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HARNACK TYPE INEQUALITY ON RIEMANNIAN MANIFOLDS OF DIMENSION 5.

SAMY SKANDER BAHOURA

ABSTRACT. We give an estimate of type sup× inf on Riemannian manifold of dimension 5 for the

Yamabe equation.

Mathematics Subject Classification: 53C21, 35J60 35B45 35B50

1. INTRODUCTION AND MAIN RESULTS

In this paper, we deal with the following Yamabe equation in dimension n = 5:

−∆gu+
n− 2

4(n− 1)
Rgu = n(n− 2)uN−1, u > 0, and N =

n+ 2

n− 2
. (1)

Here, Rg is the scalar curvature.

The equation (1) was studied a lot, when M = Ω ⊂ R
n or M = Sn see for example, [2-4], [11],

[15]. In this case we have a sup× inf inequality. The corresponding equation in two dimensions

on open set Ω of R2, is:

−∆u = V (x)eu, (2)

The equation (2) was studied by many authors and we can find very important result about a

priori estimates in [8], [9], [12], [16], and [19]. In particular in [9] we have the following interior

estimate:

sup
K

u ≤ c = c(inf
Ω

V, ||V ||L∞(Ω), inf
Ω

u,K,Ω).

And, precisely, in [8], [12], [16], and [20], we have:

C sup
K

u+ inf
Ω

u ≤ c = c(inf
Ω

V, ||V ||L∞(Ω), K,Ω),

and,

sup
K

u+ inf
Ω

u ≤ c = c(inf
Ω

V, ||V ||Cα(Ω), K,Ω).

where K is a compact subset of Ω, C is a positive constant which depends on
infΩ V

supΩ V
, and,

α ∈ (0, 1]. When
4(n− 1)h

n− 2
= Rg the scalar curvature, and M compact, the equation (1) is

Yamabe equation. T. Aubin and R. Schoen have proved the existence of solution in this case, see
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for example [1] and [14] for a complete and detailed summary. When M is a compact Riemannian

manifold, there exist some compactness result for equation (1) see [18]. Li and Zhu see [18],

proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the

solutions are uniformly bounded. To have this result they use the positive mass theorem. Now, if

we suppose M Riemannian manifold (not necessarily compact) Li and Zhang [17] proved that the

product sup× inf is bounded. Here we extend the result of [5]. Our proof is an extension Li-Zhang

result in dimension 3, see [3] and [17], and, the moving-plane method is used to have this estimate.

We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [13]. Also, we can see in [3,

6, 11, 16, 17, 10], some applications of this method, for example an uniqueness result. We refer

to [7] for the uniqueness result on the sphere and in dimension 3. Here, we give an equality of

type sup× inf for the equation (1) in dimension 5. In dimension greater than 3 we have other type

of estimates by using moving-plane method, see for example [3, 5]. There are other estimates of

type sup+ inf on complex Monge-Ampere equation on compact manifolds, see [20-21] . They

consider, on compact Kahler manifold (M, g), the following equation:
{

(ωg + ∂∂̄ϕ)n = ef−tϕωn
g ,

ωg + ∂∂̄ϕ > 0 on M
(3)

And, they prove some estimates of type supM +m infM ≤ C or supM +m infM ≥ C under the

positivity of the first Chern class of M. Here, we have,

Theorem 1.1. For all compact set K of M , there is a positive constant c, which depends only

on, K,M, g such that:

(sup
K

u)1/3 × inf
M

u ≤ c,

for all u solution of (1).

This theorem extend to the dimension 5 the result of Li and Zhang, see [17] . Here, we use the

method of Li and Zhang in [17] . Also, we extend a result of [5].

Corollary 1.2. For all compact set K of M there is a positive constant c, such that:

sup
K

u ≤ c = c(g,m,K,M) if inf
M

u ≥ m > 0,

for all u solution of (1).

2. PROOF OF THE THEOREMS

Proof of theorem 1.1: We want to prove that

ǫ3(max
B(0,ǫ)

u)1/3 × min
B(0,4ǫ)

u ≤ c = c(M, g). (4)
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We argue by contradiction and we assume that

( max
B(0,ǫk)

uk)
1/3 × min

B(0,4ǫk)
uk ≥ kǫk

−3. (5)

Step 1: The blow-up analysis The blow-up analysis gives us : For some x̄k ∈ B(0, ǫk), uk(x̄k) =
maxB(0,ǫk) uk, and, from the hypothesis,

uk(x̄k)
4/9ǫk → +∞.

By a standard selection process, we can find xk ∈ B(x̄k, ǫk/2) and σk ∈ (0, ǫk/4) satisfying,

uk(xk)
4/9σk → +∞, (6)

uk(xk) ≥ uk(x̄k), (7)

and, uk(x) ≤ Cuk(xk), in B(xk, σk), (8)

where C is some universal constant. It follows from above (5), (7) that

(uk(xk))
1/3 × ( min

∂B(xk ,2ǫk)
uk)σ

3
k ≥ (uk(x̄k))

1/3 × ( min
B(0,4ǫk)

uk)ǫ
3
k ≥ k → +∞. (9)

We use {z1, . . . , zn} to denote some geodesic normal coordinates centered at xk (we use the

exponential map). In the geodesic normal coordinates, g = gij(z)dz
idzj ,

gij(z)− δij = O(r2), g := det(gij(z)) = 1 +O(r2), h(z) = O(1), (10)

where r = |z|. Thus,

∆gu =
1√
g
∂i(

√
ggij∂ju) = ∆u+ bi∂iu+ dij∂iju,

where

bj = O(r), dij = O(r2) (11)

We have a new function

vk(y) = M−1
k uk(M

−2/(n−2)
k y) for |y| ≤ 3ǫkM

2/(n−2)
k

where Mk = uk(0). From (6) and (9) we have

∆vk + b̄i∂ivk + d̄ij∂ijvk − c̄vk + vk
N−1 = 0 for |y| ≤ 3ǫkM

2/(n−2)
k

vk(0) = 1

vk(y) ≤ C1 for |y| ≤ σkM
2/(n−2)
k

limk→+∞min
|y|=2ǫkM

4/9
k

(vk(y)|y|3) = +∞.



















(12)

where C1 is a universal constant and

b̄i(y) = M
−2/(n−2)
k bi(M

−2/(n−2)
k y), d̄ij(y) = dij(M

−2/(n−2)
k y) (13)

and,

c̄(y) = M
−4/(n−2)
k h(M

−2/(n−2)
k y). (14)

We can see that for |y| ≤ 3ǫkM
2/(n−2)
k ,

|b̄i(y)| ≤ CM
−4/(n−2)
k |y|, |d̄ij(y)| ≤ CM

−4/(n−2)
k |y|2, |c̄(y)| ≤ CM

−4/(n−2)
k (15)
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where C depends on n,M, g.

It follows from (12), (13), (14), (15) and the elliptic estimates, that, along a subsequence, vk
converges in C2 norm on any compact subset of R2 to a positive function U satisfying

∆U + UN−1 = 0, in R
n, with N =

n+ 2

n− 2
U(0) = 1, 0 < U ≤ C.

}

(16)

In the case where C = 1, by a result of Caffarelli-Gidas-Spruck, see [10], we have:

U(y) = (1 + |y|2)−(n−2)/2, (17)

But, here we do not need this result.

Now, we need a precision in the previous estimates, we take a conformal change of metric such

that, the Ricci tensor vanish,

Rjp = 0. (18)

We have by the expressions for g and gij , as in the paper of Li-Zhang,

bj = O(r2), R = O(r), dij = −1

3
Ripqjz

pzq +O(r3). (19)

Thus,

|c̄| ≤ C|y|M−2
k , |b̄i| ≤ C|y|2M−2

k , (20)

and,

d̄ij = −1

3
M

−4/3
k Ripqjy

pyq +O(1)M−2
k |y|3. (21)

As, in the paper of Li-Zhang, we have:

vk(y) ≥ C|y|−3, 1 ≤ |y| ≤ 2ǫkM
2/3
k . (22)

with C > 0.

For x ∈ R
2 and λ > 0, let,
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vλ,xk (y) :=
λ

|y − x|vk
(

x+
λ2(y − x)

|y − x|2
)

, (23)

denote the Kelvin transformation of vk with respect to the ball centered at x and of radius λ.

We want to compare for fixed x, vk and vλ,xk . For simplicity we assume x = 0. We have:

vλk (y) :=
λ

|y|vk(y
λ), with yλ =

λ2y

|y|2 .

For λ > 0, we set,

Σλ = B
(

0, ǫkMk
2
)

− B̄(0, λ).

The boundary condition, (12), become:

lim
k→+∞

min
|y|=ǫkM

4/9
k

(

vk(y)|y|3
)

= lim
k→+∞

min
|y|=2ǫkM

4/9
k

(

vk(y)|y|3
)

= +∞. (24)

As in the paper of Li-Zhang, we have:

∆wλ + b̄i∂iwλ + d̄ij∂ijwλ − c̄wλ +
(n+ 2)

(n− 2)
ξ4/(n−2)wλ = Eλ in Σλ. (25)

where ξ stay between vk and vλk . Here,

Eλ = −b̄i∂iv
λ
k − d̄ij∂ijv

λ
k + c̄vλk − E1,

with,

E1(y) = −
(

λ

|y|

)n+2
(

b̄i(y
λ)∂ivk(y

λ) + d̄ij(y
λ)∂ijvk(y

λ)− c̄(yλ)vk(y
λ)
)

. (26)

Lemma 2.1. We have,

|Eλ| ≤ C1λ|y|−1M−2
k + C2λ

3|y|−3M
−4/3
k . (27)
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Proof: as in the paper of Li-Zhang, we have a nonlinear term Eλ with the following property,

|Eλ| ≤ C1λ
3M−2

k |y|−2 + C2λ
4M

−4/3
k |y|−4 ≤ C1λ|y|−1M−2

k + C2λ
3|y|−3M

−4/3
k .

Next, we need an auxiliary function which correct the nonlinear term. Here we take the following

auxiliary function:

hλ = −C1λM
−2
k (|y| − λ)− C2λ

2M
−4/3
k

((

1−
(

λ

|y|

)3
)

−
(

1−
(

λ

|y|

))

)

, (28)

we have,

hλ ≤ 0, (29)

∆hλ = −C1λ|y|−1M−2
k − C2λ

3|y|−3M
−4/3
k , (30)

and, thus,

∆hλ + |Eλ| ≤ 0.

As in the paper of Li-Zhang, we can prove the following lemma:

Lemma 2.2. We have,

wλ + hλ > 0, in Σλ ∀0 < λ ≤ λ1. (31)

Before to prove the lemma, note that, here, we consider the fact that,

λ ≤ |y| ≤ ǫkM
4/9
k ≤ ǫkM

2/3
k . (32)

And, as in the paper of Li-Zhang, we need the estimate (22):

vk(y) ≥ C|y|−3, 1 ≤ |y| ≤ 2ǫkM
2/3
k .

with C > 0.

Proof :
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Step 1: There exists λ0 > 0 independent of k such the assertion of the lemma holds for all

0 < λ < λ0.

To see this, we write:

wλ = vk(y)− vλk (y) = |y|−3/2(|y|3/2vk(y)− |yλ|3/2vk(yλ)).

Let, in polar coordinates,

f(r, θ) = r3/2vk(r, θ).

By the properties of vk, there exist r0 > 0 and C > 0 independant of k such that:

∂rf(r, θ) > Cr1/2, for 0 < r < r0.

Thus,

wλ(y) = |y|−3/2(f(|y|, y/|y|)− f(|yλ|, y/|y|)) = |y|−3/2

∫ |y|

|yλ|

∂rf(r, y/|y|)dr >

> C ′|y|−3/2(|y|3/2 − |yλ|3/2) > C ′′(|y| − λ) for 0 < λ < |y| < r0,

with, C ′, C ′′ > 0.

It follows that,

wλ + hλ ≥ (C ′′ − o(1))(|y| − λ), for 0 < λ < |y| < r0, (33)

Now, for

r0 ≤ |y| ≤ ǫkM
4/9
k ≤ ǫkM

2/3
k .

we have by the definition of hλ, and, as in the paper of Li-Zhang, we need the estimate (22):

vk(y) ≥ C|y|−3, 1 ≤ |y| ≤ 2ǫkM
2/3
k .

to have,
7



|hλ| <
1

2
vk(y).

Thus, as in the paper of Li-Zhang,

wλ + hλ > 0, for 0 < r0 < |y| < 2ǫkM
4/9
k . (34)

Step 2: Set,

λ̄k = sup{0 < λ ≤ λ1, wµ + hµ ≥ 0, in Σµ ∀0 < µ ≤ λ}, (35)

We claim that, λ̄k = λ1.

In order to apply the maximum principle and the Hopf lemma, we need to prove that:

(∆ + b̄i∂i + d̄ij∂ij − c̄)(wλ + hλ) ≤ 0 in Σλ (36)

In other words, we need to prove that:

∆hλ + b̄i∂ihλ + d̄ij∂ijhλ − c̄hλ + Eλ ≤ 0 in Σλ. (37)

First note that, hλ < 0. Here, we consider the fact that,

λ ≤ |y| ≤ ǫkM
4/9
k ≤ ǫkM

2/3
k .

We have,

|c̄| ≤ C|y|M−2
k ,

Thus,

|y||c̄hλ| ≤ C1M
−4
k λ|y|2(|y| − λ) + C2M

−10/3
k λ|y|2 ≤ o(1)M−2

k λ,

which we can write as,

|c̄hλ| ≤ C1M
−2
k λ|y|−1. (38)

We have,
8



|b̄i| ≤ C|y|2M−2
k ,

Thus,

|b̄i∂ihλ| ≤ C1M
−4
k λ|y|2 + C2M

−10/3
k (λ5|y|−2 + λ3),

|y|C1M
−4
k λ|y|2 = o(1)M−2

k λ,

which we can write as,

C1M
−4
k λ|y|2 = o(1)M−2

k λ|y|−1. (39)

and,

|y|3C2M
−10/3
k λ5|y|−2 = C2M

−10/3
k λ3|y| = o(1)M

−4/3
k λ3,

which we can write as,

C2M
−10/3
k λ5|y|−2 = o(1)M

−4/3
k λ3|y|−3. (40)

and,

|y|3C2M
−10/3
k λ3 = o(1)M−2

k λ3,

which we can write as,

C2M
−10/3
k λ3 = o(1)M

−4/3
k λ3|y|−3. (41)

Thus,

|b̄i∂ihλ| ≤ o(1)M−2
k λ|y|−1 + o(1)M

−4/3
k λ3|y|−3. (42)

We have,

|d̄ij| ≤ |y|2M−4/3
k ,

Thus,
9



|d̄ij∂ijhλ| ≤ λ|y|M−10/3
k + C2M

−8/3
k (λ5|y|−3 + λ3|y|−1),

Thus,

|d̄ij∂ijhλ| ≤ λ|y|−1M
−10/3
k + o(1)M

−8/3
k λ5|y|−3 + o(1)M

−8/3
k λ3|y|−1,

Finaly,

|d̄ij∂ijhλ| ≤ o(1)λ|y|−1M−2
k + o(1)M

−4/3
k λ3|y|−3 + o(1)M−2

k λ|y|−1. (43)

Finaly,

|d̄ij∂ijhλ + b̄i∂ihλ + c̄hλ| ≤ o(1)λ|y|−1M−2
k + o(1)λ3|y|−3M

−4/3
k . (44)

Finaly, we have,

∆hλ + b̄i∂ihλ + d̄ij∂ijhλ − c̄hλ + Eλ ≤ 0 in Σλ,

And, thus (36),

(∆ + b̄i∂i + d̄ij∂ij − c̄)(wλ + hλ) ≤ 0 in Σλ.

Also, we have from the boundary condition and the definition of vλk and hλ, we have:

|hλ(y)|+ vλk (y) ≤
C(λ1)

|y|3 , ∀ |y| = ǫkM
4/9
k , (45)

and, thus,

wλ̄k(y) + hλ̄k(y) > 0 ∀ |y| = ǫkM
4/9
k , (46)

We can use the maximum principle and the Hopf lemma to have:

wλ̄k + hλ̄k > 0, in Σλ, (47)

and,

∂

∂ν
(wλ̄k + hλ̄k) > 0, in Σλ. (48)
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From the previous estimates we conclude that λ̄k = λ1 and the lemma is proved.

Given any λ > 0, since the sequence vk converges to U and hλ̄k converges to 0 on any compact

subset of R2, we have:

U(y) ≥ Uλ(y), ∀ |y| ≥ λ, ∀ 0 < λ < λ1. (49)

Since λ1 > 0 is arbitrary, and since we can apply the same argument to compare vk and vλ,xk , we

have:

U(y) ≥ Uλ,x(y), ∀ |y − x| ≥ λ > 0. (50)

Thus implies that U is a constant which is a contradiction.
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