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Abstract

Autoregressive regime-switching models are being widely used in mod-
elling financial and economic time series such as business cycles (Hamilton,
1989; Lam, 1990), exchange rates (Engle and Hamilton, 1990), financial
panics (Schwert, 1989) or stock prices (Wong and Li, 2000). When the
number of regimes is fixed the statistical inference is relatively straightfor-
ward and the asymptotic properties of the estimates may be established
(Francq and Roussignol, 1998; Krishnamurthy and Rydén, 1998; Douc
R., Moulines E. and Rydén T., 2004). However, the problem of select-
ing the number of regimes is far less obvious and hasn’t been completely
answered yet. When the number of regimes is unknown, identifiability
problems arise and, for example, the likelihood ratio test statistic is no
longer convergent to a χ

2-distribution. In this paper, we consider mod-
els which allow the series to switch between regimes and we propose to
study such models without knowing the form of the density of the noise.
The problem we address here is how to select the number of components
or number of regimes. One possible method to answer this problem is
to consider penalized criteria. The consistency of a modified BIC crite-
rion was recently proven in the framework of likelihood criterion for linear
switching models (see Oltéanu and Rynkiewicz 2012). We extend these
results to mixtures of nonlinear autoregressive models with mean square
error criterion and prove the consistency of a penalized estimate for the
number of components under some regularity conditions.
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1 The model - definition and regularity condi-

tions

Throughout the paper, we shall consider that the number of lags is known and,
for ease of writing, we shall set the number of lags equal to one, the extension
to l time-lags being immediate.
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Let us consider the real-valued time series Yt which verifies the following
model

(1) Yt = Fθ0
Xt

(Yt−1) + εt,

where

• Xt is an iid sequence of random variables valued in a finite space {1, ..., p0}
and with probability distribution π0 ;

• for every i ∈ {1, ..., p0}, Fθ0
i
(y) ∈ F and

F =
{
Fθ, θ ∈ Θ, Θ ⊂ R

l compact set
}

is the family of possible regression functions. We suppose throughout the
rest of the paper that Fθ0

i
are sublinear, that is they are continuous and

there exist
(
a0i , b

0
i

)
∈ R

2
+ such that

∣∣∣Fθ0
i
(y)

∣∣∣ ≤ a0i |y|+ b0i , (∀) y ∈ R ;

• for every i ∈ {1, ..., p0}, (εt)t∈Z
is an independent centered noise, indepen-

dent of (Yt)t∈Z
.

We need the following hypothesis which implies, according to Yao and Attali
(2000), strict stationarity and geometric ergodicity for Yt :

(HS)
∑p0

i=1 π
0
i

∣∣a0i
∣∣s < 1

Let us remark that hypothesis (HS) does not request every component to
be stationary and that it allows non-stationary “regimes” as long as they do not
appear too often.

2 Estimation of the number of regimes

Let us consider an observed sample {y1, ..., yn} of the time series Yt. Then, for
every observation yt, the conditional expectation with respect to the previous
yt−1 and marginally in Xt is

E (Yt | yt−1) =

p0∑

i=1

π0
i F

0
θi
(yt−1) := g0 (yt−1)

As the goal is to estimate p0, the number of regimes of the model, let us
consider all possible conditional expectation up to a maximal number of regimes
P , a fixed positive integer. We shall consider the class of functions

GP =

P⋃

p=1

Gp, Gp =

{
g | g (y1) =

p∑

i=1

πiFθi (y1)

}
,

where πi ≥ η > 0,
∑p

i=1 πi = 1.
For every g ∈ GP we define the number of regimes as

p (g) = min {p ∈ {1, ..., P} , g ∈ Gp}
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and let p0 = p
(
g0
)
be the true number of regimes.

We can now define the estimate p̂ as the argument p ∈ {1, ..., P} maximizing
the penalized criterion

(2) Tn (p) = supg∈Gp
En (g)− an (p)

where

En (g) =
1

2

n∑

t=2

(yt − g(yt−1))
2

and an (p) is a penalty term.

Convergence of the penalized mean square estimate

For λ > 0, let us define the generalized derivative function :

dλθ (Yt, Yt−1) =

e
−λ(Yt−g(Yt−1))2

−e
−λ(Yt−g0(Yt−1))2

e
−λ(Yt−g0(Yt−1))2

‖ e
−λ(Yt−g(Yt−1))2

−e
−λ(Yt−g(Yt−1))2

e
−λ(Yt−g0(Yt−1))2

‖2

= e
−λ((Yt−g(Yt−1))2−(Yt−g0(Yt−1))2)−1

‖e−λ((Yt−g(Yt−1))2−(Yt−g0(Yt−1))2)−1‖2

(1)

and let us define
(
dλθ

)
−
(x, y) = min

{
0, dλθ (x, y)

}
.

Several statistical and probabilistic notions such as mixing processes, brack-
eting entropy or Donsker classes will be used hereafter. For parcimony purposes
we shall not remind them, but the reader may refer to Doukhan (1995) and Van
der Vaart (2000) for complete monographs on the subject.

The consistency of p̂ is given by the next result, which in an extension of
Gassiat (2002):

Theorem 1 : Consider the model (Yt, Yt−1) defined by (1) and the penalized-
likelihood criterion introduced in (2). Let us introduce the next assumptions :

(A1) an (·) is an increasing function of p, an (p1) − an (p2) → ∞ when

n → ∞ for every p1 > p2 and an(p)
n

→ 0 when n → ∞ for every p

(A2) the model (Yk, Xk) verifies the weak identifiability assumption

p∑

i=1

πiFi (y1) =

p0∑

i=1

π0
i F

0
i (y1) ⇔

p∑

i=1

πiδθi =

p0∑

i=1

π0
i δθ0

i

(A3) It exists λ > 0 so that
{
dλθ , θ ∈ Θ

}
is a Donsker class.

Then, under hypothesis (A1)-(A3), (HS), p̂ → p0 in probability.

The assumption (A1) is fairly standard for model selection, in the Gaussian
case (A1) will be fulfilled by the BIC criterion. Note that the weak identifi-
cation assumption (A2) does not allowed to use linear regression because the
regression functions have to be linearly independents.The assumption (A3) is
more difficult to check. First we note:

(
e−λ((Yt−g(Yt−1))

2−(Yt−g0(Yt−1))
2) − 1

)2

=

e−2λ((Yt−g(Yt−1))
2−(Yt−g0(Yt−1))

2) − 2e−λ((Yt−g(Yt−1))
2−(Yt−g0(Yt−1))

2) + 1
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So, dλθ is well defined if E
[
e−2λ((Yt−g(Yt−1))

2−(Yt−g0(Yt−1))
2)
]
< ∞, but

(Yt − g(Yt−1))
2 − (Yt − g0(Yt−1))

2 =
(Yt − g0(Yt−1) + g0(Yt−1)− g(Yt−1))

2 − (Y − g0(Yt−1))
2 =

2ε(g0(Yt−1)− g(Yt−1) + (g0(Yt−1)− g(Yt−1))
2

where ε = Yt−g0(Yt−1) is the noise of the model. So, if the regression functions
are bounded, dλθ is well defined if λ > 0 exists such that eλ|ε| < ∞ i.e. ε admits
exponential moments. Finally, using the same techniques of reparameterization
as in Liu and Shao, 2003 or Oltéanu and Rynkiewicz, 2012, assumption (A2)
can be shown to be true for mixture of MLP regression models.

3 Conclusion

We have proven the consistency of BIC-like criteria for estimating the number
of components in a mixture of non-linear regression. This result can be shown
without knowing the form of the density function of the noise, altought the
weak identifiabilty assumption excludes linear regression functions. Finally, a
more challenging task may be to get a more precise tuning of penalization term
which, according to our result, can be chosen among a wide range of functions.
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