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We give an estimate of type sup × inf on Riemannian manifold of dimension 5 for the Yamabe equation.

INTRODUCTION AND MAIN RESULTS

In this paper, we deal with the following Yamabe equation in dimension n = 5:

-∆ g u + n -2 4(n -1)
R g u = n(n -2)u N -1 , u > 0, and

N = n + 2 n -2 . (1) 
Here, R g is the scalar curvature.

The equation (1) was studied a lot, when M = Ω ⊂ R n or M = S n see for example, [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF][START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Lower bounds for sup+inf and sup × inf and an extension of Chen-Lin result in dimension 3[END_REF], [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF], [START_REF] Yy | Prescribing scalar curvature on S n and related Problems[END_REF]. In this case we have a sup × inf inequality. The corresponding equation in two dimensions on open set Ω of R 2 , is:

-∆u = V (x)e u , (2) The equation [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF] was studied by many authors and we can find very important result about a priori estimates in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V e u in two dimensions[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF]. In particular in [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V e u in two dimensions[END_REF] we have the following interior estimate: sup

K u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , inf Ω u, K, Ω).
And, precisely, in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF], we have:

C sup K u + inf Ω u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , K, Ω),
and, sup

K u + inf Ω u ≤ c = c(inf Ω V, ||V || C α (Ω) , K, Ω).
where K is a compact subset of Ω, C is a positive constant which depends on inf Ω V sup Ω V , and, for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] and [START_REF] Lee | The Yamabe problem[END_REF] for a complete and detailed summary. When M is a compact Riemannian manifold, there exist some compactness result for equation (1) see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF]. Li and Zhu see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF], proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have this result they use the positive mass theorem. Now, if we suppose M Riemannian manifold (not necessarily compact) Li and Zhang [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] proved that the product sup × inf is bounded. Here we extend the result of [START_REF] Bahoura | Estimations uniformes pour l'equation de Yamabe en dimensions 5 et 6[END_REF]. Our proof is an extension Li-Zhang result in dimension 3, see [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF] and [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF], and, the moving-plane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. Also, we can see in [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | sup × inf inequality on manifold of dimension 3[END_REF][START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF][START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF][START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF][START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], some applications of this method, for example an uniqueness result. We refer to [START_REF] Brezis | Some nonlinear elliptic equations have only constant solutions[END_REF] for the uniqueness result on the sphere and in dimension 3. Here, we give an equality of type sup × inf for the equation (1) in dimension 5. In dimension greater than 3 we have other type of estimates by using moving-plane method, see for example [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Estimations uniformes pour l'equation de Yamabe en dimensions 5 et 6[END_REF]. There are other estimates of type sup + inf on complex Monge-Ampere equation on compact manifolds, see [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF][START_REF] Tian | A Harnack type inequality for certain complex Monge-Ampere equations[END_REF] . They consider, on compact Kahler manifold (M, g), the following equation:

α ∈ (0, 1]. When 4(n -1)h n -2 = R
(ω g + ∂ ∂ϕ) n = e f -tϕ ω n g , ω g + ∂ ∂ϕ > 0 on M (3) 
And, they prove some estimates of type sup M +m inf M ≤ C or sup M +m inf M ≥ C under the positivity of the first Chern class of M. Here, we have, Theorem 1.1. For all compact set K of M, there is a positive constant c, which depends only on, K, M, g such that:

(sup

K u) 1/3 × inf M u ≤ c,
for all u solution of (1).

This theorem extend to the dimension 5 the result of Li and Zhang, see [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] . Here, we use the method of Li and Zhang in [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] . Also, we extend a result of [START_REF] Bahoura | Estimations uniformes pour l'equation de Yamabe en dimensions 5 et 6[END_REF].

Corollary 1.2. For all compact set K of M there is a positive constant c, such that:

sup K u ≤ c = c(g, m, K, M) if inf M u ≥ m > 0,
for all u solution of (1).

PROOF OF THE THEOREMS

Proof of theorem 1.1: We want to prove that

ǫ 3 (max B(0,ǫ) u) 1/3 × min B(0,4ǫ) u ≤ c = c(M, g). (4) 
We argue by contradiction and we assume that

( max B(0,ǫ k ) u k ) 1/3 × min B(0,4ǫ k ) u k ≥ kǫ k -3 . (5) 
Step 1: The blow-up analysis The blow-up analysis gives us : For some xk ∈ B(0, ǫ k ), u k (x k ) = max B(0,ǫ k ) u k , and, from the hypothesis,

u k (x k ) 4/9 ǫ k → +∞.
By a standard selection process, we can find

x k ∈ B(x k , ǫ k /2) and σ k ∈ (0, ǫ k /4) satisfying, u k (x k ) 4/9 σ k → +∞, (6) 
u k (x k ) ≥ u k (x k ), (7) and, u k (x) ≤ Cu k (x k ), in B(x k , σ k ), ( 8 
)
where C is some universal constant. It follows from above ( 5), ( 7) that

(u k (x k )) 1/3 × ( min ∂B(x k ,2ǫ k ) u k )σ 3 k ≥ (u k (x k )) 1/3 × ( min B(0,4ǫ k ) u k )ǫ 3 k ≥ k → +∞. (9) 
We use {z 1 , . . . , z n } to denote some geodesic normal coordinates centered at x k (we use the exponential map). In the geodesic normal coordinates, g = g ij (z)dz i dz j ,

g ij (z) -δ ij = O(r 2 ), g := det(g ij (z)) = 1 + O(r 2 ), h(z) = O(1), (10) 
where r = |z|. Thus,

∆ g u = 1 √ g ∂ i ( √ gg ij ∂ j u) = ∆u + b i ∂ i u + d ij ∂ ij u, where b j = O(r), d ij = O(r 2 ) (11) We have a new function v k (y) = M -1 k u k (M -2/(n-2) k y) for |y| ≤ 3ǫ k M 2/(n-2) k
where M k = u k (0). From ( 6) and ( 9) we have

∆v k + bi ∂ i v k + dij ∂ ij v k -cv k + v k N -1 = 0 for |y| ≤ 3ǫ k M 2/(n-2) k v k (0) = 1 v k (y) ≤ C 1 for |y| ≤ σ k M 2/(n-2) k lim k→+∞ min |y|=2ǫ k M 4/9 k (v k (y)|y| 3 ) = +∞.          (12) 
where C 1 is a universal constant and bi (y

) = M -2/(n-2) k b i (M -2/(n-2) k y), dij (y) = d ij (M -2/(n-2) k y) (13) 
and,

c(y) = M -4/(n-2) k h(M -2/(n-2) k y). (14) 
We can see that for

|y| ≤ 3ǫ k M 2/(n-2) k , | bi (y)| ≤ CM -4/(n-2) k |y|, | dij (y)| ≤ CM -4/(n-2) k |y| 2 , |c(y)| ≤ CM -4/(n-2) k (15) 
where C depends on n, M, g.

It follows from ( 12), ( 13), ( 14), [START_REF] Yy | Prescribing scalar curvature on S n and related Problems[END_REF] and the elliptic estimates, that, along a subsequence, v k converges in C 2 norm on any compact subset of R 2 to a positive function U satisfying

∆U + U N -1 = 0, in R n , with N = n + 2 n -2 U(0) = 1, 0 < U ≤ C. (16) 
In the case where C = 1, by a result of Caffarelli-Gidas-Spruck, see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we have:

U(y) = (1 + |y| 2 ) -(n-2)/2 , (17) 
But, here we do not need this result. Now, we need a precision in the previous estimates, we take a conformal change of metric such that, the Ricci tensor vanish,

R jp = 0. ( 18 
)
We have by the expressions for g and g ij , as in the paper of Li-Zhang,

b j = O(r 2 ), R = O(r), d ij = - 1 3 R ipqj z p z q + O(r 3 ). (19) 
Thus,

|c| ≤ C|y|M -2 k , | bi | ≤ C|y| 2 M -2 k , (20) 
and,

dij = - 1 3 M -4/3 k R ipqj y p y q + O(1)M -2 k |y| 3 . (21) 
As, in the paper of Li-Zhang, we have:

v k (y) ≥ C|y| -3 , 1 ≤ |y| ≤ 2ǫ k M 2/3 k . ( 22 
)
with C > 0.

For x ∈ R 2 and λ > 0, let,

v λ,x k (y) := λ |y -x| v k x + λ 2 (y -x) |y -x| 2 , (23) 
denote the Kelvin transformation of v k with respect to the ball centered at x and of radius λ.

We want to compare for fixed x, v k and v λ,x k . For simplicity we assume x = 0. We have:

v λ k (y) := λ |y| v k (y λ ), with y λ = λ 2 y |y| 2 .
For λ > 0, we set,

Σ λ = B 0, ǫ k M k 2 -B(0, λ).
The boundary condition, [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], become:

lim k→+∞ min |y|=ǫ k M 4/9 k v k (y)|y| 3 = lim k→+∞ min |y|=2ǫ k M 4/9 k v k (y)|y| 3 = +∞. (24) 
As in the paper of Li-Zhang, we have:

∆w λ + bi ∂ i w λ + dij ∂ ij w λ -cw λ + (n + 2) (n -2) ξ 4/(n-2) w λ = E λ in Σ λ . ( 25 
)
where ξ stay between v k and v λ k . Here,

E λ = -bi ∂ i v λ k -dij ∂ ij v λ k + cv λ k -E 1 ,
with,

E 1 (y) = - λ |y| n+2 bi (y λ )∂ i v k (y λ ) + dij (y λ )∂ ij v k (y λ ) -c(y λ )v k (y λ ) . ( 26 
)
Lemma 2.1. We have,

|E λ | ≤ C 1 λ|y| -1 M -2 k + C 2 λ 3 |y| -3 M -4/3 k . ( 27 
)
Proof: as in the paper of Li-Zhang, we have a nonlinear term E λ with the following property,

|E λ | ≤ C 1 λ 3 M -2 k |y| -2 + C 2 λ 4 M -4/3 k |y| -4 ≤ C 1 λ|y| -1 M -2 k + C 2 λ 3 |y| -3 M -4/3 k .
Next, we need an auxiliary function which correct the nonlinear term. Here we take the following auxiliary function:

h λ = -C 1 λM -2 k (|y| -λ) -C 2 λ 2 M -4/3 k 1 - λ |y| 3 -1 - λ |y| , (28) 
we have,

h λ ≤ 0, ( 29 
)
∆h λ = -C 1 λ|y| -1 M -2 k -C 2 λ 3 |y| -3 M -4/3 k , ( 30 
)
and, thus,

∆h λ + |E λ | ≤ 0.
As in the paper of Li-Zhang, we can prove the following lemma:

Lemma 2.2. We have,

w λ + h λ > 0, in Σ λ ∀0 < λ ≤ λ 1 . (31) 
Before to prove the lemma, note that, here, we consider the fact that,

λ ≤ |y| ≤ ǫ k M 4/9 k ≤ ǫ k M 2/3 k . (32) 
And, as in the paper of Li-Zhang, we need the estimate (22):

v k (y) ≥ C|y| -3 , 1 ≤ |y| ≤ 2ǫ k M 2/3 k .
with C > 0.

Proof :

Step 1: There exists λ 0 > 0 independent of k such the assertion of the lemma holds for all 0 < λ < λ 0 .

To see this, we write:

w λ = v k (y) -v λ k (y) = |y| -3/2 (|y| 3/2 v k (y) -|y λ | 3/2 v k (y λ )).
Let, in polar coordinates,

f (r, θ) = r 3/2 v k (r, θ).
By the properties of v k , there exist r 0 > 0 and C > 0 independant of k such that:

∂ r f (r, θ) > Cr 1/2 , for 0 < r < r 0 .
Thus,

w λ (y) = |y| -3/2 (f (|y|, y/|y|) -f (|y λ |, y/|y|)) = |y| -3/2 |y| |y λ | ∂ r f (r, y/|y|)dr > > C ′ |y| -3/2 (|y| 3/2 -|y λ | 3/2 ) > C ′′ (|y| -λ) for 0 < λ < |y| < r 0 , with, C ′ , C ′′ > 0.
It follows that,

w λ + h λ ≥ (C ′′ -o(1))(|y| -λ), for 0 < λ < |y| < r 0 , (33) 
Now, for

r 0 ≤ |y| ≤ ǫ k M 4/9 k ≤ ǫ k M 2/3 k .
we have by the definition of h λ , and, as in the paper of Li-Zhang, we need the estimate (22):

v k (y) ≥ C|y| -3 , 1 ≤ |y| ≤ 2ǫ k M 2/3 k .
to have,

|h λ | < 1 2 v k (y).
Thus, as in the paper of Li-Zhang,

w λ + h λ > 0, for 0 < r 0 < |y| < 2ǫ k M 4/9 k . ( 34 
)
Step 2: Set,

λk = sup{0 < λ ≤ λ 1 , w µ + h µ ≥ 0, in Σ µ ∀0 < µ ≤ λ}, (35) 
We claim that, λk = λ 1 .

In order to apply the maximum principle and the Hopf lemma, we need to prove that:

(∆ + bi ∂ i + dij ∂ ij -c)(w λ + h λ ) ≤ 0 in Σ λ (36) 
In other words, we need to prove that:

∆h λ + bi ∂ i h λ + dij ∂ ij h λ -ch λ + E λ ≤ 0 in Σ λ . (37) 
First note that, h λ < 0. Here, we consider the fact that,

λ ≤ |y| ≤ ǫ k M 4/9 k ≤ ǫ k M 2/3 k .
We have,

|c| ≤ C|y|M -2 k ,
Thus,

|y||ch λ | ≤ C 1 M -4 k λ|y| 2 (|y| -λ) + C 2 M -10/3 k λ|y| 2 ≤ o(1)M -2 k λ,
which we can write as,

|ch λ | ≤ C 1 M -2 k λ|y| -1 . ( 38 
)
We have,

| bi | ≤ C|y| 2 M -2 k , Thus, | bi ∂ i h λ | ≤ C 1 M -4 k λ|y| 2 + C 2 M -10/3 k (λ 5 |y| -2 + λ 3 ), |y|C 1 M -4 k λ|y| 2 = o(1)M -2 k λ,
which we can write as,

C 1 M -4 k λ|y| 2 = o(1)M -2 k λ|y| -1 . (39) 
and,

|y| 3 C 2 M -10/3 k λ 5 |y| -2 = C 2 M -10/3 k λ 3 |y| = o(1)M -4/3 k λ 3 ,
which we can write as,

C 2 M -10/3 k λ 5 |y| -2 = o(1)M -4/3 k λ 3 |y| -3 . (40) 
and,

|y| 3 C 2 M -10/3 k λ 3 = o(1)M -2 k λ 3 ,
which we can write as,

C 2 M -10/3 k λ 3 = o(1)M -4/3 k λ 3 |y| -3 . (41) Thus, | bi ∂ i h λ | ≤ o(1)M -2 k λ|y| -1 + o(1)M -4/3 k λ 3 |y| -3 . (42) 
We have,

| dij | ≤ |y| 2 M -4/3 k , Thus, | dij ∂ ij h λ | ≤ λ|y|M -10/3 k + C 2 M -8/3 k (λ 5 |y| -3 + λ 3 |y| -1 ), Thus, | dij ∂ ij h λ | ≤ λ|y| -1 M -10/3 k + o(1)M -8/3 k λ 5 |y| -3 + o(1)M -8/3 k λ 3 |y| -1 , Finaly, | dij ∂ ij h λ | ≤ o(1)λ|y| -1 M -2 k + o(1)M -4/3 k λ 3 |y| -3 + o(1)M -2 k λ|y| -1 . (43) 
Finaly,

| dij ∂ ij h λ + bi ∂ i h λ + ch λ | ≤ o(1)λ|y| -1 M -2 k + o(1)λ 3 |y| -3 M -4/3 k . ( 44 
)
Finaly, we have,

∆h λ + bi ∂ i h λ + dij ∂ ij h λ -ch λ + E λ ≤ 0 in Σ λ ,
And, thus (36),

(∆ + bi ∂ i + dij ∂ ij -c)(w λ + h λ ) ≤ 0 in Σ λ .
Also, we have from the boundary condition and the definition of v λ k and h λ , we have: 

We can use the maximum principle and the Hopf lemma to have:

wλk + hλk > 0, in Σ λ , (47) and, 

∂ ∂ν

(wλk + hλk) > 0, in Σ λ .

From the previous estimates we conclude that λk = λ 1 and the lemma is proved.

Given any λ > 0, since the sequence v k converges to U and hλk converges to 0 on any compact subset of R 2 , we have: U(y) ≥ U λ (y), ∀ |y| ≥ λ, ∀ 0 < λ < λ 1 .

(49)

Since λ 1 > 0 is arbitrary, and since we can apply the same argument to compare v k and v λ,x k , we have: U(y) ≥ U λ,x (y), ∀ |y -x| ≥ λ > 0.

(50)

Thus implies that U is a constant which is a contradiction.

  g the scalar curvature, and M compact, the equation (1) is Yamabe equation. T. Aubin and R. Schoen have proved the existence of solution in this case, see Date: March 1, 2023.

  |h λ (y)| + v λ k (y) ≤ C(λ 1 ) |y| 3 , ∀ |y| = ǫ k M wλk(y) + hλk(y) > 0 ∀ |y| = ǫ k M 4/9 k ,