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Abstract. Features such as Local Binary Patterns (LBP) and Local
Ternary Patterns (LTP) have been very successful in a number of areas
including texture analysis, face recognition and object detection. They
are based on the idea that small patterns of qualitative local gray-level
differences contain a great deal of information about higher-level image
content. Existing local pattern features use hand-specified codings, which
limits them to small spatial supports and coarse graylevel comparisons.
We introduce Local Quantized Patterns (LQP), a generalization that
uses lookup-table based vector quantization to code larger or deeper
patterns. LQP inherits some of the flexibility and power of visual word
representations, without sacrificing the run-time speed and simplicity of
existing local pattern ones. We show that it outperforms well-established
features including HOG, LBP and LTP and their combinations on a
range of challenging object detection and texture classification problems.

1 Introduction

“Local pattern” features such as Local Binary Patterns (LBP) [1,2,3], Local
Ternary Patterns (LTP) [4]) and Weber Law Descriptors (WLD) [5] are based
on the idea that small patterns of qualitative local gray-level differences contain a
great deal of information about higher-level image content. Despite their extreme
simplicity and micro-locality, local patterns have proven very successful in visual
recognition tasks ranging from texture classification to face analysis and object
detection [3]. For example, [6] shows that LTP outperforms established feature
sets such as HOG on the PASCAL VOC’06 object detection challenge, and that
combining HOG, LTP and LBP gives even better results.

In many applications, local information is harnessed by finding a “local pat-
tern coding” of the image – a qualitative local gray-value pattern associated
with each image pixel – and counting the number of occurrences of each possible
pattern over suitable image regions – e.g . a grid of rectangular cells overly-
ing the putative object. The resulting histograms are used as visual descriptors
for recognition. This approach works surprisingly well in practice [3], however
current local pattern descriptors use hard-wired codings that severely limit the
pattern shapes and sizes that can used, and they rely on very coarse qualitative
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gray-value comparisons, typically binarization. It is worth asking whether vari-
ants incorporating different shapes such as filled rectangles or strips of pixels,
more pixels, or finer comparisons would be even more effective.

The problem is that the code size (the number of different local patterns that
can occur), and hence the size of the cell-level histograms, increases exponentially
with the size of the spatial support of the pattern and the number of quantization
levels. Specifically, quantizing a group of n pixel gray-level comparisons into k

levels gives a code of size kn. For practical object recognition tasks we would like
to limit the histograms to at most a few hundred entries per cell, which limits
the size of the local patterns to at most about 8 binary pixel comparisons or
5 ternary ones. As a result, in such applications both LBP and LTP typically
sample 8 pixels on a one pixel radius circle around the central pixel. LBP [3]
then thresholds these at the gray-value of the central pixel to produce a 28 = 256
valued coding, whereas LTP [4] introduces a parameter τ , thresholds at −τ and
τ to generate 3-way comparisons, then splits the resulting ternary codes into
“positive” and “negative” binary halves to produce two 256-valued codings. The
splitting is necessary because a 38 = 6561 valued code would not be practicable.
Although it is rather heuristic, it seems to work well in practice [4,6].

Furthermore, in both cases one typically postprocesses the output to produce
“uniform” codings. Ojala et al [1] observed that of the 256 possible code values,
the “uniform patterns” – ones that have at most one island of ones and one
island of zeros around the sampled circle – both occur most frequently and carry
most of the discriminative power. There are 58 of these, and the counts for the
remaining patterns are typically pooled into a single additional “non-uniform”
bin, giving 59 bin output histograms.

Although the splitting and uniform coding dimensionality reductions are well-
established, it should not be forgotten that they are at best limited palliatives
for a more serious underlying problem – the exponential growth of codebook
size with neighbourhood size and quantization depth. It is unclear how much
information is lost during splitting and whether taking positive and negative
halves is the best way to organize the split. Similarly, it is unclear how best
to generalize uniform coding to non-circular spatial topologies and to ternary
or higher-order codes, and even for binary circular ones, the quadratic increase
in the number of uniform patterns with circumference limits uniform coding to
groups of at most about 20 pixels (and even then, the quality of the coding is
likely to suffer as the fraction of the 2n codes that are uniform rapidly becomes
infinitesimal). Nor is it obvious that assigning all of the nonuniform codes to
a single histogram bin is the best solution – it might be better to assign each
nonuniform code to the “nearest” (in some sense) uniform one. In general it
seems likely that the need for such hand-coded reductions is limiting the size
and expressiveness of local pattern representations, so it is worthwhile to seek
methods for learning efficient reductions from very large input codings (e.g . kn)
to much smaller output codings that can be stored compactly.

The same problem occurs in the popular “visual words” approaches [7,8,9],
where (potentially) continuous-valued feature vectors for larger image patches
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are reduced to a limited set of code values by vector quantization methods such
as K-Means. These methods can also be applied to local pattern representations,
but even though they would resolve many of the issues mentioned above, they
are usually too slow to be practicable. The problem is that they typically require
each incoming sample to be compared to every dictionary element to discover
its quantization class, or at very least they require an expensive data structure
traversal for each sample at run time. This is already problematic for patch-level
descriptors in visual word representations, so it is much too slow for practical
object detectors that need to evaluate the local pattern of every pixel in the
image pyramid. To be useable, the cost of run-time code evaluation needs to be
limited to a constant-time operation per pixel – e.g . a closed form formula or a
table lookup1.

Our Local Quantized Pattern (LQP) approach does just this. We use vector
quantization for codebook learning, but choose pattern sizes that allow run-time
local pattern coding to be implemented by simple table lookup, thus retaining
many of the advantages of both current local patterns and visual words in an
efficient and practical form that remains well-suited to hardware implementation.

There are other methods that harness quantized local neighbourhood infor-
mation for visual recognition tasks, and these too suffer from the compromise
between code size and quantization time / code quality that LQP is designed
to address. For example, the face recognition method of Cao et al [11] takes
patches from nine fiducial regions on pre-detected faces and in each samples 24
preprocessed grayvalues on a double ring around each pixel (the same sampling
pattern as our Disk5 descriptors below), converting these to very high (up to 217)
dimensional codes using a random projection tree coder followed by PCA to re-
duce the output dimensionality. Such a costly projection process is acceptable in
their context where descriptors are computed in only a few known patches, but
it would be impractical for scanning window object detection where dense mul-
tiscale evaluation over the whole image is required. Similarly, Calonder et al [12]
use random pairwise graylevel pixel or smoothed pixel comparisons to produce
128–512 bit binary patch descriptors for keypoint matching. This happens at a
patch level and it converts input graylevels to long binary codes (ones much too
long to histogram – 2128 entry histograms are not practicable), whereas LQP
happens at a pixel level and converts moderate-length binary or ternary codes
to shorter vector quantized ones.

The basic LQP approach is sketched in the next section. The subsequent
sections give further details and experimental results.

2 Local Quantized Patterns

The essence of LQP is to apply visual word quantization to discrete local pat-
terns, using a precompiled lookup table to cache the final coding for speed. The
main constraint is the size of the lookup table, which must store the output code
for every possible input pattern. For example, for a local pattern that includes

1 See [10] for a visual word approach with similar motivations.
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24 binary pixel comparisons the table has 224 = 17 million entries, while for
one including 16 ternary pixel comparisons it has 316 = 43 million entries and
for one including 10 5-level pixel comparisons it has 510 = 9.8 million. These
are reasonable upper limits for implementation in hardware, so in practice LQP
allows patterns that are around three times larger than existing local pattern
approaches – going from 8 to 24 pixels for binary coding and from 5 to 16
for direct ternary coding. Alternative data structures may allow these sizes to
be increased somewhat, but for simplicity we will only test direct table lookup
here. Note that as typical codebooks provide only O(102)–O(103) output codes,
O(105) input patterns map to each output code.

We will see that by allowing larger local pattern neighbourhoods to be used,
LQP provides a significant increase in discriminative power. It also allows a much
wider range of neighbourhood shapes, and it adapts the coding to the applica-
tion, the neighbourhood shape, and the desired output size. Moreover – although
we will only test simple L2 pattern comparison here – LQP’s table-lookup struc-
ture allows it to handle more sophisticated pattern comparison metrics such as
Earth Mover style distances and coding under symmetries such as rotations and
reflections [3], all at no additional run-time cost.

The lookup table architecture can also be used to accelerate codebook learn-
ing. During learning the (codebook) training dataset is scanned once to record
the number of occurrences of each input code that occurs, storing these in a hash
table or index, then these values and counts are passed to the algorithm that
actually learns the codebook, e.g . a count-weighted version of K-Means. This
typically makes training fast because most of the possible input codes do not
actually occur and for those that do, all occurrences are processed in a single
operation. E.g . for 24 bit binary vectors over the INRIA Person positive training
set, only 671k of the 17M possible input values actually occur and as a result 10
rounds of K-Means for a 100 element dictionary takes only 12 minutes.

2.1 Local Pattern Geometry

As mentioned above, within the above size limits (24 pixel-comparisons for bi-
nary and split ternary coding, 16 for full ternary coding), many different neigh-
bourhood geometries are possible for LQP and one of its main advantages is
its flexibility in this respect. Here we test a selection of possible geometries in-
cluding: horizontal (H), vertical (V), diagonal (D) and antidiagonal (A) strips of
pixels; combinations of these like horizontal-vertical (HV), diagonal-antidiagonal
(DA) and horizontal-vertical-diagonal-antidiagonal (HVDA); and traditional cir-
cular and disk-shaped regions – c.f . Figure 1. By default we compare each non-
central pixel to the central one, but we also tested “center symmetric” (CS)
codes, where each pixel is compared to the diametrically opposite one. Geome-
tries will be described by notation such as HV3

7, where HV denotes the neigh-
bourhood shape (here a horizontal-vertical cross), the subscript indicates the
neighbourhood diameter (here 7 pixels) and the superscript indicates the quan-
tization level (here native ternary coding – 3* denotes split ternary coding and
2 binary coding). Separate codebooks are learned for the positive and negative
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Fig. 1. Some examples of the local pattern neighbourhoods that we have tested.
The subscript denotes the diameter in pixels of the local pattern neighbourhood.
A superscript will be added to denote the depth of quantization: 2 for binary
coding, 3 for full ternary coding, and 3* for split ternary coding. In each case,
pixels are sampled around a central pixel (shaded yellow) and compared either
with the central pixel or with the diametrically opposite pixel (CS case).

halves of split ternary codes. The results below show that when using ternary
patterns, it is almost always preferable to split the code to allow a larger spatial
support to be used.

As always, codes from different feature sets or from different types of LQP
neighbourhoods can be combined at the cell level by simple histogram concate-
nation. This effectively allows more pixels to be incorporated in the local pattern
neighbourhood, at the cost of ignoring co-occurrences between the different sub-
patterns. However it should be noted that elongated LQP’s such as the strips
H25 and V25 are often so wide that they cross several cells, making them difficult
to handle owing to boundary effects.

2.2 Codebook Learning

By default we represent input patterns as binary or ternary vectors, using K-
Means [13] over the standard L2 inter-vector distance to learn our visual code-
books. Our algorithm counts the number of occurrences of each possible input
code on the training set, using the resulting sparse table to run K-Means. It is
run ten times with different random initializations, taking the codebook from
the run that gives the lowest K-Means quantization error on the training set.
Below we use conventional hard K-Means coding. We also tested a soft-coding
variant in which the lookup table stored the c ≤ 10 nearest code centers for each
input and the incoming patterns were soft-quantized against all c codes using
uniform weighting, but we found that this reduced the accuracy.

For comparison, we also implemented a fast discriminative coding method.
We trained Random Forests of classification trees over raw (unquantized) pixel
differences, using them to construct tree-leaf-level output codes in the fashion
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LBP LTP Disk3∗

5 CWLD WLD WLD MWLD

Brodatz 90.6 95.7 96.9 89.3 89.3 97.1 -
KTH 58.7 60.7 64.2 56.5 59.4 56.4 64.7
CUReT 88.1 88.7 92.2 83.8 82.2 - -

Table 1. Texture classification accuracies for various features and datasets.
Columns 4-5 show results for our implementations of color and grayscale WLD,
while columns 6-7 reproduce grayscale WLD and MWLD results from [5].

of [14,15]. To capture the diversity of the datasets, relatively large numbers of
relatively shallow trees were used. Although Random Forests do not require a
preliminary quantization of their input values, we found that their output cod-
ings were less accurate than K-Means based ones, as well as being much slower
to train and use. This is perhaps because distance-based methods like K-Means
provide relatively smooth decompositions of the input space, whereas – notwith-
standing their discriminative nature and unquantized inputs – Random Forests
only provide rather coarse random partitionings. For instance (anticipating the
results below), for the H3

7+V3
7 feature combination with single root Latent SVM

detectors on the INRIA Person dataset, the K-Means coding with 100 centers
and hence 200 histogram bins gave an Average Precision of 65.3%, whereas the
Random Forest ones with 16 trees of respectively 8 leaf nodes (128 bin his-
tograms) and 16 leaf nodes (256 bin histograms) gave only 57.7% and 59.0%.
For this reason, we give results only for K-Means in the experiments below.

3 Texture Classification Experiments

We will provide a detailed experimental study of LQP for object detection below,
but first we anticipate the settings found there to give some brief results on the
simpler problem of texture classification. We test LQP on the Brodatz32 [16,17],
CUReT [18]2 and KTH-TIPS-2a [19] datasets. In each case the descriptor is the
LQP histogram of the entire unpreprocessed input image. To simplify comparison
to previous work we present accuracies for simple 3-nearest-neighbour classifiers:
better results are known to be available with more sophisticated classifiers such
as SVM’s [19]. We tested both the χ2 and Normalized Histogram Intersection
metrics for histogram comparison, reporting for χ2 as it gave better results. We
tested various normalization schemes for the LQP histograms. Unnormalized
histograms and L2 normalization gave the equal-best results, so we report results
for unnormalized histograms.

We follow the protocols of [5,19,9]. For Brodatz [5], the data for each class is
randomly split into equal halves with half used for training and the other half
for testing, and we report averages over 10 random trials. For KTH [19], three
samples of each class are used for training and the fourth for testing, and we
report averages over four random partitions. For CUReT [9], we split the images

2 From http://www.robots.ox.ac.uk/∼vgg/research/texclass/index.html
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of each class into equal parts and use half for training and the remaining half
for testing.

Table 1 summarizes the results for the Disk3∗5 LQP features. In all three cases,
LQP outperforms LTP, which in turn outperforms LBP. We also tested against
WLD and multi-scale WLD (MWLD), which concatenates WLD histograms
from several different spatial supports and scales [5]. We were not able to repro-
duce the results of [5] with our grayscale WLD implementation3, doing worse on
Brodatz and better on KTH, so we give figures for both implementations and
also for our color WLD to allow comparison with the other features shown. Over-
all, LQP appears to outperform WLD. A fair comparison with MWLD is more
difficult as results for it [5] are available only on KTH and its feature dimension
is about 6 times higher than that of LQP.

4 Object Detection Experiments

For object detection, we give results on the INRIA Person [20] and PASCAL
VOC2006 [21] datasets, using the INRIA set mainly for parameter setting.
We follow VOC2006 protocols for both datasets, reporting Average Precisions
(AP’s), i.e. areas under Precision-Recall curves. Our detectors are based on
those of [20,22,6]. For each feature set tested, we overlay the image with a grid
of 8× 8 pixel cells, using bilinear spatial interpolation to accumulate votes into
the cell-level histograms in order to provide robustness to small spatial displace-
ments. The histograms are gathered into detector-window level feature vectors
and used in Latent SVM sliding window detectors in the manner of [22]. Our
main aim here is to evaluate LQP on a broad range of problems, not to get the
absolute best possible results on each individual one, so we only report results
for detectors with a single bilaterally-symmetric root and no parts, trained using
the densified version of SVMLight [23,20]. Past experience suggests that includ-
ing multiple roots and parts will give better results for all of the features tested
without significantly changing their relative rankings.

For HOG we use the HOG31 features of [22] by default – these include both
signed and unsigned gradient orientations and dimensionality reduction over the
different normalizations of a cell. For LBP and LTP we follow [6]. Circular 8-
sample patterns of radius 1 pixel are used, with bilinear interpolation to resample
the pixels needed from the unpreprocessed input image, and uniform coding is
used, with splitting for LTP. For color images, patterns are evaluated separately
on the R, G and B color channels then accumulated into a shared histogram.
L1-Sqrt normalization is used for histograms, i.e. they are normalized to sum
1 then square-rooted. Our LQP features use exactly the same approach, simply
substituting the LQP code for the LBP/LTP one, without uniform coding but
with splitting as necessary.

3 We do not apply the empirical histogram reweighting from [5] as we find that it
makes the results much worse, but in either case our results differ from [5].
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Diameter H3 V3 D3 H2 V2 D2

7 63.3 61.4 60.5 - - -
9 64.9 64.8 61.8 46.4 49.0 47.1
15 67.2 68.4 62.3 54.7 53.8 51.4

Table 2. AP’s for various de-
tectors trained using single-strip
LQP features on the INRIA Per-
son dataset. The missing values
correspond to features that have
so few input codes that they can
be coded directly without using
LQP, e.g . H2

7 has 2
7 = 128 codes

in total.

Codebook Size 50 60 80 100 150 200 300

HV3

5 76.8 76.4 76.1 77.9 77.0 80.0 79.9

HVDA3

5 77.3 77.0 79.8 78.7 79.9 81.5 82.3

HV3

7 77.6 77.1 77.8 79.5 79.1 79.6 81.4

DA3

7 75.1 76.1 76.0 77.0 76.3 78.4 79.1

HVDA3∗

7 80.1 81.1 80.2 80.9 81.7 82.0 82.6

Disc3∗5 79.3 79.9 81.3 81.2 82.2 81.3 81.4

Table 3. The effect of different LQP geometries
and codebook sizes on the AP’s of single root
latent detectors on the INRIA Person dataset.
Note that for split (‘3*’) features, the final de-
scriptor size is twice the quoted codebook size.

4.1 INRIA Person Dataset

Strip Layouts. Table 2 shows AP’s on the INRIA Person dataset for detectors
using LQP features based on single horizontal, vertical or diagonal strips of pix-
els. The single-strip features turn out to be quite weak, giving significantly lower
performance than existing feature sets – LBP, LTP and HOG give respectively
74.0%, 79.0% and 79.0% AP on this dataset. However it is at least clear that
increasing the length of the strip increases the performance, as does replacing bi-
nary codes with ternary ones. The comparable centre-symmetric features (which
compare each pixel with its diametrically opposite one, not with the centre one,
thus halving the size of the input pattern) consistently give much lower perfor-
mance – e.g . H3-CS and V3-CS respectively have AP’s of 59.3% and 59.1% – so
we will not test them further.

Cross Layouts. Including several complementary strips in the LQP neighbour-
hood significantly increases the accuracy – c.f . Table 3. For instance, for a 100
word dictionary the cross layout HV3

7 gives 79.5% AP whereas the cell-level con-
catenation of the 100 word H3

7 and V3
7 LQP histograms gives only 74.6%. If split

uniform LTP coding is used instead of LQP coding for the H3
7 and V3

7 histograms,
the results are still worse – 60.4% AP for a 4× 33 = 132 dimensional histogram.
Clearly, the richer co-occurrence statistics that HV3

7 LQP captures are more use-
ful than the 100 extra codewords of H3

7+V3
7. Despite the inclusion of only two

orientations, the HV3
7 results are already slightly better than HOG and LTP on

this dataset, both of which give 79.0% AP. In contrast, DA3
7, which combines

diagonal and antidiagonal strips, gives only 77.0% AP– presumably horizontal
and vertical slices are more discriminant for people than diagonal ones. Incorpo-
rating all four types of strip in a “Union Jack” pattern HVDA further improves
the results, although split coding must be used in this case owing to the number
of pixels in the pattern.

Disk Layouts. Disk-shaped patterns can do even better. Using 100 word code-
books on the INRIA dataset, the two-ring 24 pixel pattern Disk3∗5 (81.2% AP)
outperforms both the 16 pixel (HVDA3

5, 78.7% AP) and 24 pixel (HVDA3∗
7 ,
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80.9% AP) Union Jacks, and also LTP and HOG (both have 79.0% AP) – c.f .
Table 3. The VOC2006 results below confirm that Disk3∗5 has slightly better
overall performance than HVDA3∗

7 : presumably, dense circular sampling in a
compact neighbourhood captures more of the characteristic class structure than
sampling a fixed set of rays in the broader neighbourhood covered by HVDA3∗

7 .
In fact, Disk3∗5 gives better results on the INRIA Person dataset than any pre-
vious individual or combined feature set that we are aware of, improving the
AP by 2.2% (3.2% for the 150 word codebook) relative to the individual feature
baselines HOG and LTP and by 0.2% (for the 150 word codebook) relative to
the combined feature baseline LBP+LTP+HOG [6].

Haar Layout. To see whether it would be useful to include multiscale informa-
tion (c.f . MWLD [5]), we also tested a Haar wavelet based local pattern. We take
4×4 pixel neighbourhoods around each pixel, apply the Haar wavelet transform,
discard the constant term and code the remaining 15 wavelet coefficients us-
ing LQP ternary coding. In detail, this involves taking the four 2×2-pixel corner
blocks of the neighbourhood and a 2×2 block containing the average of each cor-
ner one, and applying 2×2 horizontal, vertical and diagonal Haar filters [24,25]
to each block. The resulting Haar LQP features give slightly better results than
HOG and LTP: for 100 word codebooks, 80.7% AP versus 79% AP on INRIA
Person, and 29.4% AP versus 25.1% and 28.9% AP on the VOC2006 person
class. However the Haar patterns do not equal the performance of the best Disk
and HVDA ones on these datasets.

Splitting and LQP Features. With a 118 word codebook, Disk33 (the LQP
form of LTP’s 8-sample circle of 1 pixel radius) gives identical accuracy to tradi-
tional 118-D split uniform LTP coding. Reducing the LQP codebook size to 88
reduces the accuracy by only 0.8%. For the 16-sample radius 2 circle Circ35 (the
largest pattern for which unsplit ternary coding is feasible), split coding with 100
word codebooks (200-D histograms) gives 80.9% AP on INRIA whereas unsplit
coding with codebook (and histogram) sizes of 100 and 200 gives respectively
78.8% and 80.5% AP. Similarly, for the VOC2006 person class, split Circ3∗5 gives
28.3% AP while unsplit Circ35 gives respectively 26.0% and 28.6% AP for 100
and 200 word codebooks, and for the VOC2006 car class split Circ3∗5 gives 55.0%
AP while unsplit Circ35 gives 55.2 % and 54.9% AP. These results in some sense
validate the use of split uniform coding in the original LTP. Overall, our results
consistently show that splitting causes little loss of discriminative power relative
to the equivalent unsplit coding, and that it is beneficial in the sense that it al-
lows larger spatial supports to be used, thus increasing the overall discriminative
power.

Ternary Code Threshold. Figure 2 shows the effect of the ternary code thresh-
old τ on the APs of various LQP features on the INRIA Person and VOC2006
person classes. For each feature there is a broad range of τ values that gives sim-
ilar results, but spatially larger patterns (notably the extended cross layouts)
need larger values of τ , presumably because the typical ranges of gray-value
variations increase with increasing pattern diameter. Over the full set of classes,
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Fig. 2. Average Precisions of LQP features on the INRIA Person (left) and
VOC2006 person (right) datasets, for different values of the ternary quantization
threshold τ .

τ = 5 turns out to be the best value for both of the Disk diameters and also for
LTP, whereas τ = 14 is the preferred value for broad crosses such as HVDA3∗

7 .

Choice of Codebook. Table 3 shows how codebook size affects the perfor-
mance of various LQP features. As expected – despite some variability owing to
the nonconvexity of K-Means learning – larger codebooks typically have better
performance. By default we use 100 word codebooks below as they seem to offer
a reasonable compromise between descriptor size and performance, but smaller
ones still offer very respectable levels of performance and larger ones are often
even better.

More generally, features can be quantized using either a single codebook
(learned from the positives, the negatives, or the complete training set), or several
concatenated codebooks – for example ones learned separately on the positive
and negative training sets. Moreover, for positive training we can also learn a
separate “cell level” codebook for each cell of the detection window, subsequently
quantizing the pixels of each cell of the current window using that cell’s positive
codebook and the global negative one.

Table 4 shows the effect of these different codebook learning schemes on the
accuracy of INRIA Person detectors using HV3

7 features. The single-codebook
results are better than the multiple-codebook ones and in the multiple code-
book case, learning separate cell-level positive codebooks provides only a small
increase in the AP so it does not seem to be warranted given its extra complexity.
Unsurprisingly, using positives alone for codebook learning is better than using
negatives alone – the positive codebooks are trained on structures that are im-
portant for characterizing the object class – but (perhaps surprisingly) pooling
the positives and negatives during training gives worse results than using either
positives or negatives alone. For the binary and split ternary codings, initializing
some of the K-Means centers at the LBP/LTP uniform patterns to encourage
the latter to be well coded does not change the performance. Similarly, for global
positive and negative codebooks, learning the negative codebook first and using
it to initialize the positive one does not change the performance. By default, we
therefore use single 100 word codebooks obtained by running K-Means on (all of
the R, G and B pixels of the annotation windows of) the positive training data.
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Codebook Type Positive Negative Combined Positive & Negative Cell Based
Cell Dimension 100 100 100 200 200

HV3

7 79.5 78.8 77.8 77.0 78.0

Table 4. The influence of different codebook organizations on the AP’s of HV3
7

detectors on the INRIA Person dataset.

HV3

7 DA3

7 HVDA3

5 HVDA3∗

7 Disk3∗

5 HVDA3

9-CS

LQP 79.5 77.0 78.7 80.9 81.2 78.5
LQP+HOG 81.7 80.5 82.8 82.7 82.8 81.8

Table 5. Average Precisions on the INRIA Person dataset for detectors using
classical HOG [20] plus the given ternary LQP feature with a 100 word code-
book. For comparison, HOG alone gives 79.0%, LTP+HOG gives 81.3% and
LBP+LTP+HOG gives 82.0% AP [6].
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HV3

7

100 100 34.6 55.8 39.8 55.1 16.0 32.8 14.8 21.8 46.9 25.0 38.2
150 150 35.6 56.4 42.0 54.5 16.1 36.5 15.8 22.2 47.6 25.8 38.9

HVDA3

5
300 300 36.2 52.8 43.5 56.8 14.9 35.9 17.3 26.7 48.4 26.8 38.7

HVDA3∗

7

100 200 38.3 58.2 45.9 56.1 14.6 38.0 17.4 27.7 52.4 32.7 39.8
150 300 39.4 58.0 46.5 56.5 19.0 39.0 17.6 28.9 52.7 33.0 42.6

Disk3∗

5

100 200 38.8 57.8 46.2 56.1 19.3 37.6 18.8 30.9 50.2 29.9 41.2
150 300 39.8 57.9 49.0 56.3 20.1 37.7 18.9 32.1 50.5 31.9 43.1

HOG 31 31 31.6 57.2 40.1 55.0 5.0 31.9 5.3 22.0 41.7 25.1 32.2
LBP 59 59 33.2 54.0 39.5 53.8 15.9 33.0 9.2 21.1 44.8 21.8 38.4
LTP 59 118 37.8 56.2 45.2 56.1 17.3 35.8 16.8 29.8 51.4 28.9 40.0

LBP+LTP+HOG 149 208 38.3 57.9 44.4 56.0 18.7 37.0 16.0 29.0 51.2 32.8 39.8

Table 6. Average Precisions of single root latent detectors on the VOC2006 test
set using HOG31, LBP, LTP and LQP features. The results for LBP+LTP+HOG
are from [6]. Disk3∗5 outperforms all three of HOG, LBP and LTP, and even their
combination LBP+LTP+HOG.

Combination with HOG Features. On the INRIA Person dataset, the LQP
features are so strong that the (single root latent) classifiers used are nearly
saturated, so – particularly for strong performers such as Disk3∗5 – including
additional features such as HOG provides only modest gains in accuracy, c.f .
Table 5. However the results for VOC2006 below show that (like other local
patterns) LQP features complement HOG well on more challenging datasets.

4.2 PASCAL VOC2006

LQP features also give state of the art results on the VOC2006 dataset – c.f .
Table 6. For instance, HV3

7 outperforms HOG31 on 8 of the 10 classes, increasing
the Mean AP by 4%, and LBP on all 10, increasing the Mean AP by 2.4%. LTP
outperforms HV3

7 on 8 of the 10 classes, but Disk3∗5 outperforms LTP on 9 of
the 10, increasing the Mean AP by 1.0% (and by 2.0% for 150 word codebooks).
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HV3

7 DA3

7 HVDA3

5 HVDA3∗

7 Disk3∗

5 HVDA3

9-CS

LQP 25.0 20.7 26.1 30.2 29.9 17.4
LQP+HOG 33.8 30.1 33.1 33.6 34.8 28.8

Table 7. Average Precisions on the VOC2006 person class for detectors using
classical HOG ([20]) plus the given LQP feature. The local patterns use 100 word
codebooks. For HOG alone, the AP is 24.1%, while for LTP+HOG it is 33.8%.

Disk3∗5 also outperforms HVDA3∗
7 on 5 of the 10 classes, increasing the Mean AP

by 0.4%, and the combination LBP+LTP+HOG [6] on 7 of the 10, increasing the
Mean AP by 0.5% despite being lower dimensional. Similarly, for 150 word code-
books Disk3∗5 outperforms LBP+LTP+HOG on 7.5 of the 10 classes, increasing
the Mean AP by 1.5%. These improvements occur for both structure-dominated
classes such as cars and people, and texture-dominated ones such as cats and
dogs, so LQP seems to be able to capture both types of cues. To the best of
our knowledge, LTP and LBP+LTP+HOG were respectively the individual and
combined feature sets with the best reported performance on both INRIA Per-
son and VOC2006 (at least for single root latent detectors using local features
without additional context). The individual LQP features Disk3∗5 and HVDA3∗

7

outperform both LTP and HOG, and even their combination LBP+LTP+HOG.
Treating each class as an independent binomial trial, if a new feature has

better AP than an old one on 8, 9, 10 of the ten classes, the hypothesis that
the new feature is no better than the old one can be rejected with respectively
94.6%, 98.9%, 99.9% significance, irrespective of the actual differences in the
AP’s. By this criterion, 100 word and 150 word Disk3∗5 outperform LTP at re-
spectively the 98.0% and 98.9% confidence levels and LBP+LTP+HOG at the
82.9% and 96.9% ones on VOC2006. Without multiple trials or paired testing,
standard deviation based tests are too weak to establish high levels of signifi-
cance for the individual classes – VOC2006 has 233–1153 test examples per class
giving the estimated AP’s binomial-law standard deviations of 1.4–3.3% – but
the corresponding Mean AP’s have standard deviations of about 0.7% which is
enough to establish 95% significance for 150 word Disk3∗5 over LTP, and strong
suggestiveness for it over LBP+LTP+HOG.

Finally, as with other local pattern features, combining LQP with HOG leads
to significant performance improvements on VOC2006 – c.f . Table 7. As ex-
pected, the largest improvements occur for the weaker types of LQP features,
with more modest improvements for the stronger ones.

4.3 Discussion

Given the above results, several points seem clear. Firstly, the fact that splitting
ternary codes into their two binary halves leads to little performance loss both
validates the use of splitting in LTP (and of binary coding in LBP), and suggests
that the performance improvements provided by LQP are due mainly to the
increased pattern sizes that lookup-table based coding permits, not per se to the
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absence of splitting or to the replacement of hand-specified codings with adaptive
k-means ones. It also suggests that coding orders higher than ternary will give
only limited further improvements and that they should be handled by splitting,
but these points remain to be tested. Secondly, in agreement with the forms of
existing local pattern features, patterns that sample pixels densely in a compact
local neighbourhood around the centre seem to give the best performance, so
disk-shaped ones are likely to be the best choice for many applications. Thirdly,
even for large spatial supports, good results are obtained with quite modest
codebook sizes – often even smaller than the corresponding LTP code. In any
case, LQP can handle large codebooks with no loss of speed at run time – the
issue is whether the subsequent classifier can handle the large histograms that
result.

Despite the extra table lookup, LQP features remain very fast to train and
test. For instance, HV3

7, HVDA3∗
7 and Disk3∗5 respectively take about 1.9, 3.1

and 4.5 seconds to scan a VOC2006 image. The extra time for Disk3∗5 is due to
the need to resample pixels on circles, which takes much longer than the LQP
table lookup. In comparison, replacing the LUT with a conventional explicit best
codeword search over a 150 word codebook makes the Disk3∗5 feature computa-
tion 15 times slower, so that training and testing times become prohibitive, and
larger codebooks are even slower. Even an efficent hashing-based coder doubles
the overall LQP run time relative to LUT based coding.

5 Summary

We have presented Local Quantized Patterns (LQP), a generalized form of local
pattern feature that replaces the traditional hand-built codebook reductions with
vector quantization, using precompiled lookup tables to make coding very fast at
run time. LQP inherits some of the flexibility and robustness of visual word rep-
resentations without sacrificing the efficiency of traditional local pattern features.
It can handle significantly larger patterns than previous local patterns (around
three times as many pixels), and it easily adapts to different spatial topologies,
quantization levels and datasets. These properties allow LQP to outperform tra-
ditional local pattern features such as LBP and LTP, and also well-established
feature sets like HOG, on a range of challenging texture and object recognition
datasets. In practice, patterns with dense sampling over compact spatial sup-
ports and split ternary coding work best, with the resulting LQP feature Disk3∗5
outperforming LBP, LTP, HOG and even their combination LBP+LTP+HOG
on the INRIA Person and VOC2006 datasets. Codebook (and hence descriptor
vector) sizes remain modest, and codebook learning is fast owing to the lookup
table architecture.

Future work. So far we have tested only a small selection of the possible LQP
configurations, and only on object detection and texture classification. LQP is
also likely to be useful in many other applications such as face recognition,
semantic segmentation, so much remains to be done.



14 Sibt ul Hussain and Bill Triggs

Acknowledgements

This work was supported by grants from Higher Education Commission (HEC)
of Pakistan and European research project CLASS.

References

1. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE TPAMI (2002) 1,
2

2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns:
Application to face recognition. IEEE TPAMI 28 (2006) 1

3. Pietikinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local
Binary Patterns. Springer (2011) 1, 2, 4

4. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE TIP 19 (2010) 1635–1650 1, 2

5. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD:
A robust local image descriptor. IEEE TPAMI 32 (2010) 1705–1720 1, 6, 7, 9

6. Hussain, S., Triggs, B.: Feature sets and dimensionality reduction for visual object
detection. In: BMVC. (2010) 112.1–112.10 1, 2, 7, 9, 11, 12

7. Leung, T., Malik, J.: Recognizing surfaces using three-dimensional textons. In:
ICCV. (1999) 1010–1017 2

8. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-
points. In: Workshop on Statistical Learning in Computer Vision, ECCV. (2004)
1–22 2

9. Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint
and illumination independence. In: ECCV. (2002) 255–271 2, 6

10. Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice.
In: Proceedings of the 11th IEEE International Conference on Computer Vision,
Rio de Janeiro, Brazil, IEEE (2007) 1–8 3

11. Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor.
In: CVPR, IEEE (2010) 2707–2714 3

12. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent
elementary features. In: ECCV. (2010) 778–792 3

13. Elkan, C.: Using the triangle inequality to accelerate K-Means. In: ICML. Vol-
ume 20. (2003) 147–153 5

14. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using
randomized clustering forests. NIPS 19 (2007) 985 6

15. Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image
classification. IEEE TPAMI (2008) 1632–1646 6

16. Brodatz, P.: Textures: a photographic album for artists and designers. Volume 66.
Dover New York (1966) 6

17. Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in
texture classification. IEEE TPAMI 20 (1998) 90–94 6

18. Dana, K., Van Ginneken, B., Nayar, S., Koenderink, J.: Reflectance and texture
of real-world surfaces. ACM Transactions on Graphics (TOG) 18 (1999) 1–34 6

19. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation.
In: ICCV. Volume 2., IEEE (2005) 1597–1604 6



Visual Recognition using Local Quantized Patterns 15

20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005) 886–893 7, 11, 12

21. Everingham, M., van Gool, L., Williams, C., Zisserman, A.: PASCAL Visual
Object Classes Challenge results. http://www.pascal-network.org/challenges/
VOC/voc/ (2006) 7

22. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE TPAMI (2009) 7

23. Joachims, T.: Making large-scale SVM learning practical. In Schlkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. The
MIT Press, Cambridge, MA, USA (1999) 7

24. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38

(2000) 15–33 9
25. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57 (2004) 137–154

9

http://www.pascal-network.org/challenges/VOC/voc/
http://www.pascal-network.org/challenges/VOC/voc/

