quarter of the unit circle.
We can thus write

K (r, rb, t) =
t2

πrrbλs

∫
[0;1]∩Dv

dv
v
[
r2 + r2b − t2v2

]√
4r2r2b −

(
r2 + r2b − t2v2

)2
√
1−v2∫
0

du
J1
(
tλ−1

s u
)

√
1− u2 − v2

,

withDv ≡ ]|r − rb| /t; (r + rb)/t[. However, we have, using Eq. (6.552) in [Gradshteyn & Ryzhik(2007)],

√
1−v2∫
0

du
J1
(
tλ−1

s u
)

√
1− v2

√
1− u2

1−v2

=

1∫
0

dx
J1

(
t
√
1−v2

λs
x
)

√
1− x2

=
π

2

[
J1/2

(
t
√
1− v2

2λs

)]2
,

so that

K (r, rb, t) =
t2

2rrbλs

∫
[0;1]∩Dv

dv
v
[
r2 + r2b − t2v2

]√
4r2r2b −

(
r2 + r2b − t2v2

)2
[
J1/2

(
t
√
1− v2

2λs

)]2
.

In terms of the dimensionless variables introduced in Sec. 2, we are left with

ψ̃p (r̃, τ̃) = −η
τ̃∫

0

dt̃
t̃2

2r̃

∫
[0;1]∩Dv

dv
v
[
r̃2 + 1− t̃2v2

]√
4r̃2 −

(
r̃2 + 1− t̃2v2

)2
[
J1/2

(
η
t̃
√
1− v2

2

)]2
. (37)

Figure 4 illustrates the time behaviour of the plasma contribution to the poloidal magnetic
field at some given radii and compares it to the one obtained from the Laplace inversion
approach.

3.3.3 The full solution

One can now proceed to the computation of the full poloidal magnetic field by summing
the so-called vacuum (36) and plasma (37) contributions. The time-space representation
of the poloidal magnetic field in non-dimensional coordinates is plotted in Figure 5. In
the limit η → ∞, one can check that the poloidal magnetic field vanishes, meaning that
the plasma contribution compensates exactly the vacuum one. This is in agreement with
the asymptotes obtained in the large η limit in Eq. (18). Therefore, the most interesting
behaviour takes place for intermediary values of η, namely for values of the beam radius of
the order of some electron skin depths. The (m = 0 component of the) poloidal magnetic
field is first created in the initial stage that looks like a choc. In the vacuum limit η → 0,
the poloidal magnetic field quickly tends to a steady value after this initial choc stage.
For low values of η, it displays a transient intermediary stage showing a small number of
wave-like variations that rapidly damp. When η gets larger, these plasma-like ripples last
longer while their adimensional time period (in terms of ct/rb) decreases.

4 Conclusion

In this article, a detailed computation of the poloidal magnetic field created by the sudden
injection of an electron beam with sharp edges into a plasma has been presented. The
control parameter of the problem appears to be η, namely the ratio of the beam radius to
the electron skin depth. Two different ways to address analytically this problem have been
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Figure 4: Time behaviour of the ”plasma” contribution to the poloidal magnetic field at
r = rb for η = 1 (upper plot) and η = 10 (bottom plot). The smooth curves come from
the numerical Laplace inverse transform of the full solution given in Eq. (15) subtracted
from the vacuum solution (See Figure 3). The curves showing some numerical noise have
been obtained from the numerical evaluation of Eq. (37). The representation is given in
non-dimensional variables.
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considered. One way amounts to proceed to an inverse Laplace transform of a solution
having a relatively simple expression, given in Eq. (15), in the reciprocal space. Another
way involves the Riemann’s method. This leads to some rather intricate calculations
in which e.g. causality conditions manifest through some integrals of triple products of
Bessel functions. However one advantage of the later approach is to supply a formula that
decomposes explicitly, thanks to Olevsky’s theorem ([Olevsky(1952)]), into a vacuum and
a plasma contributions, a fact that follows from the linearity of the wave equation but
that is not obvious to recover from the Laplace transform approach in Eq. (15). This
decomposition provides an easy way to capture the space-time behaviour of the poloidal
magnetic field.

This study should hopefully provide a calculation useful to benchmark numerical codes
or to develop analytical models.
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Appendix

A Linear plasma response

Let us consider the momentum equation for plasma electrons

npme

[
∂vp

∂t
+ (vp.∇)vp

]
= −enp (E+ vp ×B)−∇.P − νmenpvp, (A1)

in which P denotes a stress pressure tensor and ν an effective collision frequency.
At initial time, the plasma is at rest. The linear hypothesis consists in discarding the

nonlinear convective term in the left hand side and the Lorentz force that are second order
in vp. In particular, during the validity domain of the model, the plasma electrons are
non-relativistic. In the present modeling, one neglects also the pressure tensor term, which
amounts to a cold plasma hypothesis, and collisions. Together with the fluid equation of
continuity

∂np
∂t

+∇. (npvp) = 0,

and using the definition of the electron plasma frequency

ω2
p =

npe
2

meε0
,

this yields, keeping only the first order terms in vp, the desired simple linear plasma
response

∂jp
∂t

= ε0ω
2
pE.

B Validity domain

From Maxwell equations in cylindrical geometry, one obtains

∂E
(0)
z

∂r
=

∂B
(0)
θ

∂t
, (B1)

∂2E
(0)
r

∂t2
+ ω2

pE
(0)
r = − 1

ε0

∂j
(0)
br

∂t
. (B2)

In order to estimate the source term in Eq. (B2), one needs to compute j
(0)
br . This requires

to solve the fluid equations for the electron beam that read

∂nb
∂t

+
1

r

∂

∂r
(rnbvbr) = 0,(

∂

∂t
+ vbr

∂

∂r

)
(γvbr) = − e

me
(Er + vbzBθ) ,(

∂

∂t
+ vbr

∂

∂r

)
(γvbz) = − e

me
(Ez + vbrBθ) .

Let us introduce the ratio α = nb0/np. This will be assumed to be a small parameter.
One can then expand the fields in term of α and get nb = nb0 + αnb1, vbr = αvbr1,
jbr = αjbr1 = −αenb0vbr1. One obtains at first order

∂nb1
∂t

− 1

er

∂

∂r
(rjbr1) = 0,

γ0
enb0

∂jb1r
∂t

=
e

me
(E1r + vb0zB1θ) .
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Therefore one has

1

ε0

∂jb1r
∂t

=
e2nb0
γ0meε0

(E1r + vb0zB1θ) =
e2np
γ0meε0

(Er + vb0zBθ) =
ω2
p

γ0
(Er + vb0zBθ) .

This yields

∂2E
(0)
r

∂t2
+ ω2

p

(
1 + γ−1

0

)
E(0)

r = −
ω2
p

γ0
vb0zB

(0)
θ ,

the solution of which reads

E(0)
r (r, t) =

ωp

γ0

√
1 + γ−1

0

∫ t

0
vb0zB

(0)
θ (r, s) sin

[(
ωp

√
1 + γ−1

0

)
(s− t)

]
ds

We have

jpz(r, t) =

∫ t

0
ε0ω

2
pE

(0)
z (r, s)ds =

∫ t

0
ε0ω

2
p

∫ r ∂B
(0)
θ

∂s
dsdr′

= ε0ω
2
p

∫ r

B
(0)
θ (r′, t)dr′.

Therefore, by virtue of the fluid momentum equation for plasma electrons (A1), the elec-
trostatic description of plasma electrons is valid as long as the modulus of

−enp
ωp

γ0

√
1 + γ−1

0

∫ t

0
vb0zB

(0)
θ (r, s) sin

[(
ωp

√
1 + γ−1

0

)
(s− t)

]
ds (B3)

=
j20
α

ηµ0rb

γ0

√
1 + γ−1

0

∫ ct/rb

0
B̃

(0)
θ

(
r, s′

)
sin

[(
rb
c
ωp

√
1 + γ−1

0

)(
s′ − ct

rb

)]
ds′ (B4)

is large in front of the modulus of

ε0ω
2
pB

(0)
θ (r, t)

∫ r

B
(0)
θ (r′, t)dr′ (B5)

= ε0ω
2
pµ

2
0j

2
0r

2
b B̃

(0)
θ (r, t)

∫ r

B̃
(0)
θ (r′, t)dr′. (B6)

In the last Eqs. (B4) and (B6), one has used the dimensionless notation of Sec. 2. One
has to evaluate the ratio

κ

(
r

rb
,
ct

rb

)
=

∫ ct/rb
0 ψ̃ (r, s′) sin

[(
η
√

1 + γ−1
0

)(
s′ − ct

rb

)]
ds′

αηγ0

√
1 + γ−1

0 ψ̃(r, t)
∫ r/rb
0 ψ̃(r̃, t)dr̃

.

Whatever the value of η, one immediately see that κ remains large for a small α even if
the numerator tends to cancel on times of the order of some ct/rb. When η becomes large,
one can use the asymptotic behaviours written in Eq. (18). This ensures that κ remains
large, since the denominator is of second order in an exponentially small quantity.
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