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The Zhdanov-Trubnikov equation describing wrinkled premixed flames is studied, using pole-decompositions as starting points. Its one-parameter (1 c 1) nonlinearity generalizes the Michelson-Sivashinsky equation (c=0) to a stronger Darrieus-Landau instability. The shapes of steady flame crests (or periodic cells) are deduced from Laguerre (or Jacobi) polynomials when c  1, which numerical resolutions confirm. Large wrinkles are analysed via a pole density: adapting results of Dunkl relates their shapes to the generating function of Meixner-Pollaczek polynomials, which numerical results confirm for 1<c0 (reduced stabilization). Although locally ill-behaved if c>0 (over-stabilization) such analytical solutions can yield accurate flame shapes for 0 c 0.6. Open problems are invoked.

Introduction.

The flames propagating into premixed gaseous reactants -be they molecular [1] or nuclear [2]-may often be viewed as fronts: their actual thickness  based on flat-flame speed L u and heat diffusivity often is much smaller than the wavelength of their deformations. Being also very subsonic ( L u << speed of sound) such combustion fronts border fluids of constant densities: u  (fresh side) or b u    . As the Atwood number ( ) / ( ) 1

u b u b          is
nonzero, flames are subject to the hydrodynamic Darrieus [START_REF] Darrieus | work presented at La Technique Moderne[END_REF]-Landau [START_REF] Landau | [END_REF] (DL) instability at long wavelengths; at shorter scales, variations in local burning speed (relative to reactants) with front mean curvature provide a neutral wavelength ñeutral L  ( neutral L   , though).

Acknowledging that 1   implies a weak DL instability, Sivashinsky's analysis [5] provided the first systematic weakly-nonlinear description of the local amplitude  of wrinkling: a companion numerical work [6] confirmed that the (Michelson-) Sivashinsky (MS) equation ( 0 c  in Eq.( 1)) correctly captures the slow spontaneous dynamics of flat-on- guy.joulin@lcd.ensma.fr: Corresponding author, Tel(33)(0)549498186, Fax(33)(0)549498176  bruno.denet@irphe.univ-mrs.fr average flames… if 0    . Yet in practice  ranges from 0.2-0.5 (Supernovae) to 0.65-0.85 (chemical fronts), and incorporating higher orders in  is of interest. The two subleading orders just gave the MS equation modified coefficients [7]- [9]. At the next one a new quadratic non-linearity appears in the equation for  , but another order only changes coefficients therein [START_REF] Kazakov | Effect of Higher-Order Nonlinearity on the Steady Propagation of Premixed Flames with Weak Gas Expansion[END_REF]. A non-linearity of same type first appeared in (1) O   amplitudeexpansion derivations of an equation for  , where a small flame slope is postulated [START_REF] Zhdanov | [END_REF] [12].

If a single space coordinate is retained, the Zhdanov-Trubnikov (ZT) type of equation [START_REF] Zhdanov | [END_REF] so obtained for slow spontaneous evolutions of front wrinkles has the (rescaled) form: 
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  ]; it may be destabilizing, 0 c  , or overstabilizing ( 0 c  ), affecting the solutions of (1) in qualitatively different ways (e.g. at tips).

Solving the non-linear and non-local Eq.( 1) with a general c might help one fit flame shapes from experiments [1], or simulations that use

(1) O  
, and is interesting per se. The novel solutions of (1), periodic or not, obtained in the present Letter are steps in this direction.

Pole decompositions.

Just like the MS equation [13], (1) admits a pole decomposition [14]: ( , )

x t z  , the flame slope continued in complex : z x iB   plane, is meromorphic with simple poles ( )  

k z t . All have 2 / (1 ) c    as residue because of a common dominant balance 2 2 { 2 } x x x x c       at ( ) k z z t  . They feature in N conjugate pairs k k z z   [ ( , ) t z  is real when z is]
1 2 ( ) cot ( ) 1 N x k k N x x iB c         . ( 2 
)
For the "steady" ZT equation to be fulfilled the

| | 1 k B  's must obey [14] 1 2 , 1 coth ( ) 1 j N k j k j k j N j k c B B f c                 , (3) 
:

1 2 / (1 ) f Nc c     , (4) 
where : sgn( )

k k B   originates from 1 1 2 2 {cot( ( ))} 1 cot( ( )) k k k x iB i x iB       
. The number N of pole pairs in ( 2) is constrained by the inequality

1 2 coth( ( )) 1 N j N B B    to be less than 1 1 2 ( ) :
(1 )

opt N         ( .     =integer part), but is otherwise arbitrary. The speed V  2 1 0 2 (1 ) x c dx      is found [14] from (2)(3) to be 2 (1 )/(1 ) V N N c      , whereby 2 1 c  .
Centred Isolated crests are limiting cases of cells (

1 z N   ), have 2 2 2 { } / x N x    2 ~x  at | | /
x N    , and 0 V  . For any 1 N  they obey 'local' versions of (2)-(4), viz.:

2 ( ) 1 N x k N k x c x iB         , (5) 
,

1 2 1 j N k j k j N j k k j c c B B             . ( 6 
)
As when 0 c  [13], the only known exact result is then obtained by summing (6) timesk B

over 1 k  , 1 0 ... (2 / (1 ) 1) N B B N N c        , whereby 1 c  .

Isolated crests.

For reasons that shall gradually emerge, isolated crests with 0 c  are considered first. The simplest of them has 1 N  . Equation ( 6 B   as 1 c   , suggesting this is a limit to envisage first.

3.1: The c → -1 limit.

A small 1 c  means that the (1 ) 2

1 , 1

j N j j k k j k B B B              . ( 7 
)
According to a classical work of Stieltjes [START_REF] Andrews | Special Functions[END_REF] such leading order 2 / :

k k B     therefore are
zeros of the associated Laguerre polynomial ( 1) 1 ( )

N      . Equation (6) also simplifies for 1 k  : 2 1 (1 ) 1 2 2 N j j c B B        . (8) 
Since

1 2 2 1/ ... 1/ ( 1) N N       by (7), 1 / (1 )/2 B c N    : as anticipated 1 2 / B  
 . On integration (5) then yields the limiting flame shape ( )

x  for 1 c   , uniformly in x and N , in the Hopf-Cole -like form: ( ) ( ) . x x const         , (9) 
(1 ) ( ) 2 ln ( ) 

c z z            , (10) where 1 (1) 1 
( ) ( ) ( / ) N z z B i i z         . Numerical
  analytic in ( ) 0 z   whereby { } x x i        . Insofar as their lowest poles 1 ( ) iB t  have 1 ( ) / NB t    (1 ) c  , 1 ( ) c    follow uncoupled Burgers-type ( thus linearisable) equations 2 t z z z z i            , (11) 
since well separated poles ( )

k iB t with k 's of unlike signs do not interact if 1 c   . Those of   (or   ) globally drift towards ( ) 0 z   while interacting among themselves, until 1 ( ) NB t  (1 ) 1 c     . From then on, : F      1 ln( ( )) z iB t   obey another linearisable equation 2 2 ( (,0)) t z z z z z z z F F iF F F t F              (12) at all 1 | | ( ) z B t  scales. The near-real 1 ( ) B t  induce the 2 z  
"convection" term in (12), and soon get themselves slaved to ( , 0) ( , 0)

z z F t F t     , 1 (1 ) / 2 ( ) 1 2 ( , 0) z c B t F t       (see (8)).
The front shape is then

2 2 2 1 ( , ) ln ( ( ) ) | ( , ) | t x x B t F t x          
; it has a spike on top of the smoother pattern governed by (12) that in fine monitors its varying height and width.

3.2: Large crests.

Steady poles get packed when

N   , 1 k k N B B B    ; it is then appropriate to define such a density ( ) ( ) B B     that ( ) B dB
 measures the number of poles with 'altitudes' in ( , ) B B dB  [13]. In this continuous approximation of ( 6) the pole density pertaining to isolated crests obeys the singular integral equation: When 0 c  Eq.( 13) was solved [START_REF] Joulin | [END_REF] by Fourier series methods in terms of an angle / 2

  1 ( ) ( ') 2 ( ') ' ( ) (1 )( ') c B B B dB B c B B          , (13) with 
   / 2    defined by max / sin( ) B B   . The solution 0 ( ) c B   reads: 0 2 ( ) c w     , ( 14 
) 2 1 2 ( ) : ln(cot ( )) w     (15) 
The normalization max 0 0 ( )

B c B dB N     fixed max, 0 c B  to be 2 N   and contour evaluation of max max 2 ( ) ( ) (1 ) B x B B dB x c x iB          (16) 
with 0 c  gave the front slope [START_REF] Joulin | [END_REF]  : this odd continuous function of ( )

( ) w w    
may also be assumed to satisfy:

( 2 ) ( ) ( ) ( )

                    . ( 17 
)
We anticipate that such symmetries still hold when 0 c  . Trigonometric identities [e.g.

' ) ' ) 2 2
2 cos '/ (sin ' sin ) cot( ) tan( )

           
] then indicate that (13) will be solved when one finds a ( )

   obeying (17) and ( ) ( ) { ( )} { ( )} (1 ) / 2 c c                    , (18) 
where ( ) : sgn(sin( ))

    
and the (periodic-) Hilbert transform {.}  now refers to  .

Not being of the convolution type if 0 c  (18) is no longer simply amenable to a Fourier method. One can fortunately invoke results by Dunkl [17], who exhibited a sequence of onevariable real polynomials ( ) j p  that obey "ladder" relations ( [17], p.149, Theorem 1) once evaluated at ( ) w

   : 1 { ( ) ( ( ))} ( ( )), 0,1,... , j j p w p w j           (19) 1 ( ) { ( ( ))} ( ( )), 1,2, 
...

j j p w p w j           . ( 20 
)
Direct substitution in (18) and a term-by-term use of (19) (20) show that 2 ( )/(1 ) c      , with ( 1) j  as parity and 0 ( )

j j j r p     : ( , ) G r   2 1/2 arctan( ) (1 ) 
r r e     as generating function [START_REF] Andrews | Special Functions[END_REF]17].

The sum

2 2 1 0 ( ) ( ) n n n r p      is thus 1 2 ( ( , ) ( , )) r G r G r      2 1 /2 (1 ) 
sinh( arctan( )) 1 This integral reads 1 0 ( )

h t dt  , 1 2 : tan( ) t   , or 1 0 2 ( ) h t dt   as 2 ( 1 

/ ) ( ). h t t h t 

Integrations by parts then along the

contour { ( ) 0} { ( ) 2 } u u       in the complex plane of 2 ln( ) u t 
, and residue evaluations, give max B .

The flame slope, Eq.( 16), is expressible in terms of max sinh( ) : / x B   as:

1 1 2 2 1 2 sgn( ) ( ) | coth( ) | | tanh( ) | 2 tan( ) x x x              , (22) 
which when 0 c    resumes the profile ( ) sgn( ) ln coth ( ) x x x [START_REF] Joulin | [END_REF]. 

        found in

Periodic cells.

To analyse 2 -periodic patterns one again starts with N =1, in which case (3)(4) give

1 tanh( ) (1 ) / (1 ) B c c f     . One checks that 1 0 B    needs 2 1 c  and 1 N  1 1 2 (1 )    , i.e. 1   : cells of finite amplitude exist iff unstable modes fit in the box | | x   .
4.1: The c → -1 limit.

1 0 B  again is well below 2 ,..., N B B if 0 1 (1) c o   
. Equations (3)(4) specialized to the latter poles again simplify, especially when expressed in terms of

1 2 : coth( ) 1 k k C B   : 2 2, (1 ) 2 ( 1) 1 0 ( 
)

1 j N k k j j k k j C N c N C C C c                . ( 23 
)
Another result of Stieltjes [START_REF] Andrews | Special Functions[END_REF] says that such k C 's coincide with the zeros of a Jacobi polynomial 1 1 ( ', '') 1 ( ) 

N P C    in 1 2 : coth( ) C B  , yet with indices 1 ' 1/ 2N     and 1 '' 1/ 0      that lead to nonstandard polynomials ( 1 '' 1    ). The identity 1 1 ( ', '') 1 1 1 1 ( )/(1 ) N N P X X      2 2 ( ', '') 1 2 ( ) N P X     , with 2 1 1 (3 ) 
/ (1 ) X X X    , 2 1 ' '    , 2 1 1 '' 1 2 ' '' N        [ 19 
/ ( 1)) 0

N P C C       , where ' 1   and '' 1 2 0 N      .
Equation (3) also simplifies for 23)) is used.

1 k  , giving 1 2 (1 ) / 2 (1 ) B c N N B        once 2 ... 1/ N C C N      ( by (
The flame shape then obeys (9) [START_REF] Kazakov | Effect of Higher-Order Nonlinearity on the Steady Propagation of Premixed Flames with Weak Gas Expansion[END_REF] with

( ', '') 1 1 1 2 ( ) sin( ( )) ( 2 1 
)

iz N z z i B P e          , since ( 3) 
/( 1) C C   2 1 B e   .
The resulting wrinkle amplitude max( ) min( ) 

   diverges like 2 ln(1 ) . c const     when 1 c   at fixed  and 1 N   , because

4.2: Large cells.

In the large-N limit the neutral-to-actual wavelength ratio  must be small, for compatibility with 

  1 2 1 ( ) ( ') ( ') ' ( ) (1 ) tanh( ( ')) c B B B dB f B c B B          . ( 24 
)
The identity

2 1 2 coth( ( ')) (1 ' ) / ( ') ' B B T T T T      , with 1 2 
: tanh( ) T B  and similarly for ' T , helps one solve this formidable-looking equation. Trading B for T and exploiting the parities of  and ( ) ( )

T B    indeed produces:   1 ( ) ( ') 2 ( ') ' ( ) (1 )( ') c T T T dT T c T T F          , ( 25 
) 2 2 2 ( ') ' ( ') ' : 1 1 ( 1 ) ( 1 ') Nc T T T dT F c c c T           , (26) 
which formally coincides with (13), except for the provisionally unknown constant 1 F  .

One can nevertheless transpose the result on isolated crests as: 

c N B F c         , ( 28 
) 1 2 2 tan( ) : , tan( ) : 1 (1 2 ) N c c c N          . ( 29 
)
B   if 2 1 2 opt N N     ; (iii) At 1 c   ,   1/2 1 1 max 2 2 2 (1 ) tanh( ) / tanh( ) 1 N B B      .
The flame slope resembles (22):

1 1 2 2 1 2 sgn( ) ( ) | coth( ) | | tanh( ) | 2 tan( ) x x F x              , (30) 
yet with

1 1 max 2 2 sinh( ) tan( ) / tanh( ) x B   .When 2 1 N   [ 2    , max B   , 1 1 2 4 tanh( ) tan( ) x   , 1 2 cos( ) F  
] the flame shape is expressible via hypergeometric functions   2 1 .,.;.;. F :

1 1 2 2 ( ) 2( ( , ) ( , )) cos( ) / tan( ) x x x          , (31) 
where (1 ) ( , ) :

x      1 1 2 1 1 1 2 1 2 2 4 4 1, ;1 ; tan ( ) tan ( | |) F x x             .
Numerical resolutions of (3) with 1 N  confirm the above findings, see Fig. Still, when 0 c  is small enough, numerical resolutions of (3) for large isolated crests reveal that the above ( ) B  accurately fits the numerical density defined by 

  ) then gives 1 / B   (1 ) / (1 ) c c   , with three consequences: (i) 1 0 B  needs 2 1 c  , confirming this range as the physical one; (ii) 1 / B  increases with c ; (iii) 1 / 0

B

   only little feel their "conjugates" 0 k B  …unless very close; yet the exception can only concern 1 B  , due to the repulsion between k B 's of like signs. One then anticipates that 1 / , just like when 1 N  , the other poles staying at finite distances. Under this working assumption (6) simplifies considerably for 2

  principal-part prescription of this integral reflects the constraint j k  in(6), and its unspecified integration range is unknown; as when 0

  s so identified are the (non-monic) symmetric Meixner-Pollaczek polynomials ( 1/2) ( )
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 1 Figure 1: Numerical density [defined by
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 1 Figures 1-3 compare (21)(22), and ensuing flame shapes ( ) x  , with what Eqs. (6)(5) give if 1 N  , respectively: smaller 0 c  (weaker non-linear stabilization) give sharper crest tips.
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 23 Figure 2: Numerical flame-crest slope ( ) x x 

  ], and another identity changing the first index only, fortunately help one access the

Figure 4 :

 4 Figure 4: Numerical flame-cell shapes ( ) x  [from (2)(3)] vs. abscissa x [same parameters as in Fig.1], and predictions from quadrature of Eq.(30).



  decreases as | | c grows. And    remains finite at 1 c   : continuous densities cannot capture the sharp spikes caused by is physically spurious, because acceptable pole-densities are nonnegative.



  very accurately fits the numerical slopes, except very close to 0 x  , Fig.5.
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 5 Figure 5: Numerical flame-crest slope [from (5)(6)] vs. abscissa x , and the predicted ( ) x x 

  , see below(22). A noteworthy point is as follows:

	and vanishing at all odd multiples of / 2
	although this density has		max B	max B B  	as a support, it may be viewed as the restriction to
	the physical range	 	/ 2	   	/ 2	of a 2 -periodic function ( )   	defined for all real 

Open problems.

This work provides analytical descriptions of steady flame shapes obeying the Zhdanov-Trubnikov equation (1), mostly when its non-local non-linearity is destabilizing ( 0 c  ) and the front wrinkles are sharper than MS flames. Yet some problems remain pending.

The density and front-slope obtained for large wrinkles with 0 c  are outer solutions that hold for A fuller treatment should also describe the 2-tip wrinkles resembling experiments [1] that (1) often produces if endowed with Neumann conditions (2 unlike pole-rows per cell [13] [20]).