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. However, the problem of selecting the number of regimes is far less obvious and hasn't been completely answered yet. When the number of regimes is unknown, identifiability problems arise and, for example, the likelihood ratio test statistic is no longer convergent to a χ 2 -distribution. In this paper, we consider models which allow the series to switch between regimes and we propose to study such models without knowing the form of the density of the noise. The problem we address here is how to select the number of components or number of regimes. One possible method to answer this problem is to consider penalized criteria. The consistency of a modified BIC criterion was recently proven in the framework of likelihood criterion for linear switching models (see Oltéanu and Rynkiewicz 2012). We extend these results to mixtures of nonlinear autoregressive models with mean square error criterion and prove the consistency of a penalized estimate for the number of components under some regularity conditions.

The model -definition and regularity conditions

Throughout the paper, we shall consider that the number of lags is known and, for ease of writing, we shall set the number of lags equal to one, the extension to l time-lags being immediate.

Let us consider the real-valued time series Y t which verifies the following model ( 1)

Y t = F θ 0 X t (Y t-1 ) + ε t ,
where • X t is an iid sequence of random variables valued in a finite space {1, ..., p 0 } and with probability distribution π 0 ;

• for every i ∈ {1, ..., p 0 }, F θ 0 i (y) ∈ F and

F = F θ , θ ∈ Θ, Θ ⊂ R l compact set
is the family of possible regression functions. We suppose throughout the rest of the paper that F θ 0 i are sublinear, that is they are continuous and there exist

a 0 i , b 0 i ∈ R 2 + such that F θ 0 i (y) ≤ a 0 i |y| + b 0 i , (∀) y ∈ R ;
• for every i ∈ {1, ..., p 0 }, (ε t ) t∈Z is an independent centered noise, independent of (Y t ) t∈Z .

We need the following hypothesis which implies, according to [START_REF] Yao | On stability of nonlinear AR processes with Markov switching[END_REF], strict stationarity and geometric ergodicity for Y t :

(HS) p0 i=1 π 0 i a 0 i s < 1
Let us remark that hypothesis (HS) does not request every component to be stationary and that it allows non-stationary "regimes" as long as they do not appear too often.

Estimation of the number of regimes

Let us consider an observed sample {y 1 , ..., y n } of the time series Y t . Then, for every observation y t , the conditional expectation with respect to the previous y t-1 and marginally in X t is

E (Y t | y t-1 ) = p0 i=1 π 0 i F 0 θi (y t-1 ) := g 0 (y t-1 )
As the goal is to estimate p 0 , the number of regimes of the model, let us consider all possible conditional expectation up to a maximal number of regimes P , a fixed positive integer. We shall consider the class of functions

G P = P p=1 G p , G p = g | g (y 1 ) = p i=1 π i F θi (y 1 ) ,
where π i ≥ η > 0, p i=1 π i = 1. For every g ∈ G P we define the number of regimes as p (g) = min {p ∈ {1, ..., P } , g ∈ G p } and let p 0 = p g 0 be the true number of regimes. We can now define the estimate p as the argument p ∈ {1, ..., P } maximizing the penalized criterion

(2) T n (p) = sup g∈Gp E n (g) -a n (p)
where

E n (g) = 1 2 n t=2 (y t -g(y t-1 )) 2
and a n (p) is a penalty term.

Convergence of the penalized mean square estimate For λ > 0, let us define the generalized derivative function :

d λ θ (Y t , Y t-1 ) = e -λ(Y t -g(Y t-1 )) 2 -e -λ(Y t -g 0 (Y t-1 )) 2 e -λ(Y t -g 0 (Y t-1 )) 2 e -λ(Y t -g(Y t-1 )) 2 -e -λ(Y t -g(Y t-1 )) 2 e -λ(Y t -g 0 (Y t-1 )) 2 2 = e -λ ( (Y t -g(Y t-1 )) 2 -(Y t -g 0 (Y t-1 )) 2 ) -1 e -λ((Y t -g(Y t-1 )) 2 -(Y t -g 0 (Y t-1 )) 2 ) -1 2 (1) 
and let us define d λ θ -(x, y) = min 0, d λ θ (x, y) . Several statistical and probabilistic notions such as mixing processes, bracketing entropy or Donsker classes will be used hereafter. For parcimony purposes we shall not remind them, but the reader may refer to [START_REF] Doukhan | Mixing: properties and examples[END_REF] and [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF] for complete monographs on the subject.

The consistency of p is given by the next result, which in an extension of [START_REF] Gassiat | Likelihood ratio inequalities with applications to various mixtures[END_REF]:

Theorem 1 : Consider the model (Y t , Y t-1 ) defined by [START_REF] Douc | Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime[END_REF] 

and the penalizedlikelihood criterion introduced in (2). Let us introduce the next assumptions :

(A1) a n (•) is an increasing function of p, a n (p 1 )a n (p 2 ) → ∞ when n → ∞ for every p 1 > p 2 and an(p) n → 0 when n → ∞ for every p (A2) the model (Y k , X k ) verifies the weak identifiability assumption

p i=1 π i F i (y 1 ) = p0 i=1 π 0 i F 0 i (y 1 ) ⇔ p i=1 π i δ θi = p0 i=1 π 0 i δ θ 0 i (A3) It exists λ > 0 so that d λ θ , θ ∈ Θ is a Donsker class.

Then, under hypothesis (A1)-(A3), (HS), p → p 0 in probability.

The assumption (A1) is fairly standard for model selection, in the Gaussian case (A1) will be fulfilled by the BIC criterion. Note that the weak identification assumption (A2) does not allowed to use linear regression because the regression functions have to be linearly independents.The assumption (A3) is more difficult to check. First we note: e -λ((Yt-g(Yt-1)) 2 -(Yt-g 0 (Yt-1)) 2 ) -1 2 = e -2λ((Yt-g(Yt-1)) 2 -(Yt-g 0 (Yt-1)) 2 ) -2e -λ((Yt-g(Yt-1)) 2 -(Yt-g 0 (Yt-1)) 2 ) + 1 So, d λ θ is well defined if E e -2λ((Yt-g(Yt-1)) 2 -(Yt-g 0 (Yt-1)) 2 ) < ∞, but

(Y t -g(Y t-1 )) 2 -(Y t -g 0 (Y t-1 )) 2 = (Y t -g 0 (Y t-1 ) + g 0 (Y t-1 ) -g(Y t-1 )) 2 -(Y -g 0 (Y t-1 )) 2 = 2ε(g 0 (Y t-1 ) -g(Y t-1 ) + (g 0 (Y t-1 ) -g(Y t-1 )) 2
where ε = Y tg 0 (Y t-1 ) is the noise of the model. So, if the regression functions are bounded, d λ θ is well defined if λ > 0 exists such that e λ|ε| < ∞ i.e. ε admits exponential moments. Finally, using the same techniques of reparameterization as in Liu and Shao, 2003 or Oltéanu and Rynkiewicz, 2012, assumption (A2) can be shown to be true for mixture of MLP regression models.

Conclusion

We have proven the consistency of BIC-like criteria for estimating the number of components in a mixture of non-linear regression. This result can be shown without knowing the form of the density function of the noise, altought the weak identifiabilty assumption excludes linear regression functions. Finally, a more challenging task may be to get a more precise tuning of penalization term which, according to our result, can be chosen among a wide range of functions.