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§1 - The Poiseuille-Rayleigh-Bénard (PRB) flows are laminar mixed 

convection flows in horizontal rectangular ducts uniformly heated from below and 

uniformly cooled from above. The three most common configurations in PRB flows 

are the Poiseuille flow and two thermoconvective flow configurations : the 

transversal rolls (R) and the longitudinal rolls (R//). These flow patterns are 

presented on figures 1, 2 and 3 respectively, with their parameter range. This paper 

aims at making a comprehensive review of the literature on the PRB flows and a 

synthesis of the qualitative and quantitative data which describe them. Notably, we 

complete Kelly’s reviews [1, 2] by analysing more than ninety new references on this 

subject, among which fifty are later than 1993. The temporal linear stability analyses 

of the Poiseuille flow vis-à-vis the R and the R// give the diagrams presented on 

figures 4 and 5 for infinite and finite spanwise aspect ratio ducts, respectively. The 

results of these diagrams have been known since early eighties (cf. §4). They are 

qualitative results which only give a simplified idea of the stability of the PRB flows. 

The spatio-temporal linear stability analyses (dating from early nineties), which imply 

the concepts of convective and absolute instabilities, are more appropriate to describe 

the stability of these flows (cf. §5). Furthermore, recent experimental, theoretical and 

numerical studies, carried out in the non-linear domain, have shown the existence of 

three-dimensional unsteady thermoconvective structures whose shape is more 

complex than the R and the R//. A review of these complex structures and on their 

stability is proposed in §8. The industrial applications of the PRB flows are presented 

in §2 and the pioneer experiments are presented in §3. A review on the heat transfers 

and on the characteristics growth length of the R and of the R// is proposed in §6, and 

a synthesis of the quantitative data on the spatial and temporal characteristics of the 

R and of the R// is given in §7.  
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§2 - The two main industrial applications of the PRB flows concern, first, the 

development of the horizontal rectangular chemical vapor deposition (CVD) reactors 

which are used to produce thin and uniform films of inorganic matter (cf. §2.1) and, 

second, the cooling of the electronic equipments (cf. §2.2). A general presentation of 

the CVD process is done in §2.1.1. In §2.1.2, it is shown that the presence of R 

flows, of R// flows or of a steady transversal roll located just above the entrance of the 

heated zone (cf. figure 6 and table 1 where this roll is noted ‘‘R fixe’’) must be 

eliminated of the CVD reactors because these thermoconvective structures cause non-

uniform deposits. Recent studies [15, 18-20] show that the aperiodic or chaotic flows 

observed at high Rayleigh and low Reynolds numbers should be used to get uniform 

deposits in CVD reactors. A synthesis of the CVD numerical studies for 

configurations close to the PRB flows is presented in §2.1.3 and in table I. The 

studies on the cooling of electronic equipments, close to the PRB flow configuration, 

are summed up in §2.2. 

§3 - In this paragraph, we present a review of the pioneer experiments which 

took place from 1920 (with the first studies of Idrac [35, 36]) to 1938. They are 

mainly concerned with applications to meteorology. Their results were synthesized by 

Sir D. Brunt in 1951 [3]. 

§4 - From 1962 to 1984, the PRB flow studies were mainly based on linear 

stability analyses of the Poiseuille flow, completed by experiments to verify the 

results of the theoretical models. Some of these models (based on temporal linear 

stability analyses) and the associated experiments concentrated on the fully-

established thermoconvective flows (cf. §4.2), while the others (based on spatial 

linear stability analyses) and the associated experiments concentrated on the thermal 

entrance zone (cf. §4.3). The whole theoretical analyses are summarized in table II, in 

which the parameter range, the form of the normal modes, the criteria of neutral 
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stability and the type of the thermoconvective structures appearing above the neutral 

stability threshold are mentioned. In §4.2.1, the studies dealing with the stability of 

the Poiseuille flow vis-à-vis the first type and second type R// (cf. figure 7) are 

reviewed. In §4.2.2, a long discussion about the experimental verification of the 

increase with Re of the critical Rayleigh number for the R (Ra*) is reported. Three 

analytical formulae, extracted from [67, 68], giving Ra* and the critical time 

pulsation and wave number for the R as a function of Re and Pr, are also reported 

(cf. equations (1-3)). In §4.2.3, we briefly comment on the results of the 3D temporal 

linear stability analysis in finite lateral extension ducts [52, 53, 54]. Some of these 

results are presented in figures 5, 8-10. The mathematical formulation of the temporal 

linear stability analysis is given in annexe A. In §4.2.4, the weaknesses of this 

temporal linear stability analysis are brought out : first, it predicts either an odd or an 

even number of R// to appear depending on the aspect ratio B (cf. figure 8), whereas 

all the experiments and numerical simulations predict an even number of R// for fully-

established flows at Re>0 and for B>1.1 (cf. [76] for the explanation) ; second, it 

rightly predicts the critical Rayleigh number Ra//* for the appearance of the R//, but 

fails to predict the critical Rayleigh number for the appearance of the R and the 

critical Reynolds number Re* determined experimentally and numerically (cf. 

figure 10 and table III). To remedy this, the space and time growth of the 

perturbations has to be analysed, i.e. a convective/absolute stability analysis is 

necessary (cf. §5). In §4.3, three studies on the PRB flow stability in the entrance 

zone of infinite lateral extension ducts are analysed (cf. table II). The used stability 

criteria are schematically represented in figure 12. Figure 11 shows that the R are 

more unstable than the R// just at the entrance of the heated zone for small Reynolds 

numbers, which is widely verified by several recent papers. As shown in figure 13, 
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the stability criterion used in [87] permits to find the experimental results again with a 

good agreement.  

§5 - In §5.1 and §5.2, we remind the reader of the general notions about the 

convective and absolute intabilities (cf. figure 14 in the case of 2D PRB flows) and 

about the amplitude and Ginzburg-Landau equations. The criteria of stability and of 

absolute and convective instability for the Ginzburg-Landau equation (5) in its 

linearised version are given by equations (6-8) respectively. In §5.3, the two main 

contributions to the analyse of the convective and absolute instabilities in PRB flows 

are reviewed. Müller et al. [67, 68, 78, 91] analyse the transitions between Poiseuille 

flow and R in 2D PRB flows by 2D numerical simulations and with the Ginzburg-

Landau equation (9) (cf. table IV for the coefficient values of this equation and cf. 

figure 10 for the convective/absolute transition curve Ra
conv

 computed from this 

theory). Carrière and Monkewitz [69] analyse the convective/absolute instability of 

the 3D PRB flows between two infinite horizontal walls by directly computing the 

Green function and by analysing its long-time behaviour. The original result of [69], 

which contradicts the ones obtained from the models based on two amplitude 

equations [103-106], is that the R// are never absolutely unstable when Re>0. 

Furthermore, when Ra<Ra
conv

, the most amplified mode, located at the center of the 

wave packet, corresponds to the appearence of R//. It is shown that complementary 

theoretical or experimental studies would be necessary to understand the 

convective/absolute transitions for the R and the R// in the case of finite cross section 

ducts. Two possible scenarios are proposed to try to explain why in the experiments 

and in the numerical simulations the R// rise not far from the inlet and for Ra close to 

Ra//*, if we consider that the R// are convectively unstable like in the case of flows 

between two infinite plates. In §5.4 and figure 15, the results of Müller et al. [67, 68, 

91] on the influence of a white noise on the convectively unstable R flows are 
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presented and the references of studies comparing the influence of local and global 

noise on convectively unstable PRB flows are given [108-109].  

§6 - In §6.1, the studies on the axial variation of the time and spanwise 

average Nusselt number in the thermal entrance zone of PRB flows are reviewed. 

This variation is shown for R// flows on figure 16, where three zones are revealed. 

Equations (11-12), equation (13) and equation (16) are correlation laws respectively 

for the coordinates x1 of the beginning of zone (2), x2 of Nu
max

 in zone (2) and x3 at 

which Nu exceeds the forced convection value of zone (1) by 3%. Other correlation 

laws (equations (14-15)) for the appearance length and the establishment length of the 

R//, determined from LDA experiments, are reported in §6.3.1. The results and the 

variation laws for the space and time average Nusselt number in fully-established 

PRB flows are reviewed in §6.2 and table V. This Nusselt number is shown to keep 

constant whatever Re in the case of R// flows, but it is shown to decrease when Re 

increases in the case of R flows. Most of the heat transfer studies are carried out in 

ducts of very large or infinite (2D) cross section. Very few data on the spanwise 

confinement influence on heat transfers are available. §6.3.2 is dedicated to the 

determination of the characteristic growth length le of the R. As shown in figure 17 

and in the nomenclature, le is determined from the stationary envelope Wmax(x). The 

curve Le=f(Vg) drawn on figure 18, representing the variation of the reduced growth 

length Le as a function of the reduced group velocity Vg, is shown to be a universal 

curve in the sense that it is independent of the Prandtl number, as long as Re and Ra 

are not too large [68, 78]. The divergence of the curve Le=f(Vg) at Vg=2 corresponds 

to the transition between the absolutely unstable R (Vg<2) and the convectively 

unstable R (Vg>2). The values of Ra and Re at which le diverge are shown to be a 
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very precise criterion to define the transition curve Ra
conv

(Re) (compare figures 10 

and 17).  

§7 - In this section, the fine spatial and temporal structure of the R is 

analysed. In §7.1, the influence on this structure of the open boundary conditions 

(OBC) that must be imposed at the outlet boundary of the computational domains for 

the numerical simulations is reviewed. Among all the tested OBC, the Orlanski type 

boundary conditions (equation (17)) is shown to be the one which perturbs the least 

the R flows. The influence of the inlet boundary conditions (IBC) on the R 

development in the numerical simulations and in the experiments is reviewed in §7.2. 

The IBC influence on the R is shown to be more important than the one of the OBC. 

The growth length le, the wave length  and the frequency f of the R vary depending 

on whether the IBC is of Dirichlet or of Neumann type [143] (cf. figure 21). At very 

small but non-vanishing flows, the R are shown to be pinned by the IBC (cf. figure 

20). A new critical Reynolds number Re** indicating the transition between the 

stationary and the moving R is introduced. An analytical expression for Re** is 

proposed by [68, 91] (cf. equation (19)). It is compared to 2D numerical results in 

table VI. While the origin of the R pinning with the Neumann inlet conditions is 

clearly identified, it is not explained with the Dirichlet inlet conditions. For fully-

established R flows, the variations of f,  and Vr/U° (the ratio of the R velocity to 

the average velocity of the channel flow) as a function of the flow parameters are 

reviewed in §7.3, 7.4 and 7.5 respectively. While the variations of f,  and Vr/U° as a 

function of Ra, Re and Pr are quite well known in the case of 2D problems (B), in 

the case of finite cross section ducts, the variations of these quantity as a function of 

Pr and B are very badly known because of a lack of data (cf. figures 20-23 and tables 

VII and VIII). The linear correlation laws giving Vr/U° as a function of Ra are 
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summarized in table VIII and in figures 22 and 23 for the infinite (2D) and finite 

cross section ducts, respectively. Note that these laws are independent of Re, except 

in one case [128]. 

§8 - The aim of this section is to synthetize the data obtained these last ten 

years regarding the description and the stability of the complex thermoconvective 

patterns of the PRB flows. In §8.1, the two most precise and complete experimental 

stability diagrams of the PRB flows (cf. figures 24 and 26) are presented (§8.1.1) and 

analysed (§8.1.2). They are compared with each other and with other results of 

literature. In §8.1.2, we particularly concentrate on patterns with splitting and 

merging of R//, with hysteresis effects and with superposition of R and R// (cf. 

figures 27 and 28 for this third case). In §8.1.1, the seventeen very recent 

experimental and numerical papers of T. F. Lin et al. about PRB flows are 

summarized. In §8.2, the stability diagram and two flow patterns obtained from a 

model based on two coupled Ginzburg-Landau equations (equations (21)) by Müller 

et al. [104] are analysed (cf. figures 29 and 30), despite the criticism of Carrière and 

Monkewitz [69] about the validity of this model. Kato and Fujimura's (2000) [54] 

weakly non-linear stability analysis, based on the equations (22), is also reported. It 

analyses the stability of the three thermoconvective patterns that are presented on 

figure 31 (the R//, the 3D horse-shoe shapped R and the mixed modes) in the 

neighborhood of the critical point (Ra, Re)=(Ra//*, Re*). In §8.3.1, the stability 

diagram of the fully-established stationary R// vis-à-vis the secondary wavy instability 

of figure 33 (cf. figure 32), obtained by Clever and Busse [150] from a temporal 

linear stability analysis, is compared to the other experimental and numerical results 

of literature. It is shown that the in phase wavy R// of figure 33 have been observed in 

horizontal ducts only three times [46, 48, 81] and also in sligthly inclined ducts [126]. 

On the other hand, R// waving in opposition of phase (cf. figure 34) have been 
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observed in numerous experimental and numerical studies, particularly in small 

spanwise aspect ratio ducts (B6) [18, 75, 81, 129]. Two stability diagrams of these 

periodic wavy rolls are presented in figure 35. Complementary studies should be 

carried out to explain theoretically the presence of these R// oscillating in opposition 

of phase in the experiments and to confirm experimentally or numerically the 

existence of the R// oscillating in phase. Other complex flow patterns (inclined or V-

shaped R//), only observed by Yu et al. [73], are reproduced on figure 36. In §8.3.2, 

the successive transitions in PRB flows, from the symmetric and periodic R// flows to 

the asymmetric and periodic R// flows (cf. figure 34(d)), then to the aperiodic flows 

and to the chaotic flows, are reviewed. It is shown that numerical simulations with 

non-Boussinesq codes will have to be envisaged in order to better agree with the 

experiments at high Rayleigh numbers. 

§9 - As a conclusion, the badly known or badly understood aspects of the 

PRB flows are summed up and subjects for future investigations are proposed. 

Annexe A – This annexe presents the mathematical formulation of the 

temporal linear stability analyses of the purely conductive Poiseuille flow for PRB 

flows between two infinite plates (§A.1) and in finite lateral extension channels 

(§A.2).  
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Nomenclature 

Latin letters 

A longitudinal aspect ratio of the channel, L/h 

A(x, t) temporal and spatial modulation of the amplitude of the perturbations whose 

variations are given by the amplitude equation theory 

B transversal aspect ratio of the channel, l/h 

c0, c1, c2 coefficients of the Ginzburg-Landau equation 

cx, cy streamwise and spanwise spatial amplification coefficients of the 

perturbations (cx, cy  IR) 

Dh hydraulic diameter, (m) 

f frequency of the R, (s-1) 

f scalar or vectorial variable replacing a set of variables verifying the same 

mathematical relation 

g gravitational acceleration, (m.s
-2

) 

h channel height, (m) 

i horizontal unit vector pointing to the average flow direction 

j horizontal unit vector such as j=ki 

k upward vertical unit vector 

kx, ky streamwise and spanwise dimensionless wave numbers of the perturbations 

(kx, ky  IR) 

l channel width, (m) 

le dimensionless characteristic growth length of the R defined by 

Wmax(le)=Ws/2  

L channel length, (m) 

Le reduced characteristic growth length of the R, 0e /l   
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p thermodynamic pressure 

P p+gz 

q heat flux, (W.m
-2

) 

R// longitudinal rolls 

R transversal rolls 

R-// superposition of the Rand of the R// 

rT reduced temperature, (Tc-Tf)/Tf 

t dimensionless time 

T dimensionless fluid temperature 

Tc, Tf temperatures of the bottom hot wall and of the top cold wall, respectively, (K) 

T temperature difference between the hot and cold walls, Tc-Tf, (K) 

U, V, W streamwise (x), spanwise (y) and vertical (z) velocity component 

U° average velocity of the flow, (m.s
-1

) 

V dimensional (m.s
-1

) or dimensionless velocity vector, (U, V, W) 

vg group velocity in the Ginzburg-Landau equation ; vg=(i/kx)* 

Vg reduced group velocity, 2/12
1

2
00g ))c1(/(v   

Vr velocity of the R 

Wmax stationary envelope of the maximum vertical velocity component along the 

channel axis (function of x), (m.s
-1

) 

Ws saturation amplitude of W : value of Wmax(x) for x[xe, xs], (m.s
-1

) 

xe, xs axial coordinates indicating the end of the entrance zone and the beginning of 

the zone perturbed by the outlet boundary conditions, respectively 

x, y, z axial, spanwise and vertical coordinates (dimensionless in general) 
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Dimensionless parameters 

Nu according to the context, local or space and/or time average Nusselt number 

computed on the horizontal walls of the channel 

Gr Grashof number, Ra/Pr=g(Tc-Tf)h3/2 

Pe Peclet number, RePr=U°h/ 

Pr Prandtl number, / 

Ra Rayleigh number, g(Tc-Tf)h3/() 

Ra’ modified Rayleigh number based on the heat flux q through the heated wall, 

gqh4/() 

Ra* min(Ra*, Ra//*) 

Ra*0 critical Rayleigh number at Re=0 ; Ra*0=1708 when A and B 

Ra* critical Rayleigh number determined from the temporal linear stability 

analysis of the Poiseuille flow vis-à-vis the convectively unstable R (Ra* 

increases with Re)  

Ra//* like Ra* but for the R// (Ra//* is independent of Re) 

Ra//*
II
 critical Rayleigh number determined from the temporal linear stability 

analysis of the stationary R// flows vis-à-vis the periodic R// flows 

Ra
conv critical Rayleigh number determined from the spatio-temporal linear stability 

analysis between the convectively and absolutely unstable zones for the R 

Ra//
conv like Ra

conv but for the R// 

Re Reynolds number, U°h/ 

Re’ Reynolds number, Umaxh/ 
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Re* critical Reynolds number, determined from the temporal linear stability 

analysis, corresponding to the transition between Poiseuille flow, R and R// 

(for Ra=Ra*=Ra//*) 

Re* critical Reynolds number, determined experimentaly or by numerical 

simulations, corresponding to the transition between the R and the R// in the 

non-linear domain (for Ra>Ra* and Ra>Ra//*) 

Re** critical Reynolds number corresponding to the threshold of the R pinning 

observed for very small flows : it indicates the transition between the 

stationary R and the moving R  

Greek letters 

 thermal diffusivity, (m
2
.s

-1
) 

 thermal expansion coefficient, (K
-1

) 

 coefficient of the Ginzburg-Landau equation 

 =(Ra-1708)/1708, relative distance to the critical Rayleigh number 

Ra*0=1708 

* =(Ra*-1708)/1708 

//* =(Ra//*-1708)/1708 


conv =(Ra

conv-1708)/1708 

//
conv =(Ra//

conv-1708)/1708 

 thermal conductivity, (W.m
-1

.K
-1

) 

 dimensionless wave length of the R (h is the reference length) 

 =(Ra-Ra*)/Ra*, relative distance to the critical Rayleigh number Ra*(Re) 

 kinematic viscosity, (m
2
.s

-1
) 

0
2 coefficient of the Ginzburg-Landau equation 
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 mass per unit volume, (kg.m
-3

) 

 dimensionless complex time amplification coefficient of the perturbations, r+ii 

i dimensionless time pulsation of the perturbations 

0 coefficient of the Ginzburg-Landau equation 

 stream function, given by U=-/z et W=/x 

 vorticity, U/z-W/x=-2

Abbreviations and symbols 

CVD Chemical Vapor Deposition 

IBC Inlet Boundary Condition 

LDA Laser Doppler Anemometry (Anémométrie Laser Doppler) 

OBC Open or Outlet Boundary Condition 

PBC Periodic Boundary Condition 

PRB Poiseuille-Rayleigh-Bénard 

 nabla operator, vector (/x, /y, /z) in cartesian coordinates 

Superscripts 

° reference state or average value 

conv indicates parameters or variables at the transition between the convectively 

and absolutely unstable zones 

max, min indicate a maximum and a minimum, respectively 

* indicates parameters or variables at the transition between the linearly stable 

and convectively unstable zones. In a general way, indicates a critical value 

 basic state for the linear stability study 

’ infinitesimal perturbation 

^ perturbation amplitudes when they are written in the normal mode form 

Subscripts 

i, r imaginary part and real part of a complex number 
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, // indicate variables corresponding to the R and to the R//, respectively 

 


