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We describe a new temporal verification framework for safety and robustness analysis of nonlinear control laws, our target application being a space launcher vehicle. Robustness analysis, formulated as a nonconvex nonlinear optimization problem on admissible trajectories corresponding to piecewise polynomial dynamics, is relaxed into a convex linear programming problem on measures. This infinitedimensional problem is then formulated as a generalized moment problem, which allows for a numerical solution via a hierarchy of linear matrix inequality relaxations solved by semidefinite programming. The approach is illustrated on space launcher vehicle benchmark problems, in the presence of closed-loop nonlinearities (saturations and dead-zones) and axis coupling.

Introduction

This work is carried out within the scope of the project SAFE-V (Space Application Flight control Enhancement of Validation Framework). The objective of this project is to analyse, develop and demonstrate effective design, verification and validation strategies and metrics for advanced guidance navigation and control systems. These new strategies should be implemented in an incremental manner in the traditional validation framework in order to be applicable both for current launchers validation and for future launcher and re-entry vehicle validation.

Control design performance and compliance with system specifications should be demonstrated by a suitable combination of stability analysis and simulation. This validation is made on a wide domain of variation of influent parameters; it includes worst case validation and Monte Carlo simulation for statistic requirements, see e.g. [START_REF] Rongier | Robustness of the Ariane 5 guidance navigation and control[END_REF] for Ariane 5 validation.

Generally speaking, the Monte Carlo method is a numerical integration method using sampling, which can be used, for example, to determine the quantities of interest of a variable of interest for a random input variable such as mean or standard deviation or probability density function. One of the most commonly used methods inside ASTRIUM ST for the confidence interval on a quantile estimation is Wilks formula, see [START_REF] Openturns | Treatment of Uncertainties RisksN Statistics)[END_REF]. This formula of the confidence interval depending on the probability level and the number of samples can be used, for Monte Carlo only, in two ways: to determine the probability and confidence level for the values of samples chosen by the user, or in reverse to determine the number of simulations to be carried out for the values probability and confidence level chosen by the user. Monte Carlo simulations are widely used in traditional validation process and they are very robust because they do not require smoothing assumptions on the model neither importance factor assumptions on the parameters. The random events are simulated as they would occur naturally. The generic Monte Carlo method is however very time consuming, because a great number of simulations to demonstrate extreme level of probability (in general much more than 1/p simulations to estimate the probability of an event of probability p). The number of simulations required may be critical for long duration mission simulation (like launcher flight). In the context of robust control, see [START_REF] Tempo | Randomized algorithms for analysis and control of uncertain systems[END_REF] for related probabilistic approaches. Note that these approaches may miss worst case behavior, especially when the number of parameters is large.

In contrast, worst case validation techniques are aimed at identifying worst case instances and behavior. These techniques include Lyapunov and mu-analysis approaches. Among them, the most relevant for space vehicle applications are:

• results by the GARTEUR group, see Fielding et al. (2002), and the COFCLUO group, see COFCLUO (2007), for recent aeronautic applications and new developments;

• results by ASTRIUM ST in the frame of ESA ITT for Robust LPV for launcher application, see ASTRIUM ST (2009a,b); [START_REF] Ganet-Schoeller | Hybrid Optimization Tools for Worst Case Analysis of Flexible Launcher[END_REF], and for robust stability analysis for ATV industrial validation, see [START_REF] Ganet-Schoeller | Nonlinear and robust stability analysis for ATV rendezvous control[END_REF];

• results by NGC on rendezvous validation process in the frame of the ESA VVAF project, see Di Sotto et al. (2010a,b); [START_REF] Kron | Mu-analysis based verification and validation of autonomous satellite rendezvous systems[END_REF]; [START_REF] Paulino | Worst case and safety analysis tools for autonomous rendezvous system[END_REF], and on re-entry validation, see [START_REF] Kron | The generalized (µ,MU)-iteration illustrated by flexible aircraft robust controller reduction[END_REF].

Many other non industrial applications are available in the literature. Two of them could be considered as major for our applications: a PhD thesis on missile application by [START_REF] Adounkpé | Robustesse dans un cadre non linéaire[END_REF] and the IQC toolbox developed by [START_REF] Scherer | Robustness with dynamic IQCs: an exact state-space characterization of nominal stability with applications to robust estimation[END_REF] with Delft University that was applied for HL-20 re-entry vehicle analysis in [START_REF] Veenman | Analysis of the controlled NASA HL20 atmospheric re-entry vehicle based on dynamic IQCs[END_REF], under ESA contract.

In this paper we propose an original approach to validation of control laws based on measures and convex optimization over linear matrix inequalities (LMIs). The approach can be seen as a blend between worst case validation techniques and statistical simulation techniques. On the one hand, we optimize over worst case admissible trajectories to validate a system property. On the other hand, we propagate along system trajectories statistical information (probability measures) instead of deterministic initial conditions. Moreover, our approach is primal in the sense that we optimize directly over systems trajectories, we do not seek a dual Lyapunov certificate.

First we rephrase our validation problem as a robustness analysis problem, and then as a nonconvex nonlinear optimization problems over admissible trajectories. This is the approach followed e.g. in [START_REF] Prajna | Convex programs for temporal verification of nonlinear dynamical systems[END_REF] where the authors verify or prove temporal properties such as safety (all trajectories starting from a set of initial conditions never reach a set of bad states), avoidance (at least one trajectory starting from a set of initial conditions will never reach a set of bad states), eventuality (all trajectories starting from a set of initial conditions will reach a set of good states in finite time) and reachability (at least one trajectory starting from a set of initial conditions will reach a set of good states in finite time).

Following [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF], we formulate our nonconvex nonlinear trajectory optimization problem as a linear programming (LP) problem on measures, with at most three unknowns: the initial measure (modeling initial conditions), the occupation measure (encoding system trajectories) and the terminal measure (modeling terminal conditions); in some cases a subset of these decision variables may be given. The final time can be given or free, finite or infinite. If all the data are polynomials (performance measure, dynamics, constraints), then we formulate the infinite-dimensional LP on measures as a generalized moment problem (GMP), and we approach it via an asymptotically converging hierarchy of finite-dimensional convex LMI relaxations. These LMI relaxations are then modeled with our specialized software GloptiPoly 3, solved with a general-purpose semidefinite programming (SDP) solver, and system properties are validated from the numerical solutions.

The models we can deal with should be piecewise polynomial (or rational) in time and space. We consider a compact region of the state-space over which the trajectories are optimized. The system dynamics are defined locally on explicitly given basic semialgebraic sets (intersections of polynomial sublevel sets) by polynomial vector fields. The objective function (stability or performance measure) consists of a polynomial terminal term and of the time integral of a polynomial integrand.

Our contribution is to use the approach described in [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] jointly with the corresponding software tool GloptiPoly 3 by [START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinite programming[END_REF] to address temporal validation/verification of control systems properties, in the applied context of space launcher applications. The use of LMI and measures was already investigated in [START_REF] Prajna | Convex programs for temporal verification of nonlinear dynamical systems[END_REF] for building Lyapunov barrier certificates, and based on a dual to Lya-punov's theorem described in Ranzter (2001). Our approach is similar, in the sense that optimization over systems trajectories is formulated as an LP in the infinite-dimensional space of measures. This LP problem is then approached as a generalized moment problem via a hierarchy of LMI relaxations.

Historically, the idea of reformulating nonconvex nonlinear ordinary differential equations (ODE) into convex LP, and especially linear partial differential equations (PDE) in the space of probability measures, is not new. It was Joseph Liouville in 1838 who first introduced the linear PDE involving the Jacobian of the transformation exerted by the solution of an ODE on its initial condition Liouville (1838), see [START_REF] Ehrendorfer | The Liouville equation and its potential uefulness for the prediction of forecast skill. Part I: theory[END_REF][START_REF] Ehrendorfer | The Liouville equation in atmospheric predictability[END_REF] for a survey on the Liouville PDE with applications in meteorology. The idea was then largely expanded in Henri Poincaré's work on dynamical systems at the end of the 19th century, see in particular (Poincaré, 1899, Chapitre XII (Invariants intégraux)). This work was pursued in the 20th century in [START_REF] Kryloff | La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire[END_REF], (Nemystkii and Stepanov, 1947, Chapter VI (Systems with an integral invariant)) and more recently in the context of optimal transport by e.g. [START_REF] Rachev | Mass transportation problems. Volume I: theory[END_REF], [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Poincaré himself in [START_REF] Poincaré | L'avenir des mathématiques[END_REF] Section IV) mentions the potential of formulating nonlinear ODEs as linear PDEs, and this programme has been carried out to some extent by [START_REF] Carleman | Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires[END_REF], see also [START_REF] Lasota | Probabilistic properties of deterministic systems[END_REF], [START_REF] Kowalski | Dynamical systems and Carleman linearization[END_REF], Hernández-Lerma and [START_REF] Hernández-Lerma | Markov chains and invariant probabilities[END_REF] and more recently [START_REF] Barkley | The moment map: nonlinear dynamics of density evolution via a few moments[END_REF], [START_REF] Vaidya | Lyapunov measure for almost everywhere stability[END_REF], [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF]. For recent studies of the Liouville equation in optimal control see e.g. [START_REF] Kwee | Optimal control using the transport equation: the Liouville machine[END_REF] and [START_REF] Brockett | Optimal control of the Liouville equation[END_REF], and for applications in uncertainty propagation and control law validation see e.g. [START_REF] Mellodge | Uncertainty propagation in abstracted systems. Model abstraction in dynamical systems: applications to mobile robot control[END_REF] and [START_REF] Halder | Dispersion analysis in hypersonic flight during planetary entry using stochastic Liouville equation[END_REF].

Piecewise polynomial dynamic optimization

Consider the following dynamic optimization problem with piecewise polynomial differential constraints

J = inf x(t) h T (T, x(T )) + T 0 h(t, x(t))dt s.t. ẋ(t) = f k (t, x(t)), x(t) ∈ X k , k = 1, 2, . . . , N x(0) ∈ X 0 , x(T ) ∈ X T , t ∈ [0, T ] (1) 
with given polynomial dynamics f k ∈ R[t, x] and costs h, h T ∈ R[t, x], and state trajectory x(t) constrained in closed basic semialgebraic sets

X k = {x ∈ R n : g kj (t, x) ≥ 0, j = 1, 2, . . . , N k } for given polynomials g kj ∈ R[t, x].
We assume that the state-space partitioning sets, or cells X k , are disjoint, i.e. all their respective intersections have zero Lebesgue measure in R n , and they all belong to a given compact semialgebraic set, e.g.

X = {x ∈ R n :
x 2 2 ≤ M} for a sufficiently large constant M > 0. Finally, initial and terminal states are constrained in semialgebraic ets

X 0 = {x ∈ R n : g 0j (t, x) ≥ 0, j = 1, 2, . . . , N 0 } ⊂ X and X T = {x ∈ R n : g T j (t, x) ≥ 0, j = 1, 2, . . . , N T } ⊂ X for given polynomials g 0j , g T j ∈ R[t, x].
It is assumed that optimization problem (1) arises from validation of a controlled (closedloop) system behavior. In this problem, the infimum is sought over absolutely continuous state trajectories x(t), but the same methodology can be extended to (possibly discontinuous) trajectories of bounded variation (e.g. in the presence of impulsive controls or state jumps), see [START_REF] Claeys | Measures and LMI for impulsive optimal control with applications to space rendezvous problems[END_REF].

The final time T is either given, or free, in which case it becomes a decision variable, jointly with x(t). Similarly, the initial and terminal constraint sets X 0 and X T are either given, or free, in which case they also become optimized decision variables.

Linear programming on measures

In this section, we formulate optimization problem (1), which is nonlinear and nonconvex in state trajectory x, into a convex optimization problem linear in µ, the occupation measure of trajectory x. This reformulation is classical in the modern theory of calculus of variations and optimal control and it can be traced back to [START_REF] Young | Generalized curves and the existence of an attained absolute minimum in the calculus of variations[END_REF], see also [START_REF] Ghouila-Houri | Sur la généralisation de la notion de commande d'un système guidable[END_REF], [START_REF] Young | Lectures on the calculus of variations and optimal control theory[END_REF] and Gamkrelidze (1975), amongst many others.

Occupation measure

To understand the basic idea behind the transformation and the elementary concept of occupation measure, it is better to deal with the single nonlinear ODE

ẋt = f (x t ) (2)
where x t is a shortcut for x(t), a time-dependent state vector of R n and f : R n → R n is a uniformly Lipschitz map. It follows that the Cauchy problem for ODE (2) has a unique solution x t for any given initial condition x 0 ∈ R n . Now think of initial condition x 0 as a random variable of R n , or more abstractly as a nonnegative probability measure µ 0 with support X 0 ⊂ R n , that is a map from the sigmaalgebra of subsets of X 0 to the interval [0, 1] ⊂ R such that µ 0 (X 0 ) = 1. For example, the expected value of x 0 is the vector

E[x 0 ] = X 0 xµ 0 (dx).
Now solve ODE (2) for a trajectory, or flow x t , given this random initial condition. At each time t, state x t can also be interpreted as a random variable, i.e. a probability measure that we denote by µ t (dx). We say that the measure is transported by the flow of the ODE. The one-dimensional family, or path of measures µ t satisfies a PDE

∂µ t ∂t + div(f µ t ) = 0 (3)
which turns out to be linear in the space of probability measures. This PDE is usually called Liouville's equation. As explained e.g. in (Villani, 2003, Theorem 5.34), nonlinear ODE (1) follows by applying Cauchy's method of characteristics to linear transport PDE (3), see also (Evans, 2010, Section 3.2) for a tutorial exposition. In equation ( 3), div models the divergence operator, i.e.

div(v) = n i=1 ∂v i ∂x i
for every smooth function v. Its action on measures should be understood in the weak, or distributional sense, i.e.

v div(ν) = -Dv • dν
where v is a smooth test function, ν is a vector-valued measure and D stands for the gradient operator. Given a subset T × X in the sigma-algebra of subsets of [0, T ] × X, we define the occupation measure

µ(T × X ) = T µ t (X )dt
which encodes the time-space trajectories x t , in the sense that µ([0, T ] × X ) is the total time spent by trajectory x t in a subset X ⊂ X of the state space. In its integral form,

transport PDE (3) becomes div(f µ) = µ 0 -µ T (4)
where µ T is the terminal probability measure with support X T ⊂ R n . PDE (4) can equivalently be formulated as

X Dv • f dµ = X T vdµ T - X 0 vdµ 0 (5)
for all smooth functions v compactly supported on X. Problem ( 5) is an infinite-dimensional linear system of equations linking occupation measure µ, initial measure µ 0 and terminal measure µ T , consistently with ODE (2).

Finite terminal time

If we apply these ideas to problem (1), encoding the state trajectory x(t) in an occupation measure µ supported on X, we come up with an infinite-dimensional LP problem

J ∞ = inf µ h T (T, x)dµ T (x) + k h(t, x)dµ k (t, x) s.t. k ∂v(t,x) ∂t dµ k (t, x) + k Dv(t, x) • f k (t, x) dµ k (t, x) = v(T, x) dµ T (x) -v(0, x) dµ 0 (x) (6)
for all smooth test functions v, where each occupation measure µ k is supported on set X k and the global occupation measure is

µ = k µ k with normalization constraint µ([0, T ] × X) = T (7)
such that T is a finite terminal time.

In problem (6), final time T , initial measure µ 0 and terminal measure µ T may be given, or unknown, depending on the original optimization problem.

Generalized moment problem

More concisely, LP problem (6) can be formulated as follows:

inf µ k X k c k dµ k s.t. k X k a ki dµ k = b i , ∀i (8) 
where the unknowns are a finite set of nonnegative measures µ k , with respective compact semialgebraic supports

X k = {x : g kj (x) ≥ 0, ∀j}. (9) 
Note that here we have incorporated time variable t into vector x, for notational conciseness. If all the data in problem ( 6) are polynomials, and if we generate test functions v(x) using a polynomial basis (e.g. monomials, which are dense in the set of continuous functions with compact support), all the coefficients a(x), b(x), c(x) are polynomials, and there is an infinite but countable number of linear constraints indexed by i.

We will then manipulate each measure µ k via its moments

y kα = X k x α dµ k (x), ∀α (10) 
gathered into an infinite-dimensional sequence y k indexed by a vector of integers α, where we use the multi-index notation x α = x α 1 1 x α 2 2 . . . LP measure problem (8) becomes an LP moment problem, or GMP, see [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]:

inf y k α c kα y kα s.t. k α a kiα y kα = b i , ∀i
provided we can handle the representation condition (10) which links a measure with its moments. It turns out [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF], Chapter 3) that if sets X k are compact semialgebraic as in (9), we can use results of functional analysis and real algebraic geometry to design a hierarchy of LMI relaxations which is asymptotically equivalent to the generalized moment problem. In each LMI relaxation

J d = inf y c T y s.t. Ay = b M d (y) 0 M d (g kj , y) 0, ∀j, k (11) 
we truncate the moment sequence to a finite number of its moments. If the highest moment power is 2d, we call LMI relaxation of order d the resulting finite-dimensional truncation. Matrix M d (y) is symmetric and linear in y, it is called the moment matrix, and it must be positive semidefinite for (10) to hold. Symmetric matrices M d (g kj , y) are also linear in y and they are called localizing matrices. They ensure that the moments correspond to measures with appropriate supports. For d finite, problem ( 11) is a finitedimensional convex LP problem in the cone of positive semidefinite matrices, or SDP problem, for which off-the-shelf solvers are available, in particular implementations of the primal-dual interior-point methods described in [START_REF] Yu | Interior-point polynomial algorithms in convex programming[END_REF].

Convergence

The hierarchy of LMI relaxations (11) generates an asymptotically converging monotonically increasing sequence of lower bounds on LP (6), i.e. J d ≤ J d+1 for all d = 1, 2 . . . and lim d→∞ J d = J ∞ . Obviously, the relaxed LP cost in problem ( 6) is a lower bound on the original cost in problem (1), i.e. J ∞ ≤ J. Under mild assumptions, we can show that actually J ∞ = J, but the theoretical background required to prove this lies beyond the scope of this application paper.

Long range behavior

In the case terminal time T tends to infinity, normalization constraint (7) becomes irrelevant, and the overall mass of occupation measure µ tends to infinity. A more appropriate formulation consists then of normalizing measure µ to a probability measure

π = µ T = k µ k T = k π k so that PDE (4) becomes div(f π) = lim T →∞ µ 0 -µ T T = 0 and LP problem (6) becomes inf π k h(t, x)dπ k (x) s.t. k ∂v(t,x) ∂t dπ k (x) + k Dv(t, x) • f k (t, x) dπ k (t, x) = 0
where test functions v(t, x) satisfy appropriate integrability and/or periodicity properties. Measure π is called an invariant probability measure and it encodes equilibrium points, periodic orbits, ergodic behavior, possibly chaotic attractors, see e.g. [START_REF] Lasota | Probabilistic properties of deterministic systems[END_REF], [START_REF] Diaconis | Iterated random functions[END_REF], Hernández-Lerma and [START_REF] Hernández-Lerma | Markov chains and invariant probabilities[END_REF] and [START_REF] Gaitsgory | Linear programming approach to deterministic infinite horizon optimal control problems with discounting[END_REF].

Application to orbital launcher control law validation

In this section we report the application of our method to simplified models of an attitude control system (ACS) for a launcher in exo-atmospheric phase. We consider first a one degree-of-freedom (1DOF) model, and then a 3DOF model. The full benchmark is described in (SAFEV, 2011, Section 9) but it is not publicly available, and our computer codes cannot be distributed either.

ACS 1DOF

First we consider the simplified 1DOF model of launcher ACS in orbital phase. The closedloop system must follow a given piecewise linear angular velocity profile. The original benchmark includes a time-delay and a pulsation width modulator in the control loop, but in our incremental approach we just discard these elements in a first approximation. See below for a description of possible extensions of our approach to time-delay systems.

As to the pulsation width modulator, it can be handled if appropriately modeled as a parametric uncertainty.

Model

The system is modeled as a double integrator

I θ(t) = u(t)
where I is a given constant inertia and u(t) is the torque control. We denote

x(t) = θ(t) θ(t)
and we assume that both angle x 1 (t) and angular velocity x 2 (t) are measured, and that the torque control is given by

u(x(t)) = sat(K T dz(x r (t) -x(t)))
where x r (t) is the reference signal, K ∈ R 2 is a given state feedback, sat is a saturation function such that sat(y) = y if |y| ≤ L and sat(y) = L sign(y) otherwise, dz is a deadzone function such that dz(x) = 0 if |x i | ≤ D i for some i = 1, 2 and dz(x) = 1 otherwise. Thresholds L > 0, D 1 > 0 and D 2 > 0 are given.

We would like to verify whether the system state x(t) reaches a given subset X T = {x ∈ R 2 : x T x ≤ ε} of the deadzone region after a fixed time T , and for all possible initial conditions x(0) chosen in a given subset X 0 of the state-space, and for zero reference signals. We formulate an optimization problem (1) with systems dynamics defined as locally affine functions in three cells X k , k = 1, 2, 3 corresponding respectively to the linear regime of the torque saturation

X 1 = {x ∈ R 2 : |K T x| ≤ L}, f 1 (x) = x 1 -K T x the upper saturation regime X 2 = {x ∈ R 2 : K T x ≥ L}, f 2 (x) = x 1 -L
and the lower saturation regime

X 3 = {x ∈ R 2 : K T x ≤ -L}, f 3 (x) = x 1 L .
The objective function has no integral term and a concave quadratic terminal term h T (x) = -x(T ) T x(T ) which we would like to minimize, so as to find trajectories with terminal states of largest norm. If we can certify that for every initial state x(0) chosen in X 0 the final state x(T ) belongs to set included in the deadzone region, we have validated our controlled system.

Validation script

The resulting GloptiPoly 3 script, implementing some elementary scaling strategies to improve numerical behavior of the SDP solver, is as follows: If we want to use this approach to simulate a particular trajectory, in the code we must modify the definition of the initial measure. For example for initial conditions x 1 (0) = 50, x 2 (0) = -1, we must insert the following sequence:

% given moments of initial measure = Dirac at x0 p = genpow(3,d); p = p(:,2:end); % powers theta0 = 50; omega0 = -1; % in degrees y0 = ones(size(p,1),1)*[theta0 omega0]*pi/180; y0 = prod(y0.^p,2);

As previously, the sequence of bounds on the maximum squared Euclidean norm of the final state is constantly equal to 1.0 32 5.3 0.74 0.30 0.21 0.15 0.17 dµ 3 32 5.1 7.1 6.9 6.8 6.9 7.0

This indicates that most of the time (approx. 93%) is spent in the linear regime, with approx. 7% of the time spent in the lower saturation regime, and a negligible amount of time is spent in the upper saturation regime. This is confirmed by simulation, see Figure 1.

Dealing with uncertainty

Finally, note that we can incorporate real parametric uncertainty in the dynamics, if required. Each uncertain parameter must be introduced as an additional state of the system, and this generally makes the dynamics polynomial in the extended state. The parameters must be constrained to an explicitly given compact semialgebraic set, and the overall trajectory optimization problem consists of finding the worst-case uncertain parameter instance.

For illustration, we modify the previous script to cope with uncertainty entering affinely the dynamics. We assume that the (reciprocal of the) inertia is subject to multiplicative relative uncertainty, i.e. we replace occurences of I with 1 1+u I for u a real parameter such that u 2 ≤ U with U > 0 a given threshold, say U = 1 2 . The resulting GloptiPoly 3 script is as follows: Introducing an uncertain parameter amounts to adding a state variable to the model, and this has a significant impact on the overall computational time, as shown in the table below: Note however that for this example there is no effect on the bounds, and the control law is also validated in the presence of uncertainty on inertia.

relaxation order d 1 2 3 4 upper bound J d 1.0 • 10 -5 1.0 • 10 -5 1.0 • 10 -5 1.

ACS 3DOF

The main difficulty with the 3 degree-of-freedom version of the ACS benchmark is the large number of states (4 quaternions for the launcher attitude, 3 angular velocities, and 2 additional states for the quaternion reference signal) and the non-linear (quadratic) dynamics.

Model

The following example illustrates the validation of a given control law following a given constant roll velocity equal to w R 1 = 20 o /s, in the absence of actuator saturation, but in the presence of non-linear coupling between the three axes of the launcher. System dynamics are given by ẋ = f (x) with

x =   q w q R   , f (x) =   f q (x) f w (x) f q R (x)   , and 
f q (x) = 1 2 Q(x) 0 w , f w (x) = I -1 (u(x) -Ω(x)Iw), f q R (x) = -1 2 q R 1 w R 1 1 2 q R 0 w R 1 where Q(x) =     q 0 -q 1 -q 2 -q 3 q 1 q 0 -q 3 q 2 q 2 q 3 q 0 -q 1 q 3 -q 2 q 1 q 0     , Ω(x) =   0 -w 3 w 2 w 3 0 -w 1 -w 2 w 1 0   , u(x) = -K D w E -K P q E , K D =   K D 1 0 0 0 K D 2 0 0 0 K D 3   , K P =   0 0 0 0 K P 2 0 0 0 K P 3   , w E =   w 1 -w R 1 w 2 w 3   , q E = 2     q R 0 q R 1 0 0 -q R 1 q R 0 0 0 0 0 q R 0 q R 1 0 0 -q R 1 q R 0     q,
and q ∈ R 4 is the quaternion modeling the attitude, w ∈ R 3 models the angular velocities, q R ∈ R 2 is the reference quaternion to follow, which depends on the constant reference velocity w R 1 ∈ R, q E ∈ R 4 is the quaternion error, and w E ∈ R 3 is the angular velocity error. Both vectors q(t) and q R (t) have constant Euclidean norm since d dt q 2 2 = 2q T q = q T f q (x) = 0 for all x and similarly d dt q R 2 2 = 0, so we enforce the algebraic constraints

q 2 2 = 1, q R 2 2 = 1.
The proportional-derivative control law u(x) is designed so that velocity w 1 (t) follows reference velocity w R 1 , and our validation tasks consists of optimizing over the worst-case trajectory starting at a given initial condition x(0) and maximizing the objective function

J = T 0 (w 1 (t) -w R 1 ) 2 dt
for a given time horizon T . If we can guarantee a sufficiently small upper bound J d on this objective function, for a given relaxation order d = 1, 2, . . ., the control law is validated.

Validation script

We use the following GloptiPoly 3 script (note however that the function G2I to generate the inertia data is not available for the reader): -50, -1100; -50, 45300, -220; -1100, -220, 44100]; [Ge2In,Ip] = G2I(Ig); % controller gains

% Inertia Ig = [ 27500,

Coping with saturations and dead-zones

We can modify the above code to cope with actuator saturation and dead-zone, proceeding exactly as described above for the ACS 1DOF benchmark problem, namely by splitting the trajectory occupation measures into local occupation measures defined on semialgebraic (here polyhedral) cells. In the presence of saturations on the three actuators, this generates 3 3 = 27 local occupation measures. This should not be an issue from the computational point of view, the limiting factor being essentially the size of the largest SDP block, which grows polynomially with the relaxation order, but with an exponent which is the number of variables (here equal to 10).

Following a time-varying reference signal

Finally, if we want to validate a control law to follow a time-varying velocity profile (instead of a constant velocity as above), we must introduce time as an additional variable in the trajectory occupation measure, we must introduce the velocity as an additional state, and we must split the occupation measure into local occupation measures, each of which corresponding to given time-invariant dynamics. Alternatively, we can also model time-varying dynamics, but the dependence on time must be polynomial (which is not the case e.g. if the reference signal is piecewise linear).

Discussion

In this section we discuss the limitations of our approach and we also describe possible extensions.

Limitations

The main limiting factor for our method is the total number of variables (number of states plus number of uncertain parameters), since the computational burden of solving the LMI relaxations grows polynomially as a function of the LMI relaxation order, but the order of the polynomial dependence depends linearly on the number of variables in the measures (here the number of states). So the critical dimension is not too much the number of measures (that is the number of cells partioning the state-space, which corresponds to our models of nonlinearities), or the degree of the polynomials in the cost and/or dynamics, but rather the number of states. Systems with a high number of states can be handled with these techniques, but only when exploiting problem structure and sparsity.

More explicitly, a rough complexity analysis can be carried out as follows. If an LMI relaxation has the simplified form inf y c T y s.t. M d (y) 0 where M d (y) is the moment matrix of a measure of n variables at relaxation order d, then the number of variables in vector y is

N = n + 2d n = (n + 2d)! n! (2d)!
and the size of matrix M d (y) is

M = n + d n = (n + d)! n! d! .
A standard primal-dual interior-point algorithm to solve this LMI at given relative accuracy ǫ > 0 (duality gap threshold) requires a number of iterations (Newton steps) growing as O(M 1 2 log ǫ), whose dependence on M is sublinear, hence almost negligible. In practice, on well-conditioned problems, we observe that the number of Newton iterations is between 5 and 50, see [START_REF] Yu | Interior-point polynomial algorithms in convex programming[END_REF], [START_REF] Vandenberghe | Semidefinite programming[END_REF] and [START_REF] Ben-Tal | Lectures on modern convex optimization[END_REF].

In the real model of computation (for which each addition, subtraction, multiplication, division of real numbers has unit cost), each Newton iteration requires O(N 2 M)+O(N 3 M)+ O(N 2 M 2 ) operations to form the linear system of equations, and O(M 3 ) operations to solve the system and find the search direction. When solving a hierarchy of simple LMI relaxations as described above, the number of variables n is fixed, and the relaxation order d varies, so the dominating term in the complexity estimate grows in O(d 4n ), which clearly shows a strong dependence on the number of variables. Even though the growth of the computational burden is polynomial in the relaxation order, the exponent is 4 times the number of variables. One should however keep in mind that these estimates are (usually very loose) asymptotic upper bounds, and that the observed computational complexity grows much more moderately in practice (at least in the absence of conditioning and numerical stability issues).

Finally, if the LMI relaxation has the form

inf y c T y s.t. M d (y k ) 0, k = 1, 2, . . . , K
where M d (y k ) is the moment matrix of a measure µ k of n variables at relaxation d, and we have K measures, then the above complexity estimate grows in O(Kd 4n ). The impact on the computation burden of the number n of variables in each measure µ k is thus much more critical than the number K of measures. In our target application, n is the number of states and uncertain parameters, K is the number of cells used to model nonlinearities, and a lower bound on the minimum relaxation order d is given by the degree of the polynomial data (dynamics, constraints, objective function).

Accuracy

The original validation problem can be formulated as infinite-dimensional linear programming problems on the dual cones of nonnegative measures and continuous functions, so that there is no hope of finite convergence of finite-dimensional LMI optimization techniques. Convergence is guaranteed only asymptotically. Obviously, the accuracy depends on the speed of convergence of the hierarchy of LMI problems, but this speed is impossible to evaluate a priori. The only guarantee is that we have a monotically increasing sequence of lower bounds on the objective function to be minimized.

As far as solving finite-dimensional LMI problems is concerned, we should emphasize the fact that there is currently no proof of backward stability of implementations of LMI solvers. Moreover, evaluation of the conditioning of a given LMI problem is difficult, and estimates can be obtained only at the price of solving several instances of (slightly modified versions) the original LMI problem. To certify the output of a numerical algorithm, we must simultaneously ensure backward stability of the algorithm and well-conditioning of the problem. None of these two properties can be ensured when solving LMI problems, given the current state-of-the-art in LMI solvers. But this is not specific to our method, and any validation-verification technique which is based on LMI optimization is subject to the same limitations.

Time-delay systems

Our techniques can in principle cope with time-delays, but this requires a significant modification of the approach described in this document. Let us only sketch the main ideas, in the case of an ordinary differential equation with one time-delay

ẋ(t) = f (x(t)) + g(x(t -τ )), ∀t ∈ [0, T ] with boundary conditions x(t) = ξ(t), ∀t ∈ [-τ, 0]
where ξ(t) is a given function recording the state history due to the given delay τ ∈ R.

Instead of transporting a probability measure µ t (dx) supported on X ⊂ R n from initial time t = 0 to terminal time t = T , we must transport the state history in an occupation measure µ t (ds, dx) supported on [-τ, 0] × X for t ∈ [0, T ].

Discrete-time systems

In this paper we deal only with continuous-time systems. Discrete-time systems of the form

x k+1 = f (x k ) (12) 
must be handled differently. Denoting by µ k (x) the probability measure transported along dynamical system (12), the discrete-time analogue of Liouville's transport equation

(3) reads µ k+1 (X ) = f -1 (X ) µ k (dx) = I X (f (x))µ k (dx) ( 13 
)
where X is any subset of the sigma-algebra of state set X, and I X is the indicator function equal to one in X and zero outside. It follows from ( 13) that the moments of measure µ k+1 can be expressed linearly as functions of moments of measure µ k . Besides this analogy, the resulting discrete-time generalized moment problem differs significantly from its continuous-time counterpart. For this reason, handling discrete-time systems would require an important modification of the approach described in this document.

Conclusion

In this paper we do not follow the mainstream Lyapunov approach to dynamical systems stability and/or performance validation. Lyapunov (1892) originally introduced his approach to conclude about systems behaviour while avoiding explicit computations of system trajectories. In the 1990s it was combined with LMI techniques, see e.g. [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Yu | Interior-point polynomial algorithms in convex programming[END_REF] to provide numerically quadratic certificates of stability and/or performance for linear and nonlinear systems. Later on, it was extended to more general, but still numerical polynomial sum-of-squares (SOS) certificates, see e.g. [START_REF] Henrion | Positive polynomials in control[END_REF]. By contrast, our approach is genuinely primal, in the sense that we directly optimize numerically over systems trajectories, using measures, moments and LMI techniques. Indeed, since the computation of SOS certificates is numerical anyway, we believe that in the context of validation, LMI techniques should rather be used to optimize systems trajectories, instead of optimizing indirect certificates for these trajectories. Since we are using primal-dual SDP solvers to solve the hierarchy of LMI problems, solving the dual to the problem of optimizing trajectories provides anyway certificates of feasibility or infeasibility, i.e. of stability, instability and/or performance.

As briefly described in §5, the measure/LMI approach can be extended easily to systems with real uncertainties, as soon as the uncertainties enter polynomially in the dynamics, and they are bounded in explicitly given semialgebraic sets (e.g. balls or boxes). See e.g. (Lasserre, 2009, Section 13.1) for more information on robust optimization. As usual, the number of real uncertain parameters should be kept small enough to ensure computational tractability.

Note that in this paper the set of initial conditions is assumed to be given, and when the initial measure is unknown, its support is constrained to be included in the set of initial conditions. In the context of validation/verification it could be relevant to maximize the size of the set of initial conditions, and we are currently investigating this problem from the point of view of occupation measures.

The measure/LMI approach can readily deal with systems with piecewise polynomial (or rational) models, e.g. systems with input/output saturations and dead-zones. It can be seen as a (primal) extension of early attempts of use of LMI/Lyapunov techniques in the context of systems with saturations, see e.g. [START_REF] Henrion | LMI relaxations for robust stability of linear systems with saturating controls[END_REF] and more recently [START_REF] Garulli | Piecewise polynomial Lyapunov functions for global asymptotic stability of saturated uncertain systems[END_REF][START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]. As briefly discussed in §5, our approach can be extended without major difficulty to time-delay, stochastic, discretetime systems or hybrid system dynamics where transitions between models are ruled e.g. by probability measures, see e.g. [START_REF] Diaconis | Iterated random functions[END_REF], Hernández-Lerma and [START_REF] Hernández-Lerma | Markov chains and invariant probabilities[END_REF] or [START_REF] Barkley | The moment map: nonlinear dynamics of density evolution via a few moments[END_REF].
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 1 Figure 1: Torque input with lower saturation during approx. 7% of the time range.

  • 10 -5 , and in the following table we represent as functions of the relaxation order d the masses of measures µ k , k = 1, 2, 3 which are indicators of the time spent by the trajectory in the respective linear, upper saturation and lower saturation regimes:

	relaxation order d 1	2	3	4	5	6	7
	dµ 1	37 89	92	92	93	93	93
	dµ 2						
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Numerical results

With this Matlab code and the SDP solver SeDuMi 1.3 (see sedumi.ie.lehigh.edu) we obtain the following sequence of upper bounds (since we maximize) on the maximum squared Euclidean norm of the final state:

0.2 0.5 0.7 0.9 number of moments 30 75 140 225

In the table we also indicate the CPU time (in seconds, on a standard desktop computer) and the total number of moments (size of vector y in the LMI relaxation (11). We see that the bound obtained at the first relaxation (d = 1) is not modified for higher relaxations. This clearly indicates that all initial conditions are captured in the deadzone region at time T , which is the box [-2, 2] 10 -1 π 180 × [-5, 5] 10 -2 π 180 ⊃ {x ∈ R 2 : x T x ≤ 10 -5 }. % occupation measure mpol('q',4); mpol('w',3); mpol('qr',2); x = [q;w;qr]; m = meas(x); % initial measure mpol('q0',4); mpol('w0',3); mpol('qr0',2); x0 = [q0;w0;qr0]; m0 = meas(x0); % terminal measure mpol('qt',4); mpol('wt',3); mpol('qrt',2); xt = [qt;wt;qrt]; mt = meas(xt); % dynamics on normalized time range [0,1] Omega = [0 -w(3) w(2); w(3) 0 -w(1); -w(2) w(1) 0]; Qr = [qr(1) qr(2) 0 0; -qr(2) qr(1) 0 0; 0 0 qr(1) qr(2); 0 0 -qr(2) qr( 1)]; dq = 2*Qr*q; Q = [q(1) -q(2) -q(3) -q(4); q(2) q(1) -q(4) q(3); q(3) q(4) q(1) -q(2); q(4) -q(3) q(2) q( 1 

Numerical results

We obtain the monotonically decreasing upper bounds J d , d = 1, . . The first LMI relaxation (110 moments of degree up to 2) seems to be unbounded above (the dual LMI problem is infeasible) and hence it conveys no useful information. The second LMI relaxation (770 moments of degree up to 3) and the third LMI relaxation (1430 moments of degree up to 4) are solved with SeDuMi 1.3 in a few seconds. The fourth LMI relaxation is more challenging, with 5720 moments of degree up to 5, and it requires less than one hour of CPU time on a standard PC. We observe however that a useful upper bound on J is already obtained at a low relaxation order (say d = 2 or d = 3) at a low computational cost, and that the computational burden increases significantly for d = 4 without dramatic improvements in the quality of the upper bound.