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COMPACT KÄHLER MANIFOLDS WITH COMPACTIFIABLE

UNIVERSAL COVER

BENOÎT CLAUDON AND ANDREAS HÖRING

Abstract. Let X be a compact Kähler manifold such that the universal
cover admits a compactification. We conjecture that the fundamental group
is almost abelian and reduce this problem to a classical conjecture of Iitaka.

1. introduction

The aim of this paper is to study the following problem.

1.1. Conjecture. Let X be a compact Kähler manifold with infinite fundamen-
tal group π1(X). Suppose that the universal cover X̃univ is a Zariski open subset

X̃univ ⊂ X of some compact complex manifold X. Then (after finite étale cover)
there exists a locally trivial fibration X → A with simply connected fibre F onto a
complex torus A. In particular we have X̃univ ≃ F × CdimA.

This conjecture generalises Iitaka’s classical conjecture claiming that a compact
Kähler manifold X uniformised by CdimX is an étale quotient of a complex torus.
In a recent paper with J. Kollár we studied this conjecture in the algebraic setting,
i.e. under the additional hypothesis that X and X̃univ are quasi-projective. It
turned out that the key issue is to show that the fundamental group is almost
abelian and we established the following statement.

1.2. Proposition. [CHK11, Prop.1.3] Let X have the smallest dimension among
all normal, projective varieties that have an infinite, quasi-projective, étale Galois
cover X̃ → X whose Galois group is not almost abelian.

Then X is smooth and its canonical bundle KX is nef but not semiample. (That
is, (KX · C) ≥ 0 for every algebraic curve C ⊂ X but OX(mKX) is not generated
by global sections for any m > 0.)

By the abundance conjecture [Rei87, Sec.2] the canonical bundle should always be
semiample if it is nef. We then proved that in the algebraic case Conjecture 1.1 is
implied by the abundance conjecture [CHK11, Thm.1.1].

Since an infinite cover X̃ → X is never an algebraic morphism, it is natural to look
for an analogue of Proposition 1.2 in the analytic category. Although the existence
of a compactification X̃ ⊂ X should already be quite restrictive we will see that
the appropriate analytic analogue of the quasiprojectiveness is the existence of a
Kähler compactification.
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1.3. Theorem. Let X have the smallest dimension among all normal, compact
Kähler spaces that have an infinite, étale Galois cover X̃ → X whose Galois group
Γ is not almost abelian and such that there exists a Kähler compactification X̃ ⊂ X.
Then X is smooth, does not admit any Mori contraction, and X̃ is not covered by
positive-dimensional compact subspaces.

In particular the fundamental group π1(X) is generically large, i.e. X̃univ is not
covered by positive-dimensional compact subspaces.

Even in the algebraic case, this statement gives some new information: if X is
projective, the absence of Mori contractions implies that KX is nef. Thus the
“minimal dimensional counterexample” in Proposition 1.2 has generically large
fundamental group. Note also that for a manifold with generically large π1 the
Conjecture 1.1 simply claims that X is an étale quotient of a torus. Thus we
are reduced to Iitaka’s conjecture which has been studied by several authors
[Nak99b, Nak99a, CP08, HPR11]1.

An important difference between the proof of Theorem 1.3 and the arguments in
[CHK11] is that the natural maps attached to compact Kähler manifolds (algebraic
reduction, reduction maps for covering families of algebraic cycles) are in general not
morphisms, as opposed to the classification theory of projective manifolds where
we have Mori contractions and, assuming abundance, the Iitaka fibration at our
disposal. Our key observation will be that if G is a general fibre of the Γ-reduction
γ (cf. Definition 2.2), the aforementioned meromorphic maps are holomorphic.
Using this we obtain a strong dichotomy: up to replacing γ by some factorisation
the general fibre G is either projective or does not contain any positive-dimensional
compact subspaces (cf. Theorem 2.13). In a similar spirit F. Campana shows in the
Appendix (Theorem A.8) from a more general viewpoint that Iitaka’s conjecture has
only to be treated for projective manifolds and simple compact Kähler manifolds,
i.e. those which are not covered by positive-dimensional compact submanifolds.

If we try to avoid the Kähler assumption on X we still obtain some information of
birational nature:

1.4. Proposition. Let X have the smallest dimension among all normal, compact
Kähler spaces that have an infinite, étale Galois cover X̃ → X whose Galois group
Γ is not almost abelian and such that there exists a compactification X̃ ⊂ X. Then
X is smooth and special in the sense of Campana [Cam04].

This proposition follows rather quickly from an orbifold version of the Kobayashi-
Ochiai theorem (Theorem 3.1). By results of F. Campana and the first named
author [Cam04, Thm.3.33], [CC11, Thm.1.1] the fundamental group of a special
manifold of dimension at most three is almost abelian, so our counterexample (if it
exists) would have dimX ≥ 4.

Let us finally note that once we have understood the fundamental group, the geo-
metric statement in Conjecture 1.1 is not far away.

1Apart from [CP08] these papers do not really use that X̃univ ≃ CdimX .
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1.5. Theorem. Let X be a compact Kähler manifold whose universal cover X̃univ

admits a Kähler compactification X̃univ ⊂ X. If the fundamental group of X is al-
most abelian, the Albanese map of X is (up to finite étale cover) a locally analytically
trivial fibration whose typical fibre F is simply connected.

Since the proof of the corresponding statement in the algebraic setting [CHK11,
Thm.1.4] relies on strong results of Hodge theory for birational morphisms which
are unknown in the Kähler setting, our argument follows the lines of [KP12]. Indeed
if the fundamental group π1(X) is generically large, [KP12, Thm. 16] implies that
X is isomorphic to its Albanese torus (even without any further assumption on X);
see [FK12] and Remarks 3.3 for a discussion around this general case.

Acknowledgements. This paper is a continuation of our work with J. Kollár
whom we thank for many helpful communications and comments. The authors are
supported by the ANR project CLASS.

2. Notation and basic results

Manifolds and complex spaces will always be supposed to be irreducible.

If X is a normal complex space we denote by C(X) its cycle space [Bar75]. We will
use very often that if X is a compact Kähler space, then the irreducible components
of C(X) are compact (Bishop’s theorem, see [Lie78]).

Recall that a fibration ϕ : X → Y from a manifold X onto a normal complex
space Y is almost smooth if the reduction Fred of every fibre is smooth and has
the expected dimension. In this case the complex space Y has at most quotient
singularities, the local structure around y ∈ Y being given by a finite representation
of the fundamental group of π1(Fred) [Mol88, Prop.3.7]. Thus there exists locally a
finite base change Y ′ → Y such that the normalisation X ′ of X ×Y Y ′ is smooth
over Y ′.

2.1. Definition. We say that an almost smooth fibration ϕ : X → Y is almost
locally trivial with fibre F if for every y ∈ Y the fibration X ′ → Y ′ constructed
above is locally trivial with fibre F .

Note that while an almost locally trivial fibration is locally trivial in the neighbour-
hood of a generic point y ∈ Y , it is not true that the reduction F0,red of every fibre
F0 is isomorphic to F . For example if F is a K3 surface with a fixed point free
involution i : F → F and ∆ ⊂ C the unit disc, then

X := (F ×∆)/< i× (z 7→ −z) >

has an almost locally trivial fibration X → ∆ with fibre F and F0,red ≃ F/< i >.

2.2. Definition.[Cam94, Kol93] Let X be a compact Kähler manifold and Γ a
quotient of the fundamental group π1(X). There exists a unique almost holomorphic
fibration2

γ : X 99K Γ(X)

with the following property: if Z is a subspace with normalisation Z ′ → Z passing
through a very general point x ∈ X such that the natural map π1(Z

′) → π1(X) → Γ

2By unique we mean unique up to bimeromorphic equivalence of fibrations.

3



has finite image, then Z is contained in the fibre through x.
This fibration is called the Γ-reduction of X (Shafarevich map in the terminology
of [Kol93]).

By definition the fundamental group π1(X) is generically large if the π1(X)-
reduction is a birational isomorphism [Kol93, Defn.1.7] (it corresponds to the case
γd(X) = dim(X) as defined in the Appendix).

2.A. Compactifiable subsets.

2.3. Definition. Let X̃ be a normal complex space. We say that X̃ admits a
Kähler compactification if there exists an embedding X̃ →֒ X such that X is a
normal, compact Kähler space and X̃ is Zariski open in X.

Let π : X̃ → X be an infinite étale Galois cover with group Γ such that X̃ admits a
compactification X̃ ⊂ X . In [CHK11] we assumed that the compactification X is a
projective variety and used the absence of algebraic Γ-invariant subsets to deduce
important restrictions on the geometry of X . While algebraic subsets Z ⊂ X̃ are
always Zariski open in some projective subset Z ⊂ X, this is no longer true if we
consider analytic subspaces Z ⊂ X̃. We have to restrict our considerations to a
smaller class:

2.4. Definition. Let X̃ be a normal complex space such that we have a Kähler
compactification X̃ →֒ X. A compactifiable subspace is a subset Z ⊂ X̃ such that
there exists an analytic subspace Z̄ ⊂ X̄, an inclusion Z ⊂ Z̄ and a subset Z∗ ⊂ Z
such that such that Z∗ ⊂ Z is Zariski open. A compactifiable subset is a finite
union of compactifiable subspaces.

Remark. In general the compactification Z depends on the choice of X.

The following lemma explains why compactifiable subsets are interesting in our
context.

2.5. Lemma. Let X̃ be a normal complex space such that we have a Kähler com-
pactification X̃ →֒ X. Let H̃ be an irreducible component of C(X̃) and Ũ be the

universal family over H̃. Let q̃ : Ũ → H̃ and p̃ : Ũ → X̃ be the natural morphisms.
Then p̃(Ũ) is a compactifiable subset.

The idea of the proof is quite simple: H̃ admits a natural compactification in C(X),

the corresponding universal family compactifies p̃(Ũ). Since we use the statement
several times we give the details of the proof:

Proof. We set D := X \ X̃. We have a natural inclusion C(X̃) →֒ C(X) and we

choose an irreducible component H that contains the image of H̃. Denote by U the
universal family over H, endowed with the reduced structure, and by q̄ : U → H
resp. p̄ : U → X the natural morphisms. We summarize the construction in a
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commutative diagram:

(2.1) U
p̄ //

q̄

��

X = X̃ ⊔D

Ũ
/ O

__>
>

>

>

>

>

>

>

p̃ //

q̃

��

X̃
� ?

OO

H H̃? _oo

The complex space X being compact Kähler, H and U are compact, hence by
Remmert’s proper mapping theorem p̄(U) is a finite union of analytic subspaces
of X . Moreover q̄(p̄−1(D)) is a finite union of analytic spaces and the inclusion

q̄(p̄−1(D)) ⊂ H is strict since q̄(p̄−1(D)) is disjoint from H̃. Since H̃ is an irreducible

component of C(X̃) this actually shows that H = H̃ ⊔ q̄(p̄−1(D)). In particular H
is unique and the Zariski closure of H̃ ⊂ C(X). Note now that p̄(q̄−1(q̄(p̄−1(D))))
is a finite union of analytic subspaces of p̄(U) which for reasons of dimension does
not contain any irreducible component of p̄(U). Thus

Z∗ := p̄(U) \ p̄(q̄−1(q̄(p̄−1(D))))

is dense and Zariski open in p̄(U), moreover we have an inclusion

Z∗ ⊂ p̄(Ũ) ⊂ p̄(U).

Since p̄(Ũ) = p̃(Ũ) this proves the statement. �

For certain irreducible components of C(X̃) we can say more:

2.6. Corollary. In the situation of the lemma above suppose moreover that Ũ is
irreducible and p̃ is onto and generically finite. Set

B̃ = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}

Then B̃ is a compactifiable subset.

Proof. As in the proof of the preceding lemma we consider the compactification
H̃ ⊂ H and the corresponding compactification of universal families Ũ ⊂ U .

1st case. p̃ is bimeromorphic. The morphism p̄ is onto and bimeromorphic and we
denote by B̄ the image of its exceptional locus, which is of course a finite union of
analytic subspaces. We have an inclusion B̃ ⊂ B̄ and we are done if we show that
B̃ = B̄ ∩ X̃. To see this take x̃ ∈ X̃ such that x̃ 6∈ B̃, then q̄(p̄−1(x̃)) is the union
of q̃(p̃−1(x̃)) and the cycles parametrised by q̄(p̄−1(D)) passing through x̃. Yet

q̃(p̃−1(x̃)) is a singleton in H̃, hence disjoint from q̄(p̄−1(D)). Moreover q̄(p̄−1(x̃))
is connected by Zariski’s main theorem, so p̄−1(x̃) is a unique point. This proves
the claim.

2nd case. p̃ generically finite. The morphism p̄ is onto and generically finite, and
we denote by p̄St : U → XSt and µ : XSt → X the Stein factorisation. Note that
XSt contains a Zariski open dense subset X̃St := µ−1(X̃) and

µ−1(B) = {x̃ ∈ X̃St | dim p̃−1
St (x̃) > 0}.
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The first case shows that the right hand side is compactifiable, hence B is compact-
ifiable. �

2.B. The Γ-reduction. Let Y be a normal Kähler space such that we have a
Kähler compactification Y →֒ Y , and let U → V be a flat, proper Kähler fibration.
In [CHK11, Section 2] we introduced the moduli spaces FinMor(U/V, Y, d) of finite
morphisms φ : Uv → X where Uv is a fibre of U → V and d is the degree of the
graph of φ with respect to some fixed Kähler forms on U and Y . These spaces of
morphisms are Zariski open sets in the relative cycle spaces C(U × Ȳ /V ), so we
know by Bishop’s theorem that for bounded degree d there are only finitely many
irreducible components. Moreover we have seen in Lemma 2.5 that the images of
universal families are compactifiable subsets of Y . We can now argue as in [CHK11,
Lemma 2.4] to prove the following:

2.7. Lemma. Let X be a normal, compact Kähler space and π : X̃ → X an infinite
étale Galois cover with group Γ such that X̃ admits a Kähler compactification X̃ ⊂
X. Let X0 ⊂ X be a dense, Zariski open subset and g0 : X0 → Z0 a flat, proper
fibration with general fiber F such that π induces a finite covering F̃ → F . Let
g̃0 : X̃0 → Z̃0 be the corresponding flat, proper fibration with general fiber F̃ . Then
(at least) one of the following holds:

1.) g̃0 extends to a locally trivial, Γ-equivariant fibration g̃ : X̃ → Z̃ with fibre

F̃ , or
2.) X̃ contains a compactifiable Γ-invariant subspace that is disjoint from a

general fiber of g̃0.

Since g̃ : X̃ → Z̃ is Γ-equivariant, the Γ-action on X̃ descends to a Γ-action on Z̃.
If F̃ has no fixed point free automorphisms, the Γ-action on Z̃ is fixed point free,
but in general it can have finite stabilizers. Thus g0 only extends to a fibration
g : X → Z that is almost locally trivial.

2.8. Corollary. Let X be a compact Kähler manifold and π : X̃ → X an infinite
étale Galois cover with group Γ such that X̃ admits a Kähler compactification X̃ ⊂
X. Suppose that X̃ does not contain any Γ-invariant compactifiable subsets.

Then the Γ-reduction is an almost locally trivial (cf. Definition 2.1) holomorphic

map γ : X → Γ(X) and the corresponding fibration γ̃ : X̃ → ˜Γ(X) is Γ-equivariant
and locally trivial.

If there exists an almost holomorphic map ϕF : F 99K W with general fibre G,
this map extends to an almost locally trivial holomorphic map ϕ : X → Y and the
corresponding fibration ϕ̃ : X̃ → Ỹ is Γ-equivariant and locally trivial. We call ϕ a
factorisation of the Γ-reduction with fibre G.

2.9. Remark. Let G be a general ϕ-fibre. By definition of the Γ-reduction the
natural map π1(G) → π1(X) → Γ has finite image GΓ, so π induces a finite étale

cover G̃ → G where G̃ is a general ϕ̃-fibre. Up to replacing X by the finite étale
cover X ′ → X with Galois group GΓ and Γ by

Γ′ := im(π1(X
′) → π1(X) → Γ)

we can suppose that GΓ is trivial, hence G̃ ≃ G. Since Γ′ ⊂ Γ has finite index, Γ is
almost abelian if and only if this holds for Γ′.
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2.10. Corollary. In the situation of Corollary 2.8, let ϕ : X → Y be a factorisation
of the Γ-reduction with fibre G. Then G does not contain any rigid subspaces, i.e.
there is no subspace Z ⊂ G such that for all m ∈ N the Chow space has pure
dimension 0 in the point [mZ].

Proof. We argue by contradiction and suppose that such a subspace Z exists. For
y ∈ Y general, the fibration ϕ is locally trivial near y, i.e. there exists an analytic
neighbourhood y ∈ U ⊂ Y such that ϕ−1(U) ≃ U × G. In particular the relative
Chow space C(ϕ−1(U)/U) is isomorphic to a product U × C(G), so there exists a
unique irreducible component of C(X) parametrising deformations of Z in X that
dominates Y . The reduction of this irreducible component is isomorphic to Y .

Note now that Z̃ := π−1(Z) is a finite union of subspaces in G̃ := π−1(G) which are
rigid: otherwise their deformations would induce a deformation of some multiple of
the cycle [Z]. Thus the deformations of Z̃ in X̃ correspond to an irreducible compo-

nent of C(X̃) whose reduction is isomorphic to Ỹ . By Lemma 2.5 the deformations

of Z̃ cover a compactifiable subset of X̃. Moreover it is Γ-invariant since it is the
π-preimage of the locus covered by deformations of Z. Thus we have constructed
a Γ-invariant compactifiable subset, a contradiction. �

2.11. Remark. If µ : G→ G′ is a bimeromorphic morphism onto a Kähler space,
an irreducible component Z ⊂ G of the µ-exceptional locus is rigid. Indeed if Z has
dimension d, then Z ·µ∗ωd = µ(Z) ·ωd = 0 where ω is a Kähler form on G′. Thus if
Z ′ is a small deformation of the cycle [mZ], then 0 = Z ′ ·µ∗ωd = µ(Z ′)·ωd, so µ(Z ′)
has dimension strictly smaller than d. Thus Z ′ is contained in the µ-exceptional
locus. The complex space Z being an irreducible component of this locus, we have
Supp(Z) = Supp(Z ′).

2.12. Corollary. In the situation of Corollary 2.8, let ϕ : X → Y be a factorisa-
tion of the Γ-reduction with fibre G. Then the algebraic reduction G 99K A(G) is
holomorphic.

Proof. By a theorem of Campana [Cam88, Cor.10.1], the general fibres of the al-
gebraic reduction define an irreducible component of C(G), i.e. there exists an
irreducible component HG of C(G) such that the general point corresponds to a
general fibre of the algebraic reduction. In particular if UG is the universal fam-
ily over HG, the natural morphism UG → G is onto and bimeromorphic. Using
the local triviality of ϕ as in the proof of Corollary 2.10 above, we obtain an irre-
ducible component H of C(X) such that the natural map p : U → X is onto and
bimeromorphic. If the image B of the p-exceptional locus is empty we are obviously
done.

Suppose now that this is not the case. Then we have an irreducible component H̃ of
C(X̃) such that the natural map p̃ : Ũ → X̃ is onto and bimeromorphic, moreover
the set

B̃ := π−1(B) = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}

is Γ-invariant and compactifiable by Corollary 2.6. Again a contradiction to our
assumption. �

Remark. Note that our proof heavily relies on the property that the general fibres
of the algebraic reduction define an irreducible component of the Chow space. This
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holds for any almost holomorphic fibration, but fails in general: if g : Pn 99K Pn−1

is the projection from a point x, the fibres correspond to lines through x, so they
define a proper subset of the irreducible component of C(Pn) parametrising lines.

We can now prove the main statement of this section:

2.13. Theorem. Let X be a compact Kähler manifold and π : X̃ → X an infinite
étale Galois cover with group Γ such that X̃ admits a Kähler compactification X̃ ⊂
X. Suppose that X̃ does not contain any Γ-invariant compactifiable subsets. Let
ϕ : X → Y be a factorisation of the Γ-reduction such that the fibre G has minimal,
but positive dimension. Then (up to replacing X by a finite étale cover) the manifold
G is either projective or does not contain any positive-dimensional subspaces.

Proof. Suppose that G is not projective, i.e. a(G) < dimG.

1st step. Suppose that a(G) > 0. Then by Corollary 2.12 the algebraic reduction
G 99K A(G) is holomorphic. By Corollary 2.8 this induces a factorisation of the
Γ-reduction whose fibres have strictly smaller dimension, a contradiction.

2nd step. Suppose that G is covered by positive-dimensional subspaces. Note first
that a compact complex manifold G with a(G) = 0 contains only finitely many
divisors [FF79]. Thus by Corollary 2.10 the manifold G contains no divisors since
these would be rigid. Let now HG ⊂ C(G) be an irreducible component of the
cycle space parametrising a covering family of positive-dimensional subspaces of
maximal dimension. Then by Lemma 2.14 below the map from the universal family
pG : UG → G is generically finite. Arguing as in the proof of Corollary 2.12 we
construct irreducible components H ⊂ C(X) and H̃ ⊂ C(X̃) such that the restriction
to G is HG.

Thus the maps from the universal families p : U → X and p̃ : Ũ → X̃ are onto and
generically finite, hence the set

B̃ = {x̃ ∈ X̃ | dim p̃−1(x̃) > 0}

is Γ-invariant and compactifiable by Corollary 2.6. By our hypothesis B̃ is empty,
so the map pG is finite. Since G is smooth and does not contain any divisors, we
see by purity of the branch locus that (up to replacing UG by its normalisation)

the map pG is étale. Hence p and p̃ are étale and Ũ can be compactified by the
universal family over a compactification H̃ ⊂ H. Thus up to replacing X by the
finite étale cover U → X we can suppose that pG is an isomorphism. Yet then
G ≃ UG admits a natural fibration qG : UG → HG, so we get again a fibration with
fibres of strictly smaller dimension, a contradiction.

3rd step. G has no positive-dimensional subspaces. Let Z ⊂ G be a positive-
dimensional subspace of maximal dimension and take m ∈ N arbitrary. Then the
Chow scheme has dimension zero in the point [mZ]: indeed if HG is an irreducible
component passing through [mZ], the map from the universal family UG → G is
not onto by the 2nd step. By maximality of the dimension the image has dimension
equal to dimZ, so HG has dimension zero. Thus Z is rigid, which is excluded by
Corollary 2.10. �

2.14. Lemma. Let G be a compact Kähler manifold such that a(G) = 0. Let
HG ⊂ C(G) be an irreducible component of the cycle space parametrising a covering
family of positive-dimensional subspaces which have maximal dimension m, i.e.
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there is no covering family of subspaces with dimension strictly larger than m. Let
UG be the universal family over HG, and denote by pG : UG → G and qG : UG → HG

the natural morphisms. Then pG is generically finite.

Proof. Since G contains only finitely many divisors [FF79], we have m < dimG−1.
We argue by contradiction, and suppose that the general pG-fibre is positive-
dimensional. Then for g ∈ G general, the analytic set qG(p

−1
G (g)) is positive-

dimensional and Moishezon by [Cam80, Cor.1]. In particular qG(p
−1
G (g)) is cov-

ered by compact curves. Choose an irreducible curve Cg ⊂ qG(p
−1
G (g)), then

pG(q
−1
G (Cg)) has dimension m+1 < dimG. Since g ∈ G is general we can construct

in this way a covering family of strictly higher dimension, a contradiction. �

2.C. Fibre bundles. Let us recall the following facts about the automorphism
group of a compact Kähler manifold G [Fuj78, Lie78]. The identity component
Aut0(G) of the complex Lie group Aut(G) has a description in terms of the Albanese
torus of G. Consider the natural map

Aut0(G) −→ Aut0(Alb(G)) ≃ Alb(G)

induced by the Albanese mapping. The kernel of this morphism is a linear algebraic
group and the image is a subtorus of Alb(G); in particular, if G is not covered by
rational curves, Aut0(G) is a compact group, isogeneous to a subtorus of Alb(G).
If Aut0(G) is a point, fibre bundles with fibre G can be easily described.

2.15. Lemma. [Fuj78, Cor.4.10] Let ϕ : X → Y be a proper fibre bundle with
typical fibre a manifold G. Suppose that the automorphism group Aut(G) is discrete
and that the fibration ϕ is Kähler, i.e. there exists a two-form ω on X such that
the restriction ω|G is a Kähler form. Then there exists a finite étale base change
Y ′ → Y such that X ×Y Y ′ ≃ Y ′ ×G.

Sketch of proof. The Kähler assumption on the morphism implies that the structure
group of the fibre bundle can be reduced to Aut(F, [ω|F ]), the group of automor-
phisms of F which preserves the cohomology class of ω|F . By Fujiki-Lieberman
this group contains Aut0(G) = {1} as a finite index subgroup and is thus finite.
Thus the image of the monodromy presentation is finite, hence trivial after finite
étale base change. �

3. Proofs of the main results

Proof of Theorem 1.3. We claim that X̃ has no nontrivial, compactifiable subset W̃
invariant under a finite index subgroup Γ′ ⊂ Γ. Note first that if such a W̃ exists,
we can suppose it to be analytic: otherwise replace it by X̃ ∩W where W ⊂ X is
a compactification. If we denote by W̃i the irreducible components of W̃ , each of
them is invariant under a finite index subgroup Γi ⊂ Γ. Taking the normalization
W̃n
i , we would get a smaller dimensional example Wn

i := W̃n
i /Γi as in Theorem

1.3; a contradiction.

Since X̃Sing ⊂ X̃ is compactifiable and Γ-invariant, we conclude that X is smooth.
We claim that X is not uniruled, i.e. it is not covered by rational curves: otherwise
we can consider the MRC-fibration ϕ : X 99K Z. Since the general ϕ-fibre G is
rationally connected, hence simply connected, the MRC-fibration is a factorisation
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of the Γ-reduction. By Corollary 2.8 it extends to an almost locally trivial holomor-
phic map ϕ : X → Z and the corresponding fibration ϕ̃ : X̃ → Z̃ is Γ-equivariant
and locally trivial with fibre G. Note that G does not admit fixed point free actions
by any finite group: the étale quotient would also be rationally connected, so simply
connected. Therefore the stabilizer stabΓ(Fz) is trivial for every ϕ̃-fiber Fz . Hence

the Γ-action descends to a free Γ-action on Z̃; a contradiction to the minimality of
the dimension of X .

Arguing by contradiction we will now prove that the Γ-reduction γ is an isomor-
phism. If this is not the case we know by Theorem 2.13 that there exists a factori-
sation ϕ : X → Y of the Γ-reduction such that the fibre G is either projective or
without positive-dimensional compact subspaces. Let us consider the corresponding
locally trivial fibration ϕ̃ : X̃ → Ỹ with fibre G (cf. Remark 2.9).

1st case. Aut0(G) is a point. The structure group of the fiber bundle ϕ̃ : X̃ → Ỹ is

discrete, so by Lemma 2.15 we can suppose (after finite étale cover) that X̃ ≃ Ỹ ×G.

The Γ-action on X̃ commutes with the projection on Ỹ and the group Aut(G) is

discrete, so Γ acts diagonally on the product Ỹ × G. Consider now the ϕ̃-section
Ỹ × g for some g ∈ G: its orbit ∪f∈Γf(Ỹ × g) is a finite union of sections of the

form Ỹ × g′. The complex space Ỹ has a natural compactification in C(X), since it
parametrises the ϕ̃-fibres. Thus we have constructed a Γ-invariant compactifiable
subset of X̃, a contradiction to the minimality of X .

2nd case. Aut0(G) has positive dimension. Since G is not uniruled we know by

Section 2.C that the group Aut0(G) is isogeneous to a subtorus of the Albanese
torus of G, in particular we have q(G) > 0 . We claim that in this case G is a
torus. Assuming this for the time being, let us see how to conclude: since ϕ is
almost locally trivial we can apply [CP00, §6], [Fuj83, Prop.4.5]: after a finite étale
cover X ′ → X we can suppose that q(X) = q(Y ) + dimG. Since every ϕ-fibre is
irreducible, the Albanese map αX : X → Alb(X) maps each ϕ-fibre isomorphically
onto a fibre of the locally trivial fibration ϕ∗ : Alb(X) → Alb(Y ). By the universal
property of the fibre product we have a commutative diagram

Alb(X)×Alb(Y ) Y

ψ

&&MM
M

M

M

M

M

M

M

M

M

M

Xoo αX //

ϕ

��

Alb(X)

ϕ∗

��
Y

αY // Alb(Y )

The map ψ is the pull-back of ϕ∗ by the fibre product, so it is a locally trivial
fibration. The base Y is normal, so the total space Alb(X)×Alb(Y )Y is normal. By
what precedes the morphism X → Alb(X)×Alb(Y ) Y is bimeromorphic and finite,
hence an isomorphism by Zariski’s main theorem. In particular ϕ = ψ is smooth
and locally trivial. Hence the Γ-action on X̃ descends to a free action on Ỹ , i.e. X
is not a minimal counterexample.

Proof of the claim. This is clear ifG has no compact positive-dimensional subspaces,
so we can suppose that G is projective. Since q(G) 6= 0 the Albanese map is non-
trivial. By minimality of the factorisation we see that the Albanese map G→ A(G)
is generically finite onto its image. Since G admits no birational map by Remark
2.11, it is actually finite onto its image. Moreover G is not of general type since
Aut0(G) has positive dimension. If we have dimG > κ(G) > 0 we know by [Kaw81]
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that G admits a fibration by positive-dimensional abelian varieties, a contradiction
to the minimality of the factorisation. Thus we have κ(G) = 0 and G is an abelian
variety. This proves the claim.

Let us finally show that X does not admit any Mori contraction, i.e. does not
admit any morphism with connected fibres µ : X → X ′ onto a normal complex
space X ′ such that −KX is µ-ample. Since X is not uniruled, µ would necessarily
be bimeromorphic. Moreover µ is a projective morphism since it is polarised by
−KX . In particular the Ionescu-Wiśniewski inequality [Ion86, Thm.0.4], [Wiś91,
Thm.1.1] applies and shows that if E is an irreducible component of the exceptional
locus and F a general fibre of E → µ(E), then one has dimE + dimF ≥ dimX .
Arguing as in the [CHK11, Lemma 2.5] we can now prove that π−1(E) is a Γ-

invariant compactifiable subset of X̃, contradicting the minimality of X . �

The proof of Proposition 1.4 relies on the following generalisation of the Kobayashi-
Ochiai theorem to fibrations of general type.

3.1. Theorem. [KO75, Thm.2][Cam04, Thm.8.2] Let X be a compact Kähler
manifold, X be a complex manifold, and let B ⊂ X be a proper closed analytic
subset. Let π : X \ B 99K X be a nondegenerate meromorphic map, i.e. such that
the tangent map TX\B → TX is surjective at least one point v ∈ X \ B. Let us

finally consider g : X 99K Y a general type fibration3 defined on X. Then f = g ◦ π
extends to a meromorphic map X 99K Y .

Proof of Proposition 1.4. As in the proof of Theorem 1.3 the minimality condition
implies that X̃ does not contain any Γ-invariant compactifiable subset. Since the
singular locus X̃Sing is Γ-invariant and naturally compactified by XSing, we see that
X is smooth.

Let us now argue by contradiction and suppose that X is not special. Then the
core fibration cX : X 99K C(X) [Cam04, section 3] is not trivial, i.e. the base has
dimension at least one. Moreover it is a general type fibration, so by Theorem 3.1
above the composed map cX ◦π : X̃ 99K C(X) extends to a meromorphic map c̄X :
X 99K C(X). Up to replacingX by a suitable bimeromorphic model, we can assume
that c̄X is holomorphic. Since X is proper, a general c̄X -fibre F̄ := c̄−1

X (y) has
finitely many irreducible components, each of them of dimension dimX−dimC(X)

and not contained in X \ X̃. Thus if F := c−1
X (y) is the corresponding cX -fibre,

then π−1(F ) = F̄ ∩ X̃. Thus π−1(F ) is a Γ-invariant compactifiable subset of X̃ , a
contradiction. �

As mentioned in the introduction, the proof given in [CHK11] of the local triviality
of the Albanese map does not apply verbatim in this non algebraic setting. We
need the following purely topological result.

3.2. Theorem. [KP12, Thm. 14] Let f : Z → A be a map between compact

analytic spaces, the universal cover Ãuniv being contractible. Let us denote by Z̃
the induced cover of Z. If Z̃ has the homotopy type of a compact metric space, then
f is surjective.

3We refer to [Cam04] for the basic definitions of the orbifold theory.
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With this in mind, we can prove Theorem 1.5 in the spirit of [KP12].

Proof of Theorem 1.5. To begin with, let us recall that classical arguments (see
[CHK11]) show that the Albanese map is always a fibration (i.e. a surjective map

with connected fibres) when X̃univ is a Zariski open subset of a compact complex
manifold. Since π1(X) is supposed to be almost abelian, we can also assume that

αX : X → A := Alb(X)

is a fibration which induces an isomorphism at the level of fundamental groups. Let
us consider now F a smooth fibre of αX and denote by f its homology class. Let
us introduce ZF (X) the unique irreducible component of C(F ×X) which contains
the graph of the embeddings j : F →֒ X whose homology class is fixed: j∗[F ] = f
in H∗(X,Z). The homology class being fixed, there is a natural map:

α∗ : ZF (X) → A

(the complex space ZF (X) should be thought as the set of fibres of αX which are
isomorphic to F ). Our aim is to apply Theorem 3.2 to show that α∗ is surjective;
we have to prove some topological finiteness of the fibre product:

Z̃F (X) −→ Ãuniv .

Since αX induces an isomorphism on the π1, the induced map X̃univ → Ãuniv

between the universal covers is proper. We can then choose F̃ any lifting of F
(it is a compact submanifold of X̃univ ⊂ X) and perform the same construction

on X : we denote by ZF̃ (X) the complex space of embeddings of F̃ into X whose

homology class is given by [F̃ ] ∈ H∗(X,Z). It is easily checked that there is a
natural inclusion:

Z̃F (X) →֒ ZF̃ (X)

which realises Z̃F (X) as a Zariski open subset of ZF̃ (X). The compactification X
being Kähler, the irreducible components of its cycle space are compact, further-
more there are only finitely many components since the homology class is fixed.

Since Z̃F (X) is a Zariski open set in a compact complex space, it has the homo-
topy type of a finite CW complex. Thus α∗ : ZF (X) → A is surjective by Theorem
3.2. If the Albanese map αX is equidimensional, this already shows that αX is
locally trivial: every ϕ-fibre contains the image of an embedding F →֒ X , since the
cohomology class is fixed the manifold F is the whole fibre.

We will now prove by contradiction that αX is equidimensional, and denote by
∅ 6= ∆ ⊂ A the locus where this is not the case. Set Z := α−1

X (∆) and consider
the map f := αX |Z : Z → A. The map f is not surjective since αX is generically

smooth. We claim that the induced cover Z̃ := Z ×A Ãuniv is Zariski open in a
compact complex space, which as before leads to a contradiction to Theorem 3.2.

Proof of the claim. Let U be the universal family over the unique component H
of C(X) such that the general point corresponds to a general fibre of the fibration

X̃univ → Ãuniv. There is a natural bimeromorphic map p : Γ → X and Z̃ ⊂ X̃univ

corresponds to the points x ∈ X̃ such that p−1(x) has positive dimension. By
Lemma 2.5 this set is compactifiable. �
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3.3. Remarks. The arguments above are inspired by the proof of [KP12, Thm.20]
and they rely heavily on the Kähler assumption on the compactification X: in gen-
eral the irreducible components of C(X) are not compact if X is merely a compact
complex manifold.

However, Theorem 3.2 and [KP12, Thm.16] are valid in the category of compact
analytic spaces. This leads us to raise the following question: is there an equivalent
statement of [KP12, Thm.20] in the compact complex category ? More precisely let
us consider X → A a morphism between compact complex spaces and let us assume
that Ãuniv is contractible. If the induced cover X̃ is a Zariski open set in a compact
complex manifold X, is X → A a fibre bundle ? We do not know any example
where this is not the case.
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Appendix A. Abelianity, Iitaka and S conjectures

by Frédéric Campana

Abstract. In this appendix, we observe that Iitaka’s conjecture fits in the
more general context of special manifolds, in which the relevant statements
follow from the particular cases of projective and simple manifolds.

Recall from [6] (for which we refer to the notions involved in the following):

A.1. Conjecture.(Abelianity Conjecture, [6, Conj.7.11]) Let X be a special man-
ifold. Then π1(X) is almost abelian.

A.2. Remark. 1. This conjecture is, at least, true for the linear representations
of the fundamental group, which have almost abelian image [6, th.7.8].
2. The conjecture is also true up to dimension three [7].

Recall from [4] that for any compact Kähler manifold there exists a unique con-
nected surjective almost holomorphic map: γX : X 99K Γ(X) such that its fibre Xa

through the general point a ∈ X is the largest subspace Y of X through a such
that the image of π1(Ŷ ) in π1(X) is finite, Ŷ being the normalisation of Y . Then
γd(X) := dim(Γ(X)) is called the γ-dimension of X . Thus γd(X) = 0 if and only if
π1(X) is finite. When γd(X) = dim(X), we say (as in [8]) that X is of π1-general
type.

A.3. Conjecture.(Conjecture S) Let X be a special manifold with γd(X) =
dim(X). Then some finite étale cover of X is bimeromorphic to a complex torus.

A.4. Remarks. 1. Conversely, if some finite étale cover of X is bimeromorphic
to a complex torus, X is special with γd(X) = dim(X).

2. This conjecture S implies the conjecture of Iitaka which claims the same conclu-
sion as in S assuming that the universal cover of X is Cn. The latter hypothesis
is indeed weaker (by the orbifold version of the theorem of Kobayashi-Ochiai [6,
th.7.11 and 8.11]).

3. The Abelianity conjecture implies the conjecture S (and so the conjecture of
Iitaka). Indeed, if X is special of maximal γ-dimension, its fundamental group is
torsionfree and abelian (by going to a suitable finite étale cover), if one assumes the
Abelianity conjecture. Its Albanese map is then surjective with connected fibres (by
[6, th.5.3]) and induces an isomorphism on the first homology groups. It has thus
to be bimeromorphic, by the maximality of γd(X).

A.5. Definition. We shall say that X is primitively special if it is special but not
covered by special submanifolds of intermediate dimension 0 < d < dim(X).

A.6. Lemma. X is primitively special if and only if either:

1.) X is a rational or elliptic curve, or
2.) X is projective with KX pseudo-effective and with κ(X) either 0, or −∞

(according to the abundance conjecture, this last case does not exist), or
3.) X is simple ( i.e. not a curve and not covered by compact subspaces of

intermediate dimensions).
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Proof. We assume that X is primitively special with n ≥ 2. We distinguish 3 cases.

Let us first assume X to be projective. Then κ(X) < n, since X is special. If
0 ≤ κ(X) < n, X is covered by submanifolds having κ = 0 and intermediate
dimension n − κ(X) if κ(X) > 0, which is impossible if X is primitively special.
Thus κ(X) = 0 and KX is pseudo-effective. If KX is not pseudo-effective, then X
is uniruled, by [1] and [11]. The only remaining case is thus when KX is pseudo-
effective and κ(X) = −∞ (which Abundance conjecture claims not to exist). The
projective case is thus established.

Assume now that 0 < a(X) < n. Because the fibres of the algebraic reduction are
special, by [6, th.2.39], X is not primitively special.

Assume finally that a(X) = 0, and that X is not simple, but primitively special.
Let Zt be a covering family of X by an analytic family of subspaces which are
generically irreducible and of intermediate dimension 0 < d < n, chosen to be
minimal. The generic member of this family is thus either of general type, or special
and primitively special. The second possibility is excluded, since X is primitively
special. Thus Zt is of general type. Let then ϕ : X 99K Y be the quotient by the
equivalence relation generated by the Z ′

ts [2]. Its fibres are projective, by [2]. Since
a(X) = 0, we have: a(Y ) = 0, and dim(Y ) > 0. From [3], we get that the fibres of
ϕ are almost-homogeneous, hence special. Contradiction since X was assumed to
be primitively special. Thus X is simple. �

A.7. Remark. The above argument is partially inspired by [9].

A.8. Theorem. The conjecture S (and so the conjecture of Iitaka) is true if S is
true whenever X is primitively special. In particular, the conjecture S is true if it
is true in the projective and simple cases.

Proof. Assume thus that X is special, with γd(X) = n. If X is primitively special,
we assume that S is true. So assume that X is not primitively special and let
Zt be a covering family of subspaces which are special of intermediate dimension
0 < d < n. We may assume that the generic member Zt is smooth, after suitable
blow-ups of X . We may thus assume that the conjecture holds true for the generic
Zt, by working inductively on n. Thus the fundamental group of the generic Zt is,
in particular, almost abelian.

Let again ϕ : X 99K Y be the quotient by the equivalence relation generated by
the Z ′

ts. Its fibres are special [6, th.3.3] (since they are connected by chains of
special subspaces) and have maximal γ-dimension, since this is the case for X .

There are 2 cases, according to m := dim(Y ).

(i) m = 0. In this case, the fundamental group of X is almost abelian, by [5],
since X is generated by connected chains of Z ′

ts, which have almost abelian
fundamental groups. Since X has maximal γ-dimension, the conjecture S
holds for X , by remark A.4 above.

(ii) n > m > 0. In this case the generic fibres of φ have an étale cover bimero-
morphic to a torus. From [12], we conclude that X has an étale cover bimero-
morphic to some X ′ having a submersion ψ : X ′ → V on a manifold V of
maximal γ-dimension, with fibres complex tori. Because V is special, since so
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is X ′ [6, th.5.12], the conjecture S is true for V , so that its fundamental group
is almost abelian. From [5] again, we deduce that the fundamental group of
X is almost abelian and that the conjecture S holds true for X , as claimed.

�
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