
A Survey of Prostate Segmentation Methodologies in Ultrasound,
Magnetic Resonance and Computed Tomography Images

Soumya Ghosea,b,∗, Arnau Olivera,1,2,∗∗, Robert Mart́ıa, Xavier Llad́oa,
Joan C. Vilanovac, Jordi Freixeneta, Jhimli Mitraa,b, Desire Sidibeb, Fabrice Meriaudeaub

aComputer Vision and Robotics Group, University of Girona, Campus Montilivi, Edifici P-IV, 17071 Girona, Spain
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Abstract

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to

another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to

accurate prostate segmentation in transrectal ultrasound(TRUS) images. However in magnetic resonance (MR) im-

ages, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate.

In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images

pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland

segmentation TRUS, MR and CT images, the three primary imaging modalities that aids prostate cancer diagnosis

and treatment. The objective of this work is to study the key similarities and differences among the different methods,

highlighting their strengths and weaknesses in order to assist in the choice of an appropriate segmentation method-

ology. We define a new taxonomy for prostate segmentation strategies that allows first to group the algorithms and

then to point out the main advantages and drawbacks of each strategy. We provide a comprehensive description of the

existing methods in all TRUS, MR and CT modalities, highlighting their key-points and features. Finally, a discussion

on choosing the most appropriate segmentation strategy fora given imaging modality is provided. A quantitative

comparison of the results as reported in literature is also presented.
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1. Introduction

Statistics from Cancer Research UK show that more than 338,000 people are diagnosed with prostate cancer every

year in Europe and 913,000 worldwide [1], posing prostate cancer as a major health problem. The highest rate of

prostate cancer cases are diagnosed in USA, Australia, New Zealand, Western and Northern Europe, while the lowest

rates are observed in South and Central Asia [1].

Primarily transrectal ultrasound (TRUS), magnetic resonance imaging (MRI) and computed tomography (CT)

imaging are used in diagnosis, treatment, and follow-up of the prostate cancer. Figure 1 shows an example of a

prostate obtained in each of these imaging techniques, where we can see that the information provided by each

modality significantly differ from each other. The use of a particular modality depends on the clinical aim. For

instance, MRI is primarily used in diagnostic and treatmentplanning for prostate diseases [2, 3], since it provides

good soft tissue contrast and enables a better lesion detection and staging for prostate cancer. In addition, dynamic

contrast enhanced MRI (DCE-MRI) aids in identifying malignant tissues from the diffusion rate of the contrast agent

[4–6] and magnetic resonance spectroscopy aids in identifying malignant tissues from the relative concentration of

different metabolites (like citrate, choline and creatine) [7]. On the other hand, TRUS is primarily used in determining

prostate volume and in prostate biopsy due to the fact that itis an inexpensive, portable and real-time in nature [8].

Note from Figure 1(a) that TRUS images are characterized by speckle, shadow artifacts and low contrast [9] where

the prostate gland can be often observed as a hypoechoic masssurrounded by a hyperechoic halo [10]. Finally, CT is

generally used in prostate brachytherapy to determine the placement of the radioactive seeds and also to confirm the

seed location post-procedure [7]. The high attenuation of the radioactive seed produces high intensity in CT images as

could be visualized in Figure 1(c). Note, that distinguishing external and internal anatomy of prostate from CT images

is difficult due to poor soft-tissue resolution. The main features associated with the different imaging modalities are

summarized in Table 1.

In this article we will primarily focus on methods developedfor prostate gland segmentation in TRUS, MR and CT

images. Prostate segmentation from TRUS, MRI and CT plays a key role in different stages of clinical decision making

process. For instance prostate volume, that can be directlydetermined from prostate gland segmentation, aids in

diagnosis of benign prostate hyperplasia. The prostate boundary is utilized in different treatments of prostate diseases,

like prostate brachytherapy, high intensity focused ultrasonography, in cryotherapy and in transurethral microwave

therapy. Moreover, both prostate volume and contour are also useful in the follow up of prostate brachytherapy.

In addition, prostate gland segmentation also facilitatesmultimodal image fusion for tumor localization in biopsy,

minimally invasive ablative and radiation therapy. However, manual segmentation of the prostate is a tedious task,

prone to inter and intra observer variability. Therefore, computerized schemes are currently being investigated to

perform this task.

Three related surveys on prostate segmentation were published by Zhu et al. [11] in 2006, Noble et al. [12] in 2006,

and Shao et al. [8] in 2003. Zhu et al. carried out a survey on computerized techniques developed for prostate cancer
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detection and staging, including not only prostate segmentation but also prostate staging, computerized visualization

and simulation of prostate biopsy, volume estimation and registration between US and MR modalities. Noble et al.

presented a survey on US segmentation methods developed fordifferent organs (i.e. heart, breast, prostate) and for

the detection of vascular diseases. Finally, Shao et al. presented a survey on prostate segmentation methodologies

developed for TRUS images. Therefore, the surveys of Noble et. al. and Zhu et al. were done on a broader perspective

and hence an exhaustive classification and discussion focused only on prostate segmentation methods was missing,

while Shao et al. restricted their discussion to methodologies developed only for TRUS images.

This paper presents an up-to-date summary of the techniquesdeveloped for prostate segmentation in TRUS, MRI

and CT modalities. We classify and review the different approaches found in the literature in order to show simi-

larities and differences and further to extract advantages and drawbacks from the reviewed algorithms. To have an

overall qualitative estimation of the performance of the different methods, we have grouped the methods according to

their theoretical approach and have presented their evaluation metrics and degree of validation. Note that a quantita-

tive comparison of different prostate segmentation methodologies is difficult in absence of public data sets, publicly

available software, and standardized evaluation metrics.

In summary, we consider that the major contributions of thispaper are:

• A new classification scheme grouping the surveyed methods onthe basis of the theoretical approaches to the

problem. Such classification is useful in highlighting the similarities and differences of the reviewed approaches.

• The inclusion of prostate segmentation approaches in all TRUS, MR and CT modalities in a single article. This

is key aspect for finding links and differences between the different segmentation techniques, and it is even more

important with the growing popularity of multi-modal prostate segmentation. Furthermore, to the best of our

knowledge, for the first time a review on prostate segmentation methods developed in CT imaging is presented.

• A comparison of different segmentation methods based on their results are also presented.

• A discussion about choosing an appropriate segmentation method for a given imaging modality is carried out.

The outline of the paper is as follows. The state-of-the-artcomputer-aided prostate segmentation procedures are

classified and presented in section 2. In section 3, validation and quantitative evaluation of the prostate segmentation

in TRUS, MR and CT images are provided. Discussion on selection of an efficient prostate segmentation technique

based on imaging modality is presented in section 4. Finally, the paper ends with conclusion and future trends.

2. Prostate segmentation methods

In this work, we classify the prostate segmentation methodsaccording to the theoretical computational approach

taken to solve the problem. We believe that such a classification successfully points out the key algorithmic similarities

and dissimilarities, highlighting their strengths and weaknesses at the same time. We globally classify the methods
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into different strategies: contour and shape based, region based, supervised and un-supervised classification methods

based, and hybrid methods. We further refine these groups to produce a more local classification schema. For instance,

contour and shape based methods are further classified into edge, probabilistic filters and deformable models. The full

taxonomy proposed in this paper is shown in Figure 2 that alsopresents the work that follow each strategy. Note that

level sets methods appear under contour and shape based and region based methods. This is due to the fact that level

sets can be guided by either boundary or region information.

We have grouped the prostate segmentation methods in four different groups, according to the information used to

guide the segmentation. Broadly,

• Contour and shape based methods:These methods use prostate boundary/edge information to segment the

prostate. Since often edge information is unreliable in TRUS and CT images and in the base and the apex region

of the MR images, prior shape information is incorporated toprovide better results.

• Region based methods:These methods use local intensity or statistics like mean and standard deviation in

an energy minimization framework to achieve segmentation.The methods in this category primarily varies

depending on the energy minimization framework. For example in atlas based methods a model of the prostate

is created from manually segmented training images and intensity difference between the model and a new

un-segmented image is minimized. In contrast, in region based level sets prior mean and standard deviation

information of the prostate region from manually segmentedimages are used to maximize the distance between

prostate and background regions depending on region based statistical moments and propagate an implicitly

defined deformable model whose energy is minimized at the zone of convergence of the two regions.

• Supervised and un-supervised classification methods:These methods use features like intensity or higher

dimensional features like filter responses to cluster and/or classify the image into prostate and background

regions. The objective of such methods are to group similar objects together based on the feature vector.

Unlike region based methods of energy minimization frameworks a thresholding scheme is used based on some

proximity or distance measure to group similar objects together.

• Hybrid methods: The objective of the hybrid methods is to combine information from contour, shape, region

and/or supervised or un-supervised classification informationto segment the prostate. These methods are more

robust to imaging artifacts and noise.

In the following subsections, the reviewed methods are described according to the presented taxonomy. Moreover,

for each category, the approaches are grouped and describedaccording to the imaging modalities: TRUS, MRI, and

CT. Observe that this classification allows to easily see if the approaches belonging to one category are useful for

segmenting the prostate in a given modality.
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2.1. Contour and shape based segmentation

Contour and shape based methods exploit contour features and shape information to segment the prostate. These

methods can be categorized into edge based methods, probabilistic filters and deformable model segmentation tech-

niques. Deformable model based techniques are further classified into active contour models, deformable meshes,

active shape models, level sets and curve based segmentation. The following subsections discuss individually each of

these categories.

2.1.1. Edge based segmentation

Extracting edges in an image using gradient filters like Prewitt, Robert, Sobel, Shen and Castan and Canny, is a

popular practice in image processing. However, in presenceof noise gradient filters often detect false edges and also

the detected edges are often broken. Although computationally expensive edge linking algorithms have to be designed

to produce connected edges, in most cases is necessary to combine edge based algorithms with intensity based and

texture based information for accurate segmentation [13].

TRUS

Prostate segmentation based on edge information seems to beparticularly difficult in TRUS images. Traditional

edge detection filters fail to obtain accurate edges due to the low contrast, speckle and other imaging artifacts like

shadow regions. To overcome these problems, Liu et al. [14] propose to use a radial bass relief representation of the

prostate, which consists in superimposing the original image with a zoomed negative of the same. Kwoh et al. [15]

used harmonics from the Fourier transform to reduce spurious edges of this representation. Other approaches aim to

reduce the speckle from the original image. For instance, Aarnink et al. [16] used local standard deviation to identify

homogeneous and heterogeneous regions in the image in a multi-resolution framework, and this information was

considered for detecting the prostate boundary with more reliability. In contrast, Pathak et al. [17] reduced speckle by

applying a stick filter based on the non-zero correlation value of speckle over large distances. The intensity value of

the central pixel was replaced by the average of the intensity values in the horizontal, vertical and diagonal directions

of a given size. The resulting image was further smoothed using an anisotropic diffusion filter. In the third stage,

some basic prior knowledge of the prostate, such as shape andecho pattern, is used to detect the most probable

edges describing the prostate. Finally, patient-specific anatomic information is integrated during manual linking of

the detected edges to segment the prostate.

MRI

The use of typical edge detector operators in MR images can produce many false edges due to the high soft tissue

contrast. Hence, Zwiggelaar et al. [18] used first and secondorder Lindeberg directional derivatives [19], in a polar

coordinate system to identify the edges. An inverse transform of the longest curve selected after non maximal sup-

pression of disconnected curves in the vertical direction was used to obtain the prostate boundary. On the other hand,

Samiee et al. [20] used prior information of the prostate shape to refine the prostate boundary. Average gradient values

obtained from a moving mask (guided by prior shape information) were used to trace out the prostate boundary. In
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a similar way, Flores-Tapia et al. [21] used a priori shape information of the prostate to trace out the boundary by

the movement of a small mask on a feature space constructed from the product of the detail coefficients of the Haar

wavelets in a multi-resolution framework.

2.1.2. Probabilistic filtering

Probabilistic filters like the Kalman filter [22], the probabilistic data association filter (PDAF) [23] and particle

filters [24] have been successfully used to segment images. These methods model the boundary of an organ as a

probabilistic trajectory of a moving object where the motion is governed by a dynamic model subject to a particular

uncertainty. Segmentation algorithms based on probabilistic filters are fast as no optimization framework is neces-

sary [25]. However, these methods may be sensitive to the initialization and the extension to 3D segmentation is

complicated. Hence, to the best of our knowledge no method has been developed for 3D segmentation of the prostate

in MR and in CT images.

TRUS

Abolmaesumi et al. [25] used PDAF to segment the prostate in TRUS images. The stick filter [17] was used to reduce

speckle and enhance the contrast. The authors argued that the boundary of the prostate was given by a trajectory

of an object whose motion was governed by a model from a finite set of known models at any given radius. The

models differed in uncertainty levels and structures, and switched between the models depending on the Markov

transitional probability [26]. The authors assumed that the acceleration could be modeled by Gaussian noise and

the model produced a noisy version of the actual position of the particle. Each trajectory was associated with a

Kalman filter and the output was combined with an interactivemultiple model and PDAF to estimate the boundary

location. On the other hand, as the prostate in TRUS images ischaracterized by a hypoechoic mass surrounded by

hyperechoic perimeter [10], Sahba et al. [27] used median filtering followed by top hat and bottom hat transforms to

effectively separate bright areas from dark regions trapping the characteristic feature. Binary thresholding followed

by morphological filtering produced a smooth contour of the boundary. Subsequently, a Kalman filtering followed by

a fuzzy inference produced the final prostate contour.

2.1.3. Deformable model based segmentation

Deformable model segmentation techniques are influenced bytheories from geometry, physics and mathematical

optimization. Geometry imposes constraints on the model shape, physical theories guide the evolution of the shape

in space, and optimization theory guides the model to fit the available data [28]. Deformable models are often as-

sociated with internal and external energies. External energies propagate the deformable model towards the object

boundary and internal energies preserve smoothness of the contours during deformation. Internal and external ener-

gies associated with a deformable model are combined and included in an energy minimization framework to segment

anatomical structures by warping to the edges with minimum deformation away from their mean shape. The methods

proposed in a deformable model framework may be broadly classified into active contour models, deformable mesh,
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active shape models, level sets and curve fitting.

2.1.3.1. Active contour models

The active contour model (ACM) or snake was initially developed by Kass et al. [29]. On initialization close to an

edge, the active contour model evolves following the direction of the gradient in progressive deformation and stops

at the edge. However, different external energies like balloon force [30], distance potential force [31] and gradient

vector flow [32] have been proposed to improve the capture range of active contour.

TRUS

Considering low contrast in TRUS images, localization of true prostate edge to produce external energy is a real

challenge. Knoll et al. [33] used maxima of a multi-scale dyadic wavelet to determine prostate edges. Balloon force

was used as external force to deform a snake towards the maxima of the dyadic wavelet transform to segment the

prostate in a multi-resolution framework. The form restricted contour deformation and its initialization by template

matching are performed in a coarse to fine segmentation process based on a multiscale image edge representation

containing the important edges of the image at various scales. To improve on the internal force of the ACM, Ladak

et al. [34] used cubic interpolation between four points selected by the user to produce a discrete dynamic contour

(DDC) [35]. Ding et al. [36] used a cardinal spline to construct the initial contour of the prostate from three or

more manually selected points located in the prostate boundary. The final contour produced in one slice was used

to initialize the neighboring slices. To improve on the capture range of the gradient force, Jendoubi et al. [37] used

gradient vector flow [32] computed from the gradient map obtained using sobel and laplacian of Gaussian as external

force to drive active contour towards the boundary of the prostate. Zaim et al. [38] used difference of Gaussian

followed by non maximal suppression to detect dot patterns that were coherent with prostate tissue texture. An active

contour constructed from manual delineations of prostate with dot pattern and gradient as external energy was used to

segment the prostate.

2.1.3.2. Deformable mesh

Broadly, deformable meshes could be categorized into shapeconstrained deformable mesh or parametric deformable

mesh. The methods included in the first category usually start dividing an initial manual segmentation in triangular

and tetrahedral facets. Subsequently, similar to an ACM framework, the mesh deforms under the influence of internal

and external forces to produce the desired segmentation. The objective of internal forces is to maintain a smooth

surface while an external force drives the model towards theboundary of the organ. Often, the principal curvature of

the surface is used as internal energy and the gradient is oneof the most popular choices for external energy. However,

gradient is usually combined with texture to improve the segmentation results. On the other hand, in the parametric

deformable model, the deformable mesh is constructed on thebasis of a three dimensional geometrical figure like a
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sphere, ellipsoid or a cube that has a close resemblance withthe organ. Geometrical parameters are used for internal

energy computation. Either gradient or texture or both are used as external forces to deform the mesh.

TRUS

To maintain the prostate shape, Ghanei et al. [39] used a shape constrained deformable mesh in a multi-resolution

framework to achieve three dimensional segmentation of theprostate. Principal curvature of a surface from Todd and

McLeod’s method [40] was used as the internal force. The external force was computed from the expansion and the

restoration model proposed by Rao and Ben-Arie [41]. A Gaussian noise model was assumed, while an edge was

considered as a step function. An impulse response functionwas generated and applied to the volumetric data to

generate the gradient. The gradient obtained in the processwas used as the external force for mesh propagation for

segmenting the prostate.

2.1.3.3. Active shape model

In absence of prior shape information, the final segmentation result of deformable models results often vary widely

from the shape of the anatomical structure. Cootes et al. [42] proposed the active shape model (ASM) that worked

in the deformable model framework maintaining the principal modes of shape variations of the anatomical structures

under study. Principal modes of shape variations are identified by principal component analysis (PCA) of the point

distribution models (PDM) [42] aligned to a common reference frame with generalized Procrustes analysis. Shape

space is assumed to be Gaussian and is represented with a meanshape added to weighted principal modes of variations

identified from PCA. With the initialization of the shape model, each landmark is searched within local vicinity to

reach a better position with respect to the edges with a minimum displacement constraint that maintained the shape.

Once all landmarks were displaced, scaling, rotation and translation parameters were chosen that minimized the

distance between the deformed contour and the shape model. Prior shape information incorporated in active model

makes it robust to noise and artifacts and produces improvedsegmentation results. In order to consistently set the

corresponding landmarks automatically, the minimum descriptor length and Hill’s algorithm [43] were proposed.

The different methods primarily differed in the optimization framework and the feature space used for modeling the

deformation.

TRUS

Shen et al. [44] used rotational invariant Gabor features computed with respect to the TRUS probe to characterize the

prostate boundaries in multiple scales and multiple orientations. The Gabor features are further reconstructed to be

invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding

the deformable segmentation. The real and imaginary parts of Gabor features were used for smoothing and edge de-

tection respectively. A hierarchical deformation strategy is then employed in which the model adaptively focuses on

the similarity of different Gabor features at different deformation stages using a multiresolution technique form coarse

to finer features to achieve segmentation. Similarly, Betrouni et al. [45] enhanced the prostate edge and reduced noise
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using a priori knowledge of the noise in TRUS images. An ASM was then used to produce the segmentation of the

prostate. Hodge et al. [46] used the mean of manual segmentation from three experts to produce the ground truth

value for prostate in TRUS images. An ASM was constructed from manually delineated contours after the reduction

of noise using a median filter. The authors proposed to modifyPDM of Cootes to generate all plausible shapes by

dividing the prostate mid gland images into three regions and creating three plausible prostate shapes for each.

MRI

Cootes et al. [42] proposed to segment prostate in MR slices using the framework of ASM (they actually proposed

prostate segmentation as one of the applications of their generic ASM model). Zhu et al. [47] proposed a hybrid of

two and three dimensional ASMs to segment the prostate in MR data sets. A three dimensional ASM was built that

represented the shape variance of the prostate. In each iteration, the three dimensional ASM was updated by the final

search result of two dimensional segmentation. The authorsclaimed that, unlike pure 3D ASM, their hybrid ASM

had a superior performance in sparse three dimensional datasets as 3D ASM built from sparse data was inefficient in

detecting all possible modes of shape variations.

CT

The first attempt to use ASM to segment CT images of the prostate was done by Tang et al. [48], who used ASM

to segment the prostate, but also the bladder and the rectum.In contrast, Feng et al. [49] used an ASM to segment

only the prostate. Deviating from traditional ASM, the image correspondences were obtained by means of SIFT

features [50]. Inter and intra patient specific ASM were built from manually delineated contours of the prostate.

2.1.3.4. Edge based level sets

The level sets framework introduced by Osher et al. [51] is a popular, powerful and efficient tool for medical image

segmentation. This framework was developed to study curve propagation in higher dimensions. The level set is

allowed to expand starting from a seed point in a direction normal to the curve surface that produces the segmented

contour, with a speed inversely proportional to the intensity gradient. The evolution finally stops where the intensity

difference is highest in a local neighborhood. Hence, the propagation of the curve in a level sets framework may help

in finding an object boundary, and allows an efficient curve splitting and merging based on topological changes.

TRUS

Considering intensity heterogeneity of the prostate gland, it is difficult to segment prostate with traditional level set

initialized on gray-scale images. Hence, Kachouie et al. [52] used Gaussian filtering followed by morphological

filtering to classify the mid gland image into prostate and non prostate regions. An elliptical level set automatically

initialized inside the prostate region was used to segment the prostate using first and second order moments of a
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Gaussian probability density function. The authors then used modified local binary patterns (LBP) to extract texture

features of the prostate gland in TRUS images [53]. Gradientmagnitude information of the modified LBP map was

used as the external force to drive the elliptical level set to convergence, thereby segmenting the prostate.

2.1.3.5. Curve fitting

Parametric curves like splines, ellipses and Bezier curvesare often used to segment prostate due to a close resemblance

between the central gland of the prostate and an elliptical curve. Curve parameters are used as internal force and

gradient as external force to deform the curve towards the prostate boundary.

TRUS

Hu et al. [54] used an ellipsoid, initialized from manual delineations of the limits of the axes, to produce 3D prostate

segmentation. Ellipsoid warping using thin plate spline transformation was used to map the user selected six control

points to the end of the semi major axis of the ellipsoid to ensure a better fitting. The deformation of the ellipsoid was

influenced by the internal and external forces to produce thesegmentation. In a similar way, Ding et al. [55] used a

deformable super ellipse to just obtain an initial estimateof the prostate contour. Subsequently, the initial parameters

of the super ellipse and gradient information of the image were jointly optimized to produce the final segmentation. To

reduce propagation errors, a continuity constraint based on an autoregressive model was imposed on the initialization

of the contour in new slices. Badiel et al. [56] also used an elliptical curve to segment the prostate. The ellipse

was fitted through six user defined points. The deformation ofthe prostate was modeled with a sine function in the

angular direction and with a Gaussian function in the radialdirection. The warping function was built using these

two functions to create an elliptical shape for the prostate. Finally, segmentation of the prostate was achieved by

ellipse fitting to the prostate boundary obtained by interacting multiple modes PDAF [25] and reverse warping. In

contrast to these works, Saroul et al. [57] used a tapered super ellipse to segment the prostate. The prostate gland was

divided into eight octants and the intensities of each octant were modeled using a Rayleigh distribution. The tapered

super ellipse was combined with the probability density functions of the intensities of the prostate and non prostate

region in an energy optimization framework to segment the prostate region. Mahdavi et al. [58] used a similar tapered

ellipsoid to segment the prostate. The authors used untapering and warping of the image to make the shape of the

prostate elliptical. Probe center as well as the bottom, center, middle right, and bottom right of the prostate gland

were selected by the user. The image was then transformed to polar coordinates with the center of the probe as the

coordinate center. This aided in untapering and warping of the image. After initial fitting, a deformation model was

used to get the final fitting of the prostate boundary traced byinteracting multiple modes PDAF [25]. The obtained

ellipse was used to initialize other slices of the ellipsoid. The process continued for all the slices to obtain a segmented

prostate in 3D.
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2.2. Region based segmentation

Predominant intensity distributions of the prostate region in different imaging modalities have been exploited

by researchers to develop region based segmentation algorithms. Region based segmentation methods are further

categorized into atlas, graph partitioning and level set methods.

2.2.1. Atlas

An atlas is created from a set of manual segmentations of an anatomical structures registered to a common co-

ordinate frame. The atlas is then used as a reference to segment images of a new patient. Therefore, in atlas based

segmentation, the segmentation problem is treated as a registration problem, since the segmentation is based on finding

a one-to-one transformation mapping a pre-segmented atlasimage to the new target image. Atlas guided segmentation

is well suited for segmentation of structures that are stable over a large population, like the human brain [59].

MRI

Klein et al. [60] followed a multi-atlas approach to segmentthe prostate. Affine registration and subsequently a non

rigid registration using cubic B-spline [61] in a multi-resolution framework was used to register the training volumes

to the test volumes. Corresponding transformation was applied to the label images of the training dataset. In the next

step most similar atlas scans were selected based on the measure of similarity computedffrom normalized mutual

information. To combine these atlas scans to into a single segmentation majority voting and STAPLE algorithm is

used to produce the final segmentation. Recently, Dowling etal. [62] improved on the results obtained by [60] by

introducing a pre-processing step of bias field correction,histogram equalization and anisotrpic diffusion smoothing.

Dowling et al. then used rigid, affine and diffeomorphic demons registration to generate multiple labelsof the test

image. Most similar labels were identified and fused to generate the final segmentation. Langerak et al. [63] proposed a

new schema for fusion of the labels in a multi atlas segmentation framework. They proposed to combine segmentation

result of all the labels to produce the gold standard the target label. Each of the labeled images of each of the atlas

was compared to the target label. Labels below a certain threshold was discarded and the target label is re-estimated

with labels that have already been selected. The process continues in an iterative manner to provide the final estimated

segmentation label.

CT

Acosta et al. [64] used affine and non-rigid demons registration to build a probabilistic atlas of the prostate, rectum,

bladder and bones from the training images. Given a new test image the probabilistic atlas was registered using affine

and demons registration and the labels of the atlas were transformed with the same transformation vector to segment

the prostate, rectum, bladder and bones. Later, Acosta et al. [65] used a multi-atlas schema where similar atlases, were

ranked and their labels fused to produce segmentation of theprostate, rectum, and bladder.
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2.2.2. Graph partition

In graph based segmentation methods pixels or group of pixels are considered as nodes while edges (gradients)

between pixels are often considered as costs. The graph is then partitioned by minimizing a cost function and closely

related pixels are grouped in different classes. Different graph partitioning algorithms like minimum spanningtree,

minimum cut, and normalized cuts may be used for such purpose[66].

TRUS

Zouqi et al. [67] built a graph partition scheme to segment the prostate. The graph was built with nodes and edges.

Pixels were the nodes while horizontal edges that connectedthese nodes represented edge discontinuity penalties.

User defined pixels from the object and the background were used to build two special nodes: the source and the

sink terminal. The max flow algorithm [68] gradually increased the flow sent from the source to the sink along the

edges in the graph given their costs. Upon termination, the maximum flow saturated the graph. The saturated edges

corresponded to the minimum cost cut giving an optimal segmentation. The initial contour obtained after graph cut

segmentation was further refined in a fuzzy inference framework that determined the membership of a pixel based on

the region based statistics.

2.2.3. Region based level sets

In contrast with the traditional boundary based level sets,Chan and Vese [69] used region based statistics in their

energy minimization criteria to propagate the level set andsegment the image. The method obtained superior results

in absence of strong edges and in presence of white noise since the stopping criteria was dependent on region based

statistics.

TRUS

To produce a uniform region for the prostate, Fan et al. [70] set the value of a cubical voxel to 0 if the difference

between the minimum and the maximum intensity values in the voxel was below 2. The value was set to 1 if the

difference was greater than 2 but less than a threshold. This fastdiscriminative approach was used to extract the

prostate region and used in a region based level set framework to segment the prostate in three dimensions.

2.3. Supervised and un-supervised classification based algorithms

In pattern recognition feature could be defined as a measurable quantity that could be used to distinguish two or

more regions. More than one feature could be used to differentiate different regions and an array of these features is

known as a feature vector. The vector space associated with feature vectors is known as feature space. Supervised and

un-supervised classification (PR) based techniques aim at obtaining a partition of the feature space into a set of labels

for different regions. Primarily classifier and/or clustering based techniques are used for the purpose. Classifiers use a

set of training data with labeled objects as a priori information to build a predictor to assign label to future un-labeled

observations. In contrast, in clustering methods a set of feature vectors are given and the goal is to identify groups
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or clusters of similar objects on the basis of the feature vector associated with each. Proximity measures are used to

group data into clusters of similar types.

2.3.1. Classifier based segmentation

In classifiers based segmentation the prostate is seen as a prediction or learning problem. Each object in a training

set is associated with a response variable (class label) anda feature vector. The training set is used to build a predictor

that can assign class label to a object on the basis of the observed feature vector.

TRUS

Intensity heterogeneity, unreliable texture features andimaging artifacts pose challenges in the feature space to par-

tition. Zaim [71] used texture features, spatial information and gray-level values in a self organizing map neural

network to segment the prostate. In a more recent work [72] the authors used entropy and energy of symmetric,

orthonormal, and second order wavelet coefficients [73] of overlapping windows in a support vector machine (SVM)

classifier. Mohammed et al. [74] used spatial and frequency domain information from multi-resolution Gabor filters

and prior knowledge of prostate location in TRUS images to identify the prostate. Parametric and non parametric

estimation of power spectrum density of the Fourier transform along with ring and wedge filter [75] of the region of

interest (ROI) were used as feature vectors to classify TRUSimages into prostate and non prostate region using non

linear SVM.

2.3.2. Clustering based segmentation

The goal of clustering based methods is to determine intrinsic grouping in a set of un-labeled data based on some

distance measures. Each data is associated with a feature vector and the task is to identify groups or clusters of similar

objects on the basis of the set of feature vectors. The numberof groups is assumed to be known and implicitly one

must select the relevant feature, distance measure and the algorithm to be used.

TRUS

Richard et al. [76] used the mean shift algorithm [77] in texture space to determine the mean and covariance matrix

for each cluster. A probabilistic label was assigned to eachpixel determining the membership of a pixel with respect

to every cluster. Finally, a compatibility coefficient and pixel spatial information was used for probabilistic relaxation

and refinement of the prostate region.

2.4. Hybrid segmentation

Combining a priori boundary, shape, region and feature information of the prostate gland improves segmentation

accuracy. Such methods are robust to noise and produce superior results in presence of shape and texture variations of

the prostate. This section discusses the methods that have combined two or more of the methods presented in previous

sections.
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TRUS

Mid gland image of the prostate in axial slices in TRUS imagesis often characterized by a hypoechoic mass sur-

rounded by a hyperechoic halo. In order to capture this feature, Liu et al. [78] proposed to use radial search from the

center of the prostate to determine the edge points of the prostate. The key boundary point was identified from the

largest variation in gray value in each line. An average shape model constructed from manually segmented contours

was used to refine the key points. A similar schema was adoptedby Yan et al [79]. In this case, contrast variations

in normal vector profiles perpendicular to the PDM were used to automatically determine salient points and produce

prostate boundaries. Salient points were determined by discarding points that fall in shadow regions. Prior shape

information of the prostate shape aided determining the missing points in shadow regions in TRUS images. Optimal

search performed through vector profiles perpendicular to the salient points was used to determine prostate boundary

with a discrete deformable model in a multi-resolution, energy minimization framework.

Modeling shape and texture features and using them to segment a new image has been used by many researchers.

The schema primarily varied in the approach adopted for the creation of the shape and the texture model. For in-

stance, Zhan et al. [80] proposed to model the texture space by classifying into prostate and non prostate regions the

texture features captured by rotational invariant Gabor filter by means of a SVM. This classified feature space was

subsequently used as an external force in a deformable modelframework to segment the prostate. In their consequent

work [81], the authors proposed to speed-up the process by using Zernike moments [82] to detect edges in low and

middle resolutions and maintaining the texture classification using Gabor features and SVM. In a different way [83],

the authors also proposed to reduce the number of support vectors by introducing a penalty term in the objective

function of the SVM, which penalizes and rejects the outliers. Finally, Zhan et al. [9] proposed to combine texture

and edge information to improve the segmentation accuracy.Multi-resolution rotational invariant Gabor features of

the prostate and non-prostate regions were used to train a Gaussian kernel SVM system to classify textures of prostate

regions. In the deformable segmentation procedure, SVM areused to label voxels around the surface of deformable

model as prostate or non prostate tissues. Subsequently, the surface of deformable model is driven to the boundary

by the deformation force of labeled prostate tissues. The step of tissue labeling and the step of label-based surface

deformation being dependent on each other, the process is carried out iteratively to convergence.

A similar schema was adopted by Diaz and Castaneda [84]. Asymmetric stick and anisotropic filters were firstly

applied to reduce speckle in TRUS images. A DDC was produced using cubic interpolation of four points initialized

by the user. The DDC deformed under the influence of internal force, gradient magnitude and damping forces to

produce the contour of the prostate. Features such as intensity mean, variance, output of back projection filter, and

stick filter were used to construct the feature vectors. The pixels were classified into prostate and non prostate regions

using SVM. Subsequently, DDC was automatically initialized from the prostate boundary and used to obtain the final

contour of the prostate. Cosı́o et al. [10] used position and gray scale value of a prostatein TRUS image in a Gaussian

mixture model of three Gaussian to cluster prostate, and nonprostate tissues and to identify halo around the prostate

in TRUS images. Bayes classifier was used to identify prostate region. After pixel classification the ASM is initialized
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with the binary image using a global optimization method. The optimization problem consists of finding the optimum

combination of four pose and two shape parameters, which correspond to an approximate prostate boundary in the

binary image. A multi population genetic algorithm with four pose and ten shape parameters was used to optimize an

ASM in a multi-resolution framework to segment the prostate.

Another common hybrid approach is to use both shape and intensity distribution to segment the prostate. Medina

et al. [85] used an AAM framework [86] to model the shape and the texture space of the prostate. In this framework the

Gaussian model of the shape and intensity created from PCA analysis is combined to produce a combined mean model.

The prostate was segmented exploiting the prior knowledge of the nature of the optimization space in minimizing the

difference between the target image and the mean model. Ghose et al. [87] used the approximation coefficients

of Haar wavelets to reduce speckle to improve on segmentation accuracies. Later, Ghose et al. [88] improved the

model further by introducing contrast invariant texture features extracted from log Gabor quadrature filters. More

recently Ghose et al. [89] used probabilistic information obtained in a Bayesian framework to build the appearance

model. Furthermore, multiple mean models of shape and appearance priors were used to improve on segmentation

accuracies. Gong et al. [90] proposed to use a deformable super ellipse to produce a shape model of the prostate. Using

the deformable super ellipse as the prior shape model for theprostate, the end goal was to find the optimal parameter

vector that best describes the prostate in a given unsegmented image. The search was formulated as a maximum a

posterior criterion using the Bayes rule. The initial parameters were used in maximum a posteriori (MAP) framework

to obtain the optimized parameters for the ellipse.

Later, Tutar et al. [91] used the average of three manually delineated prostate contours to construct a three dimen-

sional mesh with spherical harmonics to represent the average model of the prostate. With 8 harmonics, a feature

vector of 192 element was reduced to 20 using PCA. Users initialize the algorithm by outlining the prostate bound-

aries in mid gland axial and sagittal images. Therefore, theproblem of finding the shape parameter vector that would

segment the prostate in spatial domain was reduced to find theoptimal shape parameters in parametric domain that

maximized the posterior probability density of a cost function, which measures the degree of agreement between the

model and the prostate edge in the image. Yang et al. [92] proposed to use min/max flow [93] to smooth the contours

of the 3D model of the prostate created from 2D manual delineation. The primary modes of shape variations were

identified with PCA and morphological filters were used to extract region based information of the prostate gland.

The shape model and region based information were then combined in a Bayesian framework to produce an energy

function, which was minimized in a level set framework. Garnier et al. [94] used 8 user defined points to initialize a

3D mesh of the prostate. Two algorithms were used to determine the final segmentation of the prostate. First, DDC

with edge as external force and the 6 central gland user defined points as landmarks was used to deform the mesh

to segment the prostate. Next, the initial mesh was used to create the graph and in second stage image features like

gradients were introduced to build the cost function. Finally, graph-cut was used to determine the prostate volume.

The graph cut results were refined with DDC to improve the results.
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MRI

Prior shape and size information of the prostate were exploited by Vikal et al. [95] to build an average shape model

from manually delineated contours. The authors used the Canny filter to determine edges after pre-processing the

images with a stick filter to suppress noise and enhance the contrast. The average shape model was used to discard

pixels that did not follow similar orientation as the model.The obtained contour was further refined by the removal

of gaps using polynomial interpolation. The segmented contours obtained in the middle slices were used to initialize

slices lying above and below the central slice.

The use of a Bayesian framework to model the texture of the prostate is common in MR images. For instance,

Allen et al. [96] proposed to segment the prostate in an EM framework treating the three distinctive peaks in inten-

sity distribution as mixture of three Gaussians (background, central region and periphery of the prostate). A shape

restricted deformable model with the clustered pixels as a deformation force was then used to segment the prostate.

Similarly, in Makni et al. [3], the intensities of the prostate region were modeled as a mixture of Gaussians. They pro-

posed a Bayesian approach where the prior probability labeling of the voxels was achieved by using a shape restricted

deformable model and Markov field modeling. The conditionalprobability was associated with the modeled intensity

values, and the segmentation was achieved by estimation of an optimum label for prostate boundary pixels in a MAP

decision framework.

Although atlas based registration and segmentation of the prostate has become popular in recent time, the obtained

segmentation results had to be refined with a deformable model to improve the accuracy. Martin et al. [2] used a

hybrid registration minimizing intensity and geometry energies for registering the atlas. The minimization of the

intensity based energy aimed at matching the template imagewith the reference image while the minimization of

the geometric energy matched the model points of the template image to the scene points belonging to the reference

image. Finally, a shape constrained deformable model was used to refine the results. More recently, Martin et al. [97]

used a probabilistic atlas to impose further spatial constraints and segment the prostate in three dimensions.

Shape and texture modeling of the prostate were merged in thework of Tsai et al. [98], who used a shape and

region based level set framework to segment prostate in MR images. One of the contours was fixed and used as

the reference system where all the other contours were affine transformed to minimize their difference in a multi

resolution approach. PCA of the shape variability capturedthe primary modes of variations and was also incorporated

in the level set function, along with region based information such as area, sum of intensities, average intensity and

variance information. The minimization of the level set objective function produced the segmented prostate. The

authors also suggested a coupled level set model of the prostate, the rectum, and the internal obturator muscles from

MR images to segment these structures simultaneously [99].The algorithm was made robust by allowing the shapes

to overlap with each other, and the final segmentation was achieved by maximizing the mutual information of the three

regions. Similarly, Liu et al. [6] used a deformable ellipseto segment prostate boundary after Otsu thresholding [100]

of the image in prostate and non prostate region. A shape constrained level set initialized from the elliptical fitting

of the prostate was used to further refine the results. Finally, post processing of the gradient map of the prostate
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and the rectum produced the final segmentation. Firjani et al. [101] modeled the background and the foreground

pixels with Gaussian mixture Markov random field and used theinformation of probability of a pixel being prostate in

building the shape model. The shape and the intensity were jointly optimized with a graph cut based algorithm. The

authors extended their work for a 3D segmentation of the prostate [102]. Zhang et al. [103] proposed an interactive

environment for prostate segmentation. Region and edge based level sets were used to segment the prostate from the

background depending on foreground and background region based information provided by the user.

Gao et al. [104] represented the shapes of a training set as point clouds. Particle filters were used to register clouds

of points created from prostate volumes to a common reference to minimize the difference in pose. Shape priors and

local image statistics were incorporated in an energy function that was minimized to achieve prostate segmentation in

a level set framework. More recently, Toth et al. [105] used aseries of 50 Gaussian kernel of variable size to extract

prostate texture features. ASM constructed from manually delineated contours of training images was automatically

initialized depending on the most probable location of the prostate boundary to achieve segmentation. Later, Toth

et al. [106] in addition to intensity values, used mean, standard deviation, range, skewness, and kurtosis of intensity

values in a local neighborhood to propagate ASM automatically initialized from magnetic resonance spectroscopy

(MRS) information. MRS information was clustered using replicated k-means clustering to identify prostate in mid

slice to initialize multi feature ASM. Khurd et al. [107] localized the center of the prostate gland with Gaussian mixture

model and expectation maximization based clustering afterreducing magnetic bias in the images. Thresholding on

the probabilistic map of the prostate obtained with random walker based segmentation algorithm [108] to segment the

prostate.

CT

As shown in Figure 1(c), the prostate gland in CT images showsan uniform intensity distribution and poor contrast

between the gland shape and its surrounding tissues. Hence,combining shape information with region based statistics

is a common approach when segmenting CT images, since the prior shape information restricts the deformation

to viable shapes while the region based statistics propagate the deformation. For instance, Freedman et al. [109]

used manually delineated contours to form a three dimensional mesh in which the contours were interpolated using

splines. The intensity information of each slice was incorporated in a probability density function (PDF) framework.

For segmentation, each slice was intersected with the mesh yielding a series of polygons and their corresponding

histograms, which were added and normalized to get the distribution of each of the slices. The segmentation was

finally achieved by the minimization of the cumulative distribution function of the PDF between the model and the

image slices. Similarly, Rousson et al. [110] used two shapeconstrained level sets for simultaneously segmenting

the prostate and the bladder. A non overlapping constraint was imposed to drive the prostate and bladder apart by

assuming that the two level sets evolved independent from each other and a penalty term was introduced whenever

the two voxels were shared. Davis et al. [111] proposed to quantify organ motion for adaptive radiation therapy

using deformable registration. Bowel gas was segmented using thresholding and morphological filtering and then

using gradient direction to collapse the bowel. Finally, deformable registration was used to segment the prostate. In
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contrast, Ghosh et al. [112] used a genetic algorithm to guide the level set that segmented the prostate. The pose

and weight parameters of manually delineated contours wereused as inputs to the genetic algorithm, and the fitness

function was constructed based on texture features. The pixels inside the generated curve were grouped depending on

Laws texture values and the fitness score was generated. Thisscore was maximum when all the landmarks were in a

texture similar to the one of the prostate region. Subsequently, the curves were ranked according to the fitness scores

and the higher ranking curves were chosen to produce children by mutation and crossover. The process continued

for several iterations until convergence. Similarly, Costa et al. [113] used PCA to impose shape constraints and used

region based statistics in an energy minimization framework. A local affine registration of the pelvic bones was

used to localize the prostate and the bladder from prior spatial information. A morphological filtering followed by a

modified region growing was used to obtain an initial estimate of the segmentation of the bladder. A non overlapping

constraint created from the distance potential of the prostate and bladder was used to drive the two structures apart

during segmentation.

Finally, shape, edge and region based statistics can be alsocombined for segmenting the prostate. Song et al. [114]

used an arc weighted graph [115] for incorporating shape constraints and edge information for segmentation of the

bladder and the prostate. Prior shape knowledge was introduced using the weights of both graph nodes and directed

graph edges or arcs. A three dimensional level sets were usedfor a rough segmentation of the bladder and manually

delineated contours of the prostate were used to construct the mean shape and fit it to a CT image using rigid trans-

formation. Recently, Song et al. [116] improved the segmentation accuracy by incorporating region based intensity

distribution information and using both boundary and region based energy in an energy minimization framework op-

timized with graph cut. Chen et al. [117] used three level sets for the prostate, bladder and the rectum that deformed

under the influence of distance signed function computed from shape statistics, gradients, PDF of the region and a

smoothness constraint to segment the three organs. Chen andRadhke [118] also used shape and intensity priors in

their level set framework. Kernel density estimation was used for both shape and intensity priors to construct an

energy function that was minimized using gradient descent optimization. Feng et al. [119] used profile-based gra-

dient features and the local-region based probability distribution function to build appearance model. ASM used the

appearance model for deformation to segment the prostate. Gradient and probability distribution function combined

feature produces more accurate and robust segmentations than general gradient features for ASM. An on line learning

mechanism was used to build shape and appearance statisticsfor accurately capturing intra-patient variation.

Li et al. [120] used rigid alignment of the pelvic bone structures to align the training images. Features like

appearance, context, Haar like features, histogram of oriented gradients and pixel coordinates were extracted in 2D

inside a region of interest to train two location adaptive classifier. Given a new image the two classifiers were used

to produce two probabilistic map of the location of the prostate. The two maps were fused and a level set is used

to produce a binary classification. Finally, absolute intensity variation between the context location (obtained from

the map) and current pixel was used in the classifier to updatethe classifier and produce final segmentation. Liao

et al.[121] uses rigid alignment of the bone structures to localize prostate. Localized multiresolution Haar wavelets,
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histogram of oriented gradients, and local binary patternsfeatures were extracted and salient features were selected

from a Gaussian function developed from Dice ratio. An online learning was used to integrate both inter and intra

patient specific information to localize prostate from a sigmoid function. Given a new image learn’t image similarity

function was utilized to align new patient for segmentationwith a support vector regression. Lu et al. [122] shape

and region prior level sets to segment the prostate and a B spline based registration was used to minimize the cross

correlation value between the image in training stage and treatment stage to constrain the segmentation results. The

segmentation and registration framework worked iteratively to produce the final segmentation. Chen et al. [123] used

median and morphological filtering on k means clustering to identify bones, muscles and gas in images. Slice by slice

segmentation of the bones were performed to identify pelvicand coccyx bones to impose anatomical constraint in

prostate segmentation. PCA of anatomical landmarks generated using Fourier descriptors weer used to identify shape

variations. Finally, registration on intensity in region of interest was obtained. Shape, anatomical and registration

were all used in a Bayesian framework to achieve segmentation.

3. Validation and qualitative performance evaluation

The performance of prostate segmentation algorithms is usually evaluated comparing the output of the method with

a ground truth (gold standard) obtained from manual delineations of the prostate done by experienced radiologists.

Hodge et al. [46] advised to use the mean of the manual segmentations of different radiologists and/or of the same

radiologist at different times to reduce inter and intra observer variations inpreparation of the ground truth value.

Analyzing the literature we have seen that the evaluation metrics could be categorized into qualitative and quan-

titative based metrics. In a qualitative evaluation, the obtained contour is visually compared with the ground truth

value. In contrast, for quantitative evaluation, an error between the obtained contour and the ground truth is nu-

merically computed. Typically, these error metrics could be classified into contour based, area based and volume

based methods. Contour based metrics rely on computing how close the ground truth and the obtained contours are.

Typical metrics used are the Hausdorff distance (HD) [124], the mean absolute distance (MAD) [79],mean distance

(MD) [27], maximum distance (MaxD) [78], and root mean square error (RMSQ) [47]. Area based errors are based

on computing how much the ground truth and the obtained area overlap. It can be measured by the Dice similar-

ity coefficient (DSC) [125], area accuracy [56], area sensitivity [56], area specificity [84], area overlap [25], area

overlap error [44], and area error [27] metrics. Finally, volume overlap error and difference, average difference [33],

overlap [91], detection, false detection, centroid distance [109], and similarity [123] are used for computing a 3D

overlapping error. However, DSC, specificity, sensitivity, accuracy and HD of voxels are also used in terms of voxels

to determine volumetric overlap [104]. The evaluation metrics for prostate segmentation is enlisted in Table 3 and 4.

Ideally a comparison of different state-of-the-art prostate segmentation methodologies on a public dataset should

have been done to evaluate the performance of the state-of-the-art methods. However, a quantitative comparison of

different methodologies is difficult in absence of public software, data sets and standardized evaluation metrics. In
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addition, the methods are developed using wide variety of algorithms with specific application requirements. Hence,

such a quantitative comparison of different prostate segmentation methods on the same dataset with some standardized

metrics is extremely difficult as could be observed in some recently published works [2, 10, 44, 58, 79, 90, 97, 104].

Nevertheless, to have an overall quantitative estimate of the functioning of some of the state-of-the-art works in the

literature we present the reported results in Tables 5, 6, 7 and 8 for TRUS, MRI and CT imaging, respectively.

The index of the Tables is expanded below.

• The name of the first author has been used as a reference of the paper.

• The segmentation dimension (Dim) gives the output of a givensegmentation methodology. The output can be

in two (2D) or three (3D) dimensions.

• B/A indicates whether base and apex slices were considered for2D segmentation.

• Pre-Proc indicates the type of pre-processing used in the method.

• In. indicates the use of endo-rectal coil in acquisition of MR images.

• The segmentation criteria shows in what of the reviewed categories should be classified the analyzing segmenta-

tion algorithm. Hybrid segmentation methodologies are specified with the type of algorithms that are combined

to produce the final segmentation (the acronyms of this row are: DM = Deformable model, ASM= Active

shape model, AAM= Active appearance model, GA= Genetic algorithm, EM= Expectation maximization,

DDC = Discrete dynamic contour, ACM= Active contour model, SVM= Support vector machine, ANN=

Artificial neural network, S-R Level set= Shape and region based level set).

• The automation (Auto) column specifies the degree of manual interaction that was necessary. The process is

considered automatic if the degree of manual interaction was restricted to training.

• The measure column refers to the measures used by the authorsto present their obtained results.

• The last column (Validation) gives the number of images or data sets (volumes) that were used to validate the

developed algorithm.

The tables are firstly analyzed according to the imaging modality. Afterwards, a brief discussion on the evaluation

procedures is given in section 4.

3.1. Open problems

We have explained in previous sections the validation procedures followed by the researchers. From the reported

results a set of of open problems are revealed.
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1. Manual delineation of the prostate contours is considered to be the gold standard to which the result of a seg-

mentation methodology is compared. Only few authors considered the mean of delineated contour by different

experts and of the same expert at different time to reduce inter and intra observer variability ofthe process.

Rasch et al. [126] quantified inter observer variabilities of CT and MRI. He found that, the average ratio be-

tween the volume derived by one observer for a particular scan and patient and the average volume was 0.95,

0.97, and 1.08 for the three observers. Under such inter observer variabilities an interesting option could be the

use of prostate phantom to validate volume information obtained using computer aided segmentation.

2. The unavailability of public prostate database makes quantitative comparison of the segmentation algorithms

difficult. Moreover, the quality of results depend on the both thescans and quality of contouring. Lately,

MICCAI prostate challenge datasets for MRI are being used for comparison [104]. A public datasets of prostate

images [127] could also be used for validation. The quality of the images vary with CT, MR and TRUS

machines, as advanced machines produce images of superior quality. Thus, it becomes almost impossible to

compare the performance of two algorithms separated by a span of significant number of years.

3. Lack of standardized metrics in evaluation of segmentation result makes the comparison of developed method-

ologies difficult as shown in Table 3 and Table 4. Mean average distance, maximum distance, average distance,

area of overlap, area difference, volume overlap and volumetric error are just a few ofthe commonly used

metrics. However, since MICCAI prostate challenge 2009 [125], Hausdorff distance and DSC are being in-

creasingly used.

4. Very few fully automatic methods have been developed, andoften manual initialization and sometimes manual

editing is encouraged. This may be suitable for off-line procedures like the estimation of prostate volume, but

unsuitable for on-line procedures like real time fusion of multi-modal images [128].

4. Choosing an appropriate segmentation method

Choice of a proper segmentation methodology is dependent oncontexts like imaging modality, and the final

target application of the process. Hence, we have provided recommendation of selection of a particular segmentation

technique based on these two basis. We have divide the section into TRUS, MRI and CT subsections and have

provided recommendations based on applications in each of these modalities.

4.1. TRUS

TRUS image of a prostate has low contrast and the signal is often corrupted by speckle, shadow artifacts and

micro-calcifications [79]. There are two different ways to deal with speckle. One option is to minimize itseffect

in the image using, for example, stick filters [17], that allow reducing speckle while enhancing the contrast of the

image. The second option is to take benefit of this information, which can be done modeling speckle as a Rayleigh’s

distribution [57]. Any of these options could be employed for pre-processing of the image and prepare it for further

analysis.
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Prostate volume determined from segmented TRUS images serves as an important parameter in determining pres-

ence of benign or malignant tumor during diagnosis of prostate diseases. Three commonly used prostate volume

measurement techniques in TRUS are planimetry calculation, prolate ellipse volume calculation, and an ellipsoid

volume measurement technique. Segmentation of prostate in2D in the axial slices in the mid gland region to de-

termine maximum area and height is useful in determining volume in all these techniques. Note in Table 5 that no

one tried a pure region based approach to segment the prostate. This is due to the fact that these algorithms frag-

ment the prostate into a large number of small regions due to the heterogeneity inside the prostate gland. Related

with edge based approaches, we noted that pure contour basedmethods like edge detection [17] are being replaced

(or expanded) with methods that combine prostate shape and region based information [9, 10, 84], providing a more

robust approach in presence of speckle and low contrast. In contrast, Abolmaesumi et al. [25] and Sahba et al. [27]

proposed an interesting option of modeling the prostate contour as a Gaussian distribution. Such assumption provides

more robustness to contour based methods in low contrast. ASM is another edge based approach frequently used for

prostate segmentation in 2D images. However, such models are dependent on reliable edge information and hence

may be adversely affected in presence of shadow artifacts [79]. Moreover, the automatic initialization and extension

to 3D is difficult [47]. However, shape constrained deformable models have been successfully employed by different

authors [9, 91, 92] as observed in Table 5. Automatic delineation of the prostate in mid-gland images further reduces

inter observer variabilities. The method of Ghose et al. [89] could be used for the purpose it is automatic, fast and

accurate.

In prostate brachytherapies, oncologists should prepare aset of parallel TRUS ultrasound images and manually

segment each 2D slice to obtain the prostate volume which is then used to plan the location of the seeds. Hence, fast

seimi-automatic or automatic prostate segmentation in 2D slices or 3D volume could be useful in such procedures.

Mahdavi et al. [58] method of fitting an ellipsoid to prostateedges is a very useful method for such a scenario as the

method has shown good volumetric overlap accuracy.

Automatic, and fast prostate segmentation from 2D US imagesis often necessary in image guided prostate biopsy

or robot assisted surgery [79]. DDC and super quadrics are computationally efficient procedures to segment the

prostate in 2D. However, the fastest segmentation of the prostate contour had been reported using partial ASM [79]

and probabilistic filtering [25]. Considering semi-automatic approach adopted by [25], the method developed by Yan

et al. [79] is well suited for real time segmentation of the prostate in two dimensions. Note that the speed of a given

segmentation method could be improved if the method could beparallelized and implemented in graphical processing

unit as well as if an off-line learning of the optimization space could be adopted asproposed by Ghose et al [88].

Moreover, segmentation of prostate in TRUS videos could be modeled as a tracking boundary problem to achieve

near real time segmentation.

Supervised and un-supervised classification based methodshave the advantage of being fully automatic [71, 74],

although a training is necessary in the ones using a classifier. However, the intensity heterogeneity and unreliable

texture of the prostate gland challenge again the development of a pure clustering or classification schema for the
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prostate. Therefore, an interesting and common option is the use of a clustering or/and classification schema for initial

segmentation and subsequently use the obtained information for the initialization and/or propagation of a deformable

model to produce the final segmentation [9]. Another common hybrid approach is the integration of shape and

intensity information jointly optimized in an AAM framework [85]. Off-line learning of the optimization space aids

in fast prostate segmentation. However, such methods are affected by large-scale contrast variances and use of texture

information in place of raw intensity improve segmentationaccuracies [88].

4.2. MRI

MR images of the prostate have better soft tissue contrast compared to US or CT images. However, insertion of

the endorectal coil to enhance contrast in the prostate region introduces intensity inhomogeneities that may adversely

affect the segmentation accuracy of algorithms dependent on pixel intensities. Viswanath et al. [129] performed an

extended review of three techniques [130], [131] and [132] applied to magnetic field bias field correction. The authors

concluded that bias field correction algorithm should be application specific. For example it was observed that [130]

performed best with the goal of identifying cancer and on theother hand bias field corrections can adversely affect

clustering and classification based techniques of segmentation. It is to be noted that MR images with endorectal coil

are relatively simpler to segment due higher contrast of images around the prostate and well deformed shape of the

rectum.

Prostate segmentation from MR images are frequently used for volume determination, surgical planing and multi-

modal image registration. In all these applications prostate segmentation could be done automatically or semi-

automatically. However, minimum human interaction is desired to minimize human induced variations and errors.

In the last decade, deterministic and probabilistic atlases are frequently used for 3D segmentation of the prostate.

Such methods are automatic, robust to intensity variability and to noise [60]. Martin et al. used both deterministic

atlas [2] and probabilistic atlas [97] to segment the prostate, although the obtained segmentations were refined with a

deformable model. Pair wise atlas selection schema of Dowling et al. [62] has shown greater accuracy compared to

[60, 133]. Hence, for atlases pairwise registration is better compared to average atlas based segmentation. In Table 7

we observe that Klein et al. [60] with atlas based segmentation achieved an impressive overlap accuracy of 0.85 DSC

value when validated with 50 data sets. However, Martin et al. [97] with probabilistic atlas and deformable model

based segmentation achieves similar overlap accuracy and agood contour accuracy values when validated with 36 data

sets. Atlas based methods [60] and probabilistic modeling of the prostate region [2] provide a more robust approach

in presence of these inhomogeneities.

Deformable models are frequently used for prostate segmentation. Makni et al. [3] used information coming

from an initial classification scheme to initialize a deformable model. Note also that automatic methods are primarily

developed using classifiers, atlas and deformable models. It has to be noted that anatomical structures around the

prostate may affect the prostate deformation. Modeling the anatomical structures like bladder and rectum along with

prostate will provide additional flexibility to the segmentation algorithm [99]. A hybrid segmentation method that

23



incorporates shape and intensity priors achieves good segmentation accuracy [98, 104]. Accuracies of segmentation

of prostate in MRI using 3D ASM depends on initialization. Cosio et al. [10] provided an efficient initialization

scheme in their work using Bayesian classification. In recent years Toth et al. [106] have used clustering of spectral

data obtained in DCE MRI to initialize 3D ASM. Segmentation accuracies were improved using feature driven ASM.

4.3. CT

Prostate segmentation from CT images is extremely important for patient undergoing radiation therapy. In such

cases automatic segmentation of intra-treatment CT imagesfor adaptive radiation therapy of the prostate is useful. In

adaptive radiation therapy periodic inter-treatment CT images are used for localization of the tumor and a feedback

control strategy is used to correct the differences between planned and delivered dose distribution due to spatial

changes in the treatment volume [111]. Also, in radiation therapy it is essential to ensure accurate delivery of the

target dose under organ motion. Often, gold fiducial markersin or adjacent to the target in image guided radiotherapy

is used to correct day-to-day variations in the target position as these fiducial markers being radio-opaque could be

used to as a visible surrogate [134]. The fiducial markers arefrequently used for motion estimation and to accurately

locate region of interest [135] and motion correction is useful for segmentation of prostate in inter-treatment prostate

images [111]. Segmentation of prostate in intra-treatmentCT images is important for adaptive treatment planing and

often same patient image is used to model and segment the prostate. Tang et al. [48], Feng et al. [49], Freedman et al.

[109], [111], and Song et al. [114] have all used same patientfor training and segmentation.

Poor contrast between prostate and surrounding tissues makes the prostate segmentation difficult in CT images.

We observe in Table 8 that intensity homogeneity of the prostate region in CT images has been frequently used for

designing models that exploit shape and region information. Poor tissue contrast between the prostate gland and

the surrounding tissues inhibits methods that work on boundary information, and hence, shape prior information

constraints the propagation of deformable models in absence of strong edges. Building shape restricted level sets

propagating on intensity statistics is well suited for prostate segmentation [109, 110, 113, 117, 122].

5. Conclusion and future trends

Diagnostic imaging has become an indispensable procedure in medical science. Methods of imaging the patient

anatomical structures have improved the diagnosis of pathologies, creating new avenues of research in the process.

Automatic segmentation of anatomical structures from different imaging modalities like US, MRI and CT has become

an essential step to reduce inter and intra-observer variability, improving contouring time thereafter. This paper re-

viewed the methods involved with prostate segmentation. Strength and limitations of the segmentation methodologies

have been discussed along with the presentation of validation and performance evaluations of the same. Finally, a

discussion on choosing an appropriate segmentation methodology for a given imaging modality has been carried out.

It has been highlighted that prostate segmentation techniques should utilize geometric, spatial, intensity, texture, and

imaging physics priors to improve accuracy.
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Prostate segmentation is still an open problem and with advancement of technology for diagnosis, treatment and

follow up of prostate diseases new requirements have to be met. Multimodal image fusion of at least two imaging

modalities provides valuable information. For example, the fusion of MRI and TRUS imaging should aid in obtaining

more accurate samples during biopsies. However, for such a method to work in a real scenario, automatic, accurate

and real time fusion of the two imaging modalities is necessary. Under such circumstances automatic real time

segmentation of the prostate and registration on prostate contours would improve accuracy and efficiency. Automatic

and accurate real time segmentation of the prostate may be achieved with efficient algorithms designed for graphical

processing units. Moreover, the goal of segmenting the prostate in every frame could be modified with the objective

of tracking prostate in every frame. An increase in 3D prostate segmentation methods will be the trend in coming

years due to the increasing use of 3D imaging modalities, where efficient and accurate algorithms are necessary.

In that sense, information from dynamic contrast enhanced MRI, and MR spectroscopy will be increasingly used

as additional features for automatic segmentation. In addition, registration done on prostate contour for the same

modality over a period of time may provide also valuable information about the progression of a prostate disease.
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Figure 1: TRUS, MRI and CT provide different information of the prostate (the contour is outlined ingreen). TRUS and MRI images of the same
patient. (a) In TRUS imaging, the prostate is shown as a hypoechoic mass surrounded by a hyperechoic halo. (b) T2 weighted MRI allows to see
the internal anatomy of the prostate. Note that the contrast around prostate is enhanced with endorectal coil (A). (c) CT image of a different prostate
showing radioactive seeds in white.
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Table 1: Advantages and disadvantages of the prostate imaging techniques.
Advantages Disadvantages

TRUS

Useful in determining prostate volume Low contrast images
No radiation involved Difficult to detect lesions
Inexpensive Speckle
Portable Shadow artifacts
Useful for real time imaging Cancer staging is difficult

MRI

Useful in determining prostate volume Expensive
No radiation involved Not portable
High contrast for soft-tissues Difficult to implement real time imaging
Allows lesion detection
Enables functional imaging of prostate
Staging of cancer possible

CT

Useful in determining spread of prostate cancer to bone tissuesExpensive
Useful in determining effectiveness of prostate brachytherapy Radiation involved

Not portable
Poor soft-tissue contrast
Difficult to detect lesions
Cancer staging is difficult
Difficult to implement real time imaging
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Table 2: Advantages and disadvantages of the reviewed prostate segmentation approaches

Approaches Advantages Disadvantages

C
on

to
ur

an
d

S
ha

pe

Edge Easy to extract Edge information is unreliable and often broken
Shape Provides robustness against noise and arti-

facts
Depends on strong edge information for fitting

Probabilistic filters Robust against noise along boundary Difficult to initialize and to extend to 3D

D
ef

or
m

ab
le

M
od

el
s

ACM Easy to implement, produces smooth con-
tours

Depends on reliable edge information, good initial-
ization required, large-scale deformations produce
spurious corners

Mesh Shape information is preserved Reliable edge information is often necessary, rigid
shape representation, slow in speed

ASM Shape representation and variation in Gaus-
sian space is defined

Inaccurate in large-scale shape variations, extension
to 3D is difficult, need of training

Contour level set Contour implicitly defined, easy extension to
3D

Depends on reliable edge information, slow in speed

Curve fitting Easy to implement, fast Rigid shape structure, reliable edge information is
necessary

R
eg

io
n

Atlas Automatic, robust to contrast differences, in-
corporate prior shape and intensity informa-
tion

Building atlas is not trivial and prone to registration
errors, slow in speed of segmentation

Graph partitioning Efficient optimization, region based informa-
tion could be incorporated

Incorporating shape priors is difficult, manual interac-
tion often necessary

Region level set Region based information more reliable than
edge, implicit contour

Intensity heterogeneity produces fragmented regions,
no prior shape information, slow in speed

P
R

Clustering Prior training not required, automatic No prior shape information
Classification Robust against noise, automatic No prior shape information, a training step is neces-

sary

H
yb

rid Combination of any of the above approachesMore robust to imaging artifacts and noises,
produces accurate segmentations

Choice of combining information from different
sources is complicated, often the methods are opti-
mized for prostate segmentation and less generic
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Table 3: Evaluation metrics for 2D
Metric Parameters Equation Used by

C
on

to
ur

Hausdorff distance (HD) Given a set of
finite points
A =
{

a1,a2, ....ap

}

and

B =
{

b1,b2, ...., bq

}

HD (A, B) = max(h (A,b) ,h (B,A))
whereh (A, B) = maxa∈A (minb∈B ‖a− b‖)

[17], [90]

Root mean square distance (RMSD)
RMS D(A, B) =

√

1
N

∑N
j=1

(

A j − Bj

)2 [47]

Mean Distance (MD) Given signed distance
d j between each
corresponding points
j ( j = 1,2, ...,N) be-
tween the algorithmic
segmented surface
and ground truth.

MD = 1
N

∑N
j=1 d j

[27], [33], [34],
[44], [45], [136],
[90], [54], [78],
[85], [9], and [48]

Mean absolute distance (MAD)
MAD = 1

N

∑N
j=1

∣

∣

∣d j

∣

∣

∣

[17], [34], [55],
[136], [54], [78],
[137], [91], [10],
[79], [88], [95],
[97] [122] and
[106]

Maximum distance (MaxD)
MaxD= max

∣

∣

∣d j

∣

∣

∣

[34], [45], [136],
[54], [78], [91],
[10], and [79]

A
re

a

Dice similarity coefficient (DSC) TP = True positive,
TN = True negative,
FP = False positive,
and FN= False Neg-
ative

DSC= 2T P
(FP+T P)+(T P+FN)

[88], [20], [21],
[95], [6]

Sensitivity (SN)
S N= T P

T P+FN
[34], [56], [74],
[88], and [113]

Specificity (SP)
S P= T N

T N+FP [88]

Accuracy (AC)
AC = T P+T N

T P+T N+FP+FN
[34], [56], [74]

Overlap (OV)
OV = T P

FP+FN
[25], [38], [45],
[71], [85]

Overlap Error (OE)
OE = 1−Ov

[44], and [27]

Surface distance (SD) Given unsigned dis-
tance ds between
between the algo-
rithmic segmented
surface and ground
truth.

S D= 1
N

∑s=1
N ds

[62], [49], [120],
[110], [109], and
[114]
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Table 4: Evaluation metrics for 3D segmentation
Metric Parameters Equation Used by

Vo
lu

m
e

Hausdorff distance (HD) Given a set of
finite voxels
A =
{

a1,a2, ....ap

}

and

B =
{

b1,b2, ...., bq

}

HD (A, B) = max(h (A, b) ,h (B,A))
whereh (A, B) = maxa∈A (minb∈B ‖a− b‖)

[3], [104], [106]

Dice similarity coefficient (DSC) TP = True positive,
TN = True negative,
FP = False positive,
and FN= False Neg-
ative in voxels

DSC= 2T P
(FP+T P)+(T P+FN)

[60], [3], [97],
[104], [63], [62],
[64], [49], [118],
[120]

Sensitivity (SN)
S N= T P

T P+FN
[84], [97], [106]

Specificity (SP)
S P= T N

T N+FP
[84], [106]

Accuracy (Ac)
Ac= T P+T N

T P+T N+FP+FN
[84]

Similarity (VS)
VS = 2T P

2+FP−FN
[123]

Detection (VDe)
VDe= T P

FP+FN
[114]

Detection error (VDEr)
VDEr = 1− VDe

[114]

Difference (VD) MSV =Manually seg-
mented volume, and
ASV = Algorithmi-
cally segmented vol-
ume

VD = (MS V
⋃

AS V)−(MS V
⋂

AS V)
2×MS D

[33], [136], [9],
[96], [109]

Average difference (AVD)
AVD= MS V−AS V

MS V
[33], [46], and
[54]

Overlap (VO)
VO= MS V∩AS V

MS V∪AS V
[91], [94], [106]

Overlap error (VOE)
VOE= 1− VO

[9]

Error (VE)
VE = MS V+AS V−2(MS V

⋂

AS V)
MS V+AS V

[58]

Centroid distance (VCD) Given ground truth
centroidcm andca al-
gorithmic segmented
volume centroid.

VCD= |cm − ca|
[110], and [109]
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Table 5: Quantitative evaluations : prostate segmentation in TRUS imaging

Reference Year Dim B/A Pre-processing Segmentation Criteria Auto Performance Validation
Measure Value

C
on

to
ur

an
d

S
ha

pe

Pathak [17]
2000 2D Yes Stick filter Edge Based No Contour MAD 1.5 mm 125 images

Contour HD 4 mm
Abolmaesumi [25] 2004 2D No Stick filter Probabilistic Filter No Area OV 98% 6 images

Sahba [27]

2005 2D No Smoothing,
morphological
filtering and
thresholding

Probabilistic Filter No Contour MD 3.3±1.3 pixels 19 images

Area error 2.4±1.1%

Knoll [33]

1999 3D Yes Wavelet for
edge enhance-
ment

DM - ACM Yes Volume VD 10.97% 77 images

Contour MD 2.61 mm
Volume AVD 8.48%

Ladak [34]

2000 2D No No DM - ACM No Contour MAD 4.4(≈0.63 mm)±1.8
pixels

117 images

Contour MaxD 19.5(≈2.5 mm)±7.8
pixels

Area AC 90.1±3.2%
Area SN 94.5±2.7%

Ding [55] 2005 3D Yes No DM - ACM No Contour MAD 2.79±1.94 mm 6 data sets

Zaim [38]
2007 2D No Median and

morphological
filtering

DM - ACM Yes Area OV 92% 10 images

Ghanei [39] 2001 3D Yes No DM - Mesh No Volume VS 89% 10 data sets

Shen [44]

2003 2D No Gabor features DM - ASM Yes Contour MD 3.2(≈1.28 mm) ±
0.87 pixels

8 images

Area OE 3.98±0.97%
Area error 1.66±1.68%

Betrouni [45]

2004 2D No Median and
morphological
filering

DM - ASM No Contour MD 3.77(≈2.55 mm) ±
1.3 pixels

10 images

Contour MaxD 6.25(≈4.18 mm) ±
1.8 pixels

Area OV 93%±0.9%

Hodge [136]

2006 3D Yes Median filter DM - ASM No Contour MD 0.12±0.45 mm 36 data sets
Contour MAD 1.09±0.49 mm
Contour MaxD 7.27±2.32 mm
Volume VD 0.22±4.58%

Hu [54]

2002 3D Yes No DM - Curve Fitting No Contour MD (-)0.2±0.28 mm 5 data sets
Contour MAD 1.19±0.14 mm
Contour MaxD 7.01±1.04 mm
Volume VD 7.2±3.4%

Gong [90]
2004 2D Yes No DM - Curve Fitting No Contour MD 1.36±0.58 mm 125 images

Contour HD 3.42±1.52 mm

Badiel [56]

2006 2D No No DM - Curve Fitting No Area SN 97.4±1% 17 images
Area AC 93.5±1.9%
Contour MAD 0.67±0.18 mm
Contour MaxD 2.25±0.56 mm

Mahdavi[58] 2011 3D Yes No DM - Curve Fitting No Volume VE 6.63±0.9% 21 data sets
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Table 6: Quantitative evaluations : prostate segmentation in TRUS imaging continued...

Reference Year Dim B/A Pre-processing Segmentation Criteria Auto Performance Validation
Measure Value

P
R

Zaim [71]
2005 2D No Median and

morphological
filtering

Classifier - ANN Yes Area OV 91% 10 images

Mohammed [74]
2006 2D No Gabor filtering Classifier - SVM Yes Area SN 83.30% 18 regions

Area AC 93.75%

H
yb

rid
M

et
ho

ds

Liu [78]
2002 2D No Mean filtering Edge and Average Yes Contour MD 0.4±1.3 mm 282 images

shape model Contour MAD 0.9±0.9 mm
Contour MaxD 3.8 mm

Gong [137]
2005 2D Yes No Level set and Curve Fit-

ting
No Contour MAD 0.64, 1.13, 0.52 and

1.16 mm
4 images

Medina [85]
2005 2D No Median filter-

ing
AAM No Area OV 96% 95 images

Contour MD 3.58±1.49 pixels

Tutar [91]
2006 3D Yes No Mesh and Average No Contour MAD 1.26±0.41 mm 30 data sets

shape model Contour MaxD 4.06±1.25 mm
Volume VO 83.5±4.2%

Zhan [9]

2006 3D Yes Gabor filtering SVM, DM and Mesh Yes Contour MD 1.07(≈0.33 mm) ±
0.1 voxels

6 data sets

Volume VOE 4.31±0.4%
Volume VD 2.39±1.29%

Yang [92]
2006 3D Yes No Shape model and Level

set
Yes Correct seg-

mentation
rate

82% 11 data sets

Cośıo [10]
2008 2D No No EM and ASM Yes Contour MAD 1.65±0.67 mm 22 images

Contour MaxD 3.93±1.9 mm

Diaz [84]
2008 3D Yes Stick filters ACM and SVM No Volume SN 80% 7 data sets

Volume AC > 90%
Volume SP > 90%

Yan [79] 2010 2D Yes No ACM and ASM Yes Contour MAD 2.01±1.02 mm 10 data sets

Ghose [87]
2010 2D No Haar wavelets Wavelets and AAM No Area DSC 0.95±0.1 25 images

Contour MAD 1.48±0.36 mm

Ghose [89]
2011 2D No No EM and AAM Yes Area DSC 0.97±0.01 23 data sets

Contour MAD 0.49±0.20 mm

Ghose [88]
2012 2D No Haar Wavelets Quadrature filter and

AAM
No Area DSC 0.95±0.2 6 data sets

Contour MAD 1.26±0.51 mm

Garnier [94]
2011 3D Yes No Mesh, graph cut and

DDC
No Volume VO 86.36±3.78% 28 data sets

Volume HD 4.79±1.62 mm
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Table 7: Quantitative evaluations : prostate segmentation in MR images

Reference Year Dim In. Pre-processing Segmentation Criteria Auto Performance Validation
Measure Value

C
on

to
ur Samiee [20] 2006 2D Yes Normalization Edge Based No Area DSC 0.9057±0.0014 2 data sets

Flores-Tapia [21] 2008 2D Yes Wavelets Edge Based No Area DSC 0.93±0.005 19 images
Zhu [47] 2007 3D No No DM - ASM No RMSD 5.4811±2.9 mm 26 data sets

R
eg

io
n

Klein [60] 2008 3D No No Atlas Yes Volume median DSC 0.85 50 data sets

Langerak [63]

2010 3D No No Atlas Yes Volume DSC error 0.0.05 100 data
sets

Volume SN/SP error 0.05
0.99

Dowling [62]

2011 3D No Bias field
correction,
histogram
equalization
and smoothing

Atlas Yes Volume Median DSC 0.86 50 data sets

Area SD 2.00±1.3 mm

H
yb

rid
M

et
ho

ds

Allen [96]
2006 3D No No EM and DM No Contour MAD 2.8±0.82 mm 22 data sets

Volume VD 6.5±5.4%
Martin [2] 2008 3D - No Atlas and DM No Mean error 3.39±1.95 mm 18 data sets

Makni [3]
2009 3D - No DM and Bayes Yes Volume HD 9.62 mm 12 data sets

Classifier Volume DSC 0.90

Vikal [95]
2009 3D Yes Stick filters Edge and Shape No Contour MAD 2.0±0.6 mm 3 data sets

guidance Area DSC in mid
slice

0.93±0.3

Liu [6] 2009 2D Yes No DM and Level set Yes Area DSC 0.91±0.03 10 data sets
Firjani [101] 2010 2D Yes No Intensity and shape Yes Area OE 5.2±1.2% 98 images
Firjani [102] 2011 3D Yes No Intensity and shape Yes Contour MD 0.8±0.9 mm 98 images

Martin [97]

2010 3D No No Probabilistic Atlas Yes Area SD 2.41 mm 36 data sets
and DM DSC 0.84

RMSD 1.97
MaxD 9.04
Sensitivity 0.86

Gao [104]

2010 3D No No Shape and Edge No Volume DSC 0.82±0.03 15 data sets
guidance for level sets Volume HD 10.22±4.03 mm 15 data sets

Volume DSC 0.84±0.03 13 data sets
Volume HD 8.10±1.50 mm 13 data sets

Toth [105]
2011 3D Yes Multiple ker-

nel Gaussian
filtering

Shape and Edge
Based

Yes Volumetric ratio 1.05±0.21 45 data sets

Toth [106]

2011 3D Yes No Shape and Edge
Based

Yes Volume VO 0.7 32 data sets

Volume SN 0.81
Volume SP 0.99
Contour HD 7mm
Contour MAD 5mm
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Table 8: Quantitative evaluations : prostate segmentation in CT images

Reference Year Dim In. Pre-processing Segmentation
Criteria

Auto Performance Validation

Measure Value

C
on

to
ur

an
d

sh
ap

e

Knoll [33]

1999 3D - Wavelets DM - ACM Yes Contour MD 2.48 mm 86 Images
Volume VD 11.78%
Volume AVD 9.5%

Tang [48] 2004 2D - No DM - ASM Yes Contour MD 2.44±1.24 mm 5 images

Feng [49]
2009 3D - No DM - ASM No Volume DSC 90.5±4% 24 data sets

Area SD 1.9±0.71 mm

R
eg

.

Costa [64] 2010 3D No No Atlas Yes Volume DSC 0.564±0.192 19 data sets
Costa [65] 2011 3D No No Atlas Yes Volume DSC maximum 0.47 approx. 24 data sets

H
yb

rid
M

et
ho

ds

Freedman [109]

2005 3D - No S-R Mesh Median volume VD 89%, 81%, 85% 48 data sets

Volume VCD 3.17 pix (≈ 2.94
mm), 5.29 pix (≈
4.91 mm), 4.07
pix (≈ 3.78 mm)

of 3 pa-
tients

Area SD 0.57, 1.02, 0.83
pix

Rousson [110]

2005 3D - No S-R Level set No Area OV 84% 16 images
FP 21%
Volume VCD 5.2 mm
Area SD 4.2 mm

Davis [111]
2005 3D - No DM and registra-

tion
Yes Volume DSC 0.82±0.06 40 dataset

Costa [113]
2007 3D - No S-R Level set Yes Area SN 75% 16 data sets

Area AC 80%

Feng [119]
2010 3D - No ASM and appear-

ance model
No Volume DSC 92.4 24 data sets

Area SD 1.47 mm

Song [114]
2009 3D - No ACM, Mesh and No Volume VDe 85.2% 21 data sets

Graph Cut Volume FP 13.60%
Area SD 1.38±1.08 mm

Chen [117] 2009 3D - No S-R Level set No Volume VS 93.20% 15 dataset
Chen [118] 2009 2D - No S-R Level set Yes DSC 0.91±0.90 10 images

Li [120]
2011 3D - No Classifier and

level sets
Yes DSC 0.908 11 data sets

Area SD 1.40 mm

Liao [121]
2011 3D - No Classifier and

registration
Yes Volume DSC 0.89±0.02 10 data sets

Lu [122]
2011 3D - No S-R Level set and

registration
Yes Contour MAD 1.96±0.48 mm 32 data sets

Contour HD 2.83±0.76 mm

Chen [123]

2011 3D - Median and
morphological
filtering

Shape and
anatomy con-
strained intensity
based registration

Yes Volume TP 0.84 185 data
sets

Volume FP 0.13
Area SD 1.1 mm
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