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HARNACK TYPE INEQUALITY ON RIEMANNIAN MANIFOLDS OF DIMENSION 5.

SAMY SKANDER BAHOURA
JYOTSHANA V. PRAJAPAT

ABSTRACT. We give an estimate of type sup X inf on Riemannian manifold of dimension 5 for
Yamabe type equation.

Mathematics Subject Classification: 53C21, 35J60 35B45 35B50

1. INTRODUCTION AND MAIN RESULTS

In this paper, we deal with the following Yamabe type equation in dimension n = 5:
2
Agu+ h(x)u =n(n —2)u™"' v >0, and N = nt 5
n —
4(n—1)h
n —

Yamabe equation. Here, we assume h a bounded function and g = ||h|| (). The equation (E)
was studied a lot, when M = Q) C R" or M = S, see for example, [2-4], [11], [15]. In this case
we have a sup X inf inequality. The corresponding equation in two dimensions on open set {2 of
R?, is:

(E)

Where h is a continuous function. In the case = R, the scalar curvature, (E) is the

Au=V(x)e", (E)
The equation (E’) was studied by many authors and we can find very important result about a

priori estimates in [8], [9], [12], [16], and [20]. In particular in [9] we have the following interior
estimate:

supu < ¢ = c(inf V, ||V|| (), inf u, K, Q).
K Q Q
And, precisely, in [8], [12], [16], and [20], we have:
Csupu+infu < c = c(inf V, [|V||L=(q), K, ),
K Q Q

and,
supu + infu < ¢ = c(inf V. [|V]|ce(q), K, ).
K Q Q

info V'
where K is a compact subset of 2, C is a positive constant which depends on Ll v and,
supq,
4(n—1)h . .
a € (0,1]. When ————— = R, the scalar curvature, and M compact, the equation (E) is
n J—
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Yamabe equation. Yamabe has tried to solve problem but he could not. T.Aubin and R.Schoen
have proved the existence of solution in this case, see for example [1] and [14] for a complete and
detailed summary. When M is a compact Riemannian manifold, there exist some compactness
result for equation (£) see [18]. Li and Zhu see [18], proved that the energy is bounded and if we
suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have
this result they use the positive mass theorem. Now, if we suppose M Riemannian manifold (not
necessarily compact) Li and Zhang [17] proved that the product sup x inf is bounded. Here we
extend the result of [5]. Our proof is an extension of Brezis-Li and Li-Zhang result in dimension 3,
see [7] and [17], and, the moving-plane method is used to have this estimate. We refer to Gidas-Ni-
Nirenberg for the moving-plane method, see [13]. Also, we can see in [10], one of the application
of this method. Here, we give an equality of type sup x inf for the equation (F) for any bounded
function h. In dimension greater than 3 we have other type of estimates by using moving-plane
method, see for example [3, 5]. There are other estimates of type sup + inf on complex Monge-
Ampere equation on compact manifolds, see [20-21] . They consider, on compact Kahler manifold
(M, g), the following equation:

(wg + qggo)" = el e,
wg + 00p >0 on M

And, they prove some estimates of type sup,, +minf,; < C or sup,, +minfy; > C under the
positivity of the first Chern class of M. Here, we have,

Theorem 1.1. For all compact set K of M, there is a positive constant ¢, which depends only
on, hy, K, M, g such that:

(supu)'/? x infu < ¢,
K M

for all u solution of (E).

This theorem generalizes Li-Zhang and the author ’s result, see [17] . Here, we use Li and Zhang
and Chen-Lin methods in [11, 17] . Also, we extend the result of [5].

Corollary 1.2. For all compact set K of M there is a positive constant c, such that:
supu < ¢ = c(g,m, K, M) if iﬂnjfu >m >0,
K
for all u solution of (E).

2. PROOF OF THE THEOREMS

Proof of theorem 1.1: We want to prove that

s 3 % min u < c=c(M,g). 1
RS, s e T ey W
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We argue by contradiction and we assume that

( max uk)l/?’ X min ug > ke S, 2)
B(O,Ek) B(0,4Ek)

Step 1: The blow-up analysis The blow-up analysis gives us : For some z; € B(0, €x), up(Zy) =
maxp(o,e,) Uk> and, from the hypothesis,

uk({f‘k)4/9€k — +00.

By a standard selection process, we can find z;, € B(Zy, €x/2) and o, € (0, €;/4) satisfying,

uk(xk)4/9Rk —  +00, (3)
up(ze) > up(Ty), “4)
and, up(z) < (L4 o(1))uk(zk), in Bk, Re), )

where o(1) — 0 is some universal constant, which tends to 0 with k large enough. It follows from
above (2), (4) that

(g, (1)) x (aBglkigEk)uk)Ri > (up (7)) ? x (Bfgarelk)uk)ei >k — +o0. (6)

We use {z!,...,2"} to denote some geodesic normal coordinates centered at z;, (we use the
exponential map). In the geodesic normal coordinates, g = g;;(z)dzdz?,

9i;(2) — 6;; = O(1?), g :=det(gij(z)) = 1+ O(r?), h(z) = O(1), 7

where r = |z|. Thus,
1 .
Agu = —81(\/§g”8]u) = AU + bﬁ,u + dij@ju,
N/
where
bj = O(r), dij = O(r?) ®)
We have a new function
vi(y) = My u (M " Dy) for [y < e by
where M}, = u(0). From (5) and (6) we have

Avy, + biOyog + dijO0ijop — v + N1 = 0 for |y| < 3ekM§/(n_2)
vx(0) =1 )]
ve(y) < Cifor Jy| < RkMs/(n_Q)
where ('} is a universal constant and
bily) = M "D, (M ), dig(y) = dig (M) (10)
and,
ely) = M IR y), (11)

We can see that for |y| < 3¢, M./ "2,

b —#/\n— i —4/(n— _ 4/ (n—

bily)| < OM Pyl Jdy(y)| < CMY P, Je()) < oM ()
where C' depends on n, M, g.



It follows from (9), (10), (11), (12) and the elliptic estimates, that, along a subsequence, vy
converges in C* norm on any compact subset of R? to a positive function U satisfying

No1l Con n+2
AU +U = 0, 1nIR,W1thN—n_2 (13)
U(0) =1, 0<U<L
According to Caffarelli-Gidas-Spruck, see [10] we have an explicit form of U
Uly) = (1+ [y?)""27 (14)
Step 2: The Kelvin transform and moving-plane method
For x € R" and \ € R*, let,
1 Yy
vi(y) = ———vp (e + —) (15)
A= et T

denote the Kelvin transformation of v;, with respect to the unit ball, defined on R" U {0} \ {0}
and e = (1,0, ...0). If we denote

_ 1 Y )
U, = —Ule+ =
o) ly["—2 (6 |y|?
1 (n—2)/2 y
- <<1+2y1+2|y|2>) (10
then
vF — Uy in C2 (IR U {oo} \ {0}). (17)

Note that Uy is still a solution of (13) and Uy(—e/2) = 2"=2)/2 is the maximum of Uy (y). Hence
v¥ has a non degenerate, local maximum near —e /2 for all large k. To arrive at a contradiction to
our assumption (2),we use the same method as in [11] of moving-plane, precisely Lemma 2.1 in

[11] to show that g—z’% < 0 near the point e* = (—1/2,0,...0) = —e/2.

Note, that, if we consider 7}, = exp,, (M, 2/ ("72)6), we work in the conformal coordinates in the
exponential map around this point, for the blow-up analysis. A computation gives,

y .
@-vk(w) = [y|"*((n — 2)yivg () + Gimly” — 29iym) Oy (v)),

and,
)
3@']'%(@) = a10(Y) + BimOmv(y) + Yot Omivy (),

with,
ar = (n —2)(0;lyl™ — nyay;lyl"?),
Bim = |y" 72 (0= 2) Bimy[* = 249m) (i = Y5) = 2im ¥y |* + 059m Y1 + 8jmtily]* — 29:959m)),
and,
Yt = 1y Gimly* = 2059m) Gly]* — 2y5m1)-
The function v} satisfies the equation:

Avy + ()" = Eui(y)
4



where,

Yy _ Yy Yy
%w@+5@w®+mﬂ)

B =-(n)  (aanies 2 +as ot

|y |y|? |y|?

Thus, v} is a solution of an equation

AV + Oy + bnOmvy, + 0 + (vp)V ' =0, (18)
with,
. MY (2)
|dpa| < CﬂT, (19)
3 Y )
lbm| < Ot —v) (20)
lyl®
VA=)
and, || < C’]T. (21)
Thus, if we denote
Lk =A + szlaml + Z;mam + 67 (22)

then for any C? function g,
Lirg — Ag as k — oo (23)

if Opug, Omg and g are all uniformly bounded.

For A < 0,set Ty = {y,y1 = AL, Sy = {51 > Aland &} = 5\ — {y : [y| <7, "*}. Let

vt = 2N = Y12, ) (24)
and,
. 1 LA
wy = v, — v,
Then,
Lkw,\ -+ Z~)U})\ = V)\,
where,

Vs = (dyi — dp))Ouvy™ + (b — 8),) 0™ + (6 — &)vp?, (25)
and b(x) lies between v}.(z) and v, ().

From the expression of v}, and v;’k, we have
1 N 1 )
At A
1 1
C( + )-
5|y)\|n |y [+

00 < O (26)

|00 |

IN

(27)




Hence, for y € X},
. MY e-2 1
|dyiOmwy| < C—E ( + )
27 7 K (]

) —4/(n—2)
b Omwy| < CMk|y|3 (|y|i_1 + |y1|")
M};‘l/(”*?)
|6w>\| S
ly|"—2

Recall that %RkM:/g < r,i/z < nORkM,f/g, R, — 0 and ) is a constant chosen later( explain!).
Observe that for dimensions 3 < n < 6, all of

|Jm18mlw,\|, |l~)m6mw)\|, |cwy| — 0 uniformly as k& — oo, independent of A < 0. (28)
Furthermore,
- M (= N)
dml - di\n 8mlvl7>\ S k 5
It ) p | ly 4]y |2
- CMY Dy = N)
A LA k 1
(b — b3, O] < ly[[y? ]2 )
and,
CMY Dy, — N
~A\ LA k 1
(€= ol = = =
implies that
M (g — )
e T =

First of all we have the following lemma as in [11]

Lemma 2.1. There exists constants Ay < —2 and ¢y = co(n, 1) > 0, both independent of k such

that:
op(y) — o) = o1+ [y|) (1 — A)

forys > Mo and |y| > T;.C_l/Q-

Proof To prove our estimate, we consider two sets |y| > d > 0 and 6 > |y| > 7’,;1/ ?. For the
first set we use the same technique as in Chen-Lin paper, we use the C? convergence of v} to Uy
and choose || big enough to have our estimate. For two positive constants C; and C, we write the
estimate as follows:

C C
1 10, A 1 2

6



Y

s
C" > v, > C > 0for |y| > 5. We write

For |y| > 0,

ur(y) — vy

- (b ) () o ”(&)W(59<

lyl"=2 |y 2 2] [yAn2 y oy
> [y?)?
= L+ 1
Note that \
o (57) ~ ()
ly|* [y
vy
> [y?)?

appearing in the second term in (30) can be estimated by VU in the compact set |y| <

Chen-Lin again using the C? convergence of v;,. While

)

I A e A YRR S P ek 4y — Ny
WE PR WP Y R WP ly|? Y2y
Since y; > A we have |y*| > —) thus,
‘4(?/1 - A)yA‘ 4(y1 — A)
[y[2 [y —Alyl?
It follows that
vy 6N
7 S 7 R Ve
and
I, < Clyr — A) .
|y [2[yAr—2

To estimate the first term /1, since v, > ¢ > 0 and y; > A, we have

1 1 y s e 7 s
h:( _ )%(_)>c
ly["=2 |yAn? |y|? |ly[" 2|y |2

We now use the binomial formula:

A2 =y = (g = Dyl + o+ 7)),k =n—3.

Observe that

PP =) A — N

M=yl = =
y|
ly| + |y ly| + |y

ly
Thus,
=4 (y1 = N (ylF + .+ [y

W= Jyl" =
Yyl + [y

= %y\ < 1/6. Using convergence of vy, to U in C? norm in B(0,1/§) we have

(30)

as in

(31



and

(e i) () > N

171 e K lyl? (yl+ [y*DIyl" =2y =2
Finally, because |y*| > |y|, we have

yl* + .+ Y "yl ) 1
(yl+ 12 DIy =2l =2yl + [ DIy 22 TyPlyA =
It follows that
(5= ) = (5) >
— v | =5 —_—.
"= fy 2 w2/ lylPly? 2
Therefore,
—4A(yp — A —4(y1 — A
L+l >c z(yi\ —2) -C £y1A n—2)
ly Py ly?ly*
with ¢, C' > 0 and for —\ big enough, we have the required inequality. On the annulus A () :=
{y: rlzl/ ? < |y| < 6}, using the maximum principle for v} we have
o1 N |
min vy = min v 32
a6 " oA 2

where the boundary 0 A (9) is the union of two set |y| = r,zm and |y| < 4. From (16), Uy(0) = 1.
Hence for given ¢ > 0 small, there exists d, > 0 such that for all |y| < &y,

1—e=Up(0)—e < Up(y) <1+e="0Us(0)+e. (33)

Choosing ¢ sufficiently small, we have
Us(y) > (1= 5) for all |y| < do. (34)

While, for y € B(0,6), y* € B(0y,8) where 0, := (2),0,...,0) is the reflection of origin. We
have

Ooly) = 1
T T 2ea =) + 2y

< 1

= 220 =) + (23— )P
1

<

= (1+2(20—08) + (2\ — §)2) -2/
1

(1200 —2X) + (6 —2X)2) (=22

1
T -2 -1 G

for A\ < —2and 0 < § < &. From C? convergence of v} to Uy in B(0,,9), we have

ok(y") < (1+ S)0s(yY) in B(0,9). (36)
8



Note that

min v, = T,gn_Q)/Z min vy
{lyl=r. """ {lyl=ry/}
> (1+ e)'r’,(;hz)/2 min  Ule+y)=(1+¢) min Uy(y)
{lyl=r/*} {lyl=r "%}
€. - €
> (1+§)Uo(0) = (1+§)- (37)
Using C? convergence of v} to Uy on the compact set |y| = § we have,
g g k P
.1 € .-
min v; > (1 — —) min Uj. (38)
oty v = (1 75) i, Lo

In either case, for § < ¢,

min v, > (1+ %)UO(O) =1+ %)

Ak (9)
€. —
> (1+ )00y
€
> (1+ Z)v,i(yA) + /10 (39)
O
Recall that w, satisfies }
LkU))\ + bU))\ = V)\ in El)\ (40)
where 2
CM, " —A
v WM =) @1)
ly [y
Now, consider the "auxiliary function”
ha = Arg PGy, 0) — / Gy, m)Qx(n)dn, (42)
Za
with i)
~ CiM, " 4/
A= =Ty 5~ O, RO (43)
(lyl +re )yl = A=
where we define .
Qx = -
Iyl + i )4y = )=
for simplicity of notations. Here we choose constant C'; > 0 (big enough) later. Note that
R C MY =)
Ahy=0x= *11/2 k4 2)
(lyl+ 7 )yl = 1)
It can be verified that )
M, - A ~
e __od) g5 (44)

ly[*yAn
The function h;) satisfies the following properties:
9



Lemma 2.2. The functions b and hy, satisfy the following properties
(i)Forall \g < X\ < —1,
0<b(y) < % in 3, 43)
(ii)The auxiliary function hj(z) = 0 on 1 = A\, Ao < A < —1 and hj(z) = O(|z|™") for a
constant T > 0;
(iii) h)(z) € CL(X)) and
0<hay) < Ar"PGNy,0)+ Gl Wz)%om (46)

Lihy > CiQ,. 47)

(iv)hy° (z) < wy,and that both by and V .} are continuous with respect to both the variables
and \ in ¥\. Moreover,

Lywy + bwy < C1Qx < Lihy, (48)
and hence, ) .
Lk(w)\ — h)\) + b(ZU)\ - h)\) S —bhA S 0. (49)

Most of the estimates mentioned from (i)-(iv) above are similar, but much simpler than those of
[11], and we refer the reader to that paper for details.

However, observe that we cannot apply the technique of [11] directly, as our operator is L. Here
the crucial step is to have correct estimates for the perturbation terms in L;h;, which we obtain in
the following lemmas.

3. ESTIMATES FOR Ljh}

Lemma 3.1. ( Estimate of G*(y,0) ) The function G*(y, 0) satisfies

(ne2)2 C M 7

|JmlamlG>\<y7 O) + Z;mamGAQ/a O) + éG)\<y7 O)| S Tk: |y|4|y)\|n72 ) (50)

and hence
LiGM(y,0) < Cord272Q,. (51)

Proof From the fact that,
GMy,0) = calyl>" = [9*™),
we have, around 0 and + o0,
CMk—4/(n—2) CMk—4/(n—2)
y|*y["—2 e
—4/(n-2) —4/(n-2)
CM, N CM,
Byt yBly et
10

6G My, 0)] <

160Gy, 0)| <




and,
CM};‘V(”*?) CM];4/("*2)
y[*[y]" Y2y

)

|(jmlamlG>\ (ya 0)| S

For the previous expression, we remark that, around 0

Pyl = Ly Plyl™ = gl = gl 2",
Thus,
) ) o CMY )
A0t Gy, 0) + b0 G (y,0) + EC (3, O)) < 1y P
and hence
LGy, 0) < 027”;(9”_2)/2 N
O
Now, we look at the second term in A by setting,
u=— / Gy, mQa(n)dn
D
We have that v is a solution of a Dirichlet problem on X/.
Lemma 3.2. ( Estimate for u:) For the function u, we have
Au = C1Q, (52)
| i Ottt + DOt + cu| = 0(1)Qx. (53)

Proof We want to prove that,
|a~lml(’9mlu + by Ot + cul = o(1)Qx

Because of the expression of G*, we consider u as a difference of two convolution product on ¥j.
Thus, to differentiate u is equivalent to differentiating (), inside the integral plus the boundary
term. Our aim is to estimate the auxiliary function and its derivatives of order less than two near
infinity. Write,

L / G (y, m)Qx(n)dn

and,

u—1u= —/ G (y,n)Qx(n)dn
B(0,r; M%)

,T‘k

11



We denote X3 the reflection of X, with respect to the hyperplane 7, = {y; = A}, ie., X3 :={y €
R" : y; < A}. Thus,

. / eally = 1P = [y — ) (m)d
2

- / ly— 1" Qa(n)dn — / ly — 0> Qu (i) dn,
DN i

= [ == [ =@+ Qi s
_ fw (55)
where
feC®R"), Af =Qyin R (56)
and Av = 01in 2. 57

1) Behavior of @ and v — @ near infinity.
Let ¢ a cutoff function in the unit ball, i.e.,

0<¢<1 ¢=1on B(0,1/2) and, ¢ =0 in R"\ B(0,1)

We write,
[=f+fe
where,
fi = ly — n)*"Qx(n)¢ dn and
Rn
fo = i ly — 0> Qx(n) (1 — @) dn.
Then,

Afi=Qxpand Afy = Qx(1 — ),
We use the Fourier transform to prove that f5 is in the Schwartz space and thus,

[fol S Clyl™", [0fa] < Clyl'™, [0°fo] < ClyI™™

For f; we use the fact that in the present case, |y| is big enough, and we differentiate inside the
integral, (|n| < |y|/2 = |y — n| > |y|/2) to conclude

Al < ClyP™, (0] < Clyl'™", |02 il < Clyl™
Thus, for |y| large,
[fI < Clyl™™, [of] < Clyl'™, [0°f] < Cly|™ (58)

For v, we have y € X and the integral is taken over the reflected set 23. We set,

Rx(n) = Qa(n) + Qx (1),

12



so that

o(y) = ly — n|* "Ry (n)dn,
=3
-/ =l Ratn — [ PR (59)
B3n{Inl>lyl/2} 3ndInl<lyl/2}
Second integral: If || < |y|/2 then |y — 1| > |y|/2 and thus,
_ Criy* " if n=4
ly — n[* " Ra(n)dn| < L (60)
/Eiﬂ{lnﬁlyﬂ} Clyl*~ it n =5,6.
First integral: First, we have,
|RA(n)] < C(1+[n))2",
If |y —n| < |y|/2, then,
| =il Bl < | Ba(lul/2)] [ jy —n*"dy < O+ [y) ™",
zin{Inl>lyl/2} {In—yl<lyl/2}

If ly|/2 < |y —n| <3|y,
| ly — 0" Ra(m)dn] < [Ra(lyl/2) / ly — nl*"dy < C(1L+ [y) ™,
E3n{Inl>lyl/2} {lyl/2<|n—y|<3|y|}

If 3|y| < |y —nl, then || = |y —n —y| > 2|y|, and thus, |n —y| = |n[(|0, —y/[nl| > [n|/2. With
|0,,| = 1 the angular part of 7). Thus

| =P sl < Clol ™ [
E3n{Inl>lyl/2} {Inl>1yl/2}
=l [ = el
{r>lyl/2}
Thus, in this case too, we have
C 2 mifp =14
O] < § Ol i 61)

Clyl>~™if n =5,6.

Estimate of the first derivatives of v: We have,

Ov = / (i = mi)ly — nl ™" Ra(n)dn — / (yi — mi)ly — nl~"Rx(n)
E30{Inl=lyl/2} E3EInl<lyl/2}
Second integral If |n| < |y|/2 then |y — n| > |y|/2 and thus,

< Crily|' =" if n =4,
| Cly|t " if n=5,6.

(62)

/ (0s = 1)y = " Ra(m)dn
sn{Inl<lyl/2}

First integral First, we have,

|Ry(n)| < C(1+ [n)~>",
13



If [y — n| < |y[/2, then,

| (i—mi)ly—nl~"Rx(n)dn| < IRA(IyI/Q)I/{ ly—nl'""dn < C(1+y) ",

50{|nl>[yl/2} In—yl<|yl/2}
If[y[/2 < |y —n| < 3Jyl,

| @ﬁ—nour—m"Rxondn|swfa<ww@>y4“ |y < (1)

z3n{|n1>]yl/2} lyl/2<|n—y|<3|y[}

If3ly| < |y —nl, then [n| = [y —n —y| > 2|y|, and thus, |n —y| = |n|(|6, —y/|n|| = [n]/2. With
|0,,| = 1 the angular part of 7). Thus

\ (yi —m3)ly — 0| "Ra(n)dn| < C\y\"/ In| =" "dn

s30{Inl>lyl/2} {Inl>1yl/2}

= C\y\"/ r2dr = Cly|~' ™.
{r>lyl/2}
Thus,

B <  Crll 77 i n =4
T Oyt if n=5,6.

Estimate of the second derivatives: We write,

Dijv =/ 95((ys —m)|y—?7|‘”)RA(n)d?7—/ 9;((yi —mi)ly —n|™™)Ra(n)
23 n{|nl>[yl/2} S3nd{Inl<lyl/2}

Second integral we have, If || < |y|/2then |y—n| > |y|/2and |0;((y;—n:)|ly—n|""| < |y—n|~",
thus,

Crily| ™ if n=4

|/’ 0,((ys — m)ly — ™ Ra(m)dn] < 4 <7191
ssn{nl<lyl/2) Cly|™™ if n = 5,6.

First integral

We use an integration by part,

Yi — Mi Yi — 1
/ oL i = - | W= o g ()i +
ssninlzll/2y 1Y — 1l s3>z 1Y — 71
n / MRA(U)yj(a)da
(=3 {lol>lul/2)) 1Y — 0

From, the computation for the first derivatives, we have,
| (i —m)
s30{nl>lol/2y 1Y — 117"

The boundary term has the following decomposition, 9(33 N {|n| > |y|/2}) = (023) N {|n| >
lyl/2})) U (E5 N {|n| = |y|/2}). For the first boundary, v;(c) = 0 for j # 1, and thus,

/ MRU(U)Vj(U)dU = / MRJ(U)VJ‘(UWU
a( >

S3nllol2lul/2y) 1Y — o™ sflol=ll/2y [y — o™

0;Rx(n)dn| < Cly|™",
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Clearly, we have,

Yi — 0; _n
/2 W=l |5 o) y(o)ldo < Cly,

s{lol=lol/2y 1V — o~
Thus, for j # 1, we have:

0,0] < Crily| ™ if n=4
YT Clyl T if n=5,6.

But, Av = 0, thus,

n Cryly| ™ if n =4
0 = Oyv| <
|O11v| |ZZ; vl < {C\y\" if n=5,6.

Finally, we have:

O] < Cryly|' ™ if n =4
T Oyt if n=5,6.

and,

10, < Crily|™™ if n =4,
YT Clyl T if n=5,6.

Estimate for v — u:

Around infinity, we use the fact that, y is big enough (|| < |y|/2 = |y — n| > |y|/2) and we
differentiate inside the integral, to have:

fu— | < ClyP~", |8(u—@)| < Clyl*", [6*(u — )| < Cly| ™ (63)

(2) Behavior of 4 and u — @ near 0. The function f, is smooth and solution of an elliptic equa-
tion with Q, (1 — ) € C*(R"), thus, by the elliptic estimates, we have,

| fale2(Boa)) < C,
We write the function f; as,

fiy) =/ ly — n|*"Qx(n)pdn
B(0,1)

note that, |Qx(n)| < Cr? and thus,

|fi(y)] < Cr}
Moreover, we can write:

Oifr = / (yi —m3)ly — 0|7 "Qx(n)edn
B(0,1)
Thus,
10 f1] < / ly — 0" " Qx(n)edn < Cry,
B(0,1)

Also, we can write, (see, Gilbarg-Trudinger),

&jfl(y):/ 3j((yi—m)\y—n\")(Qx(n)w(n)dnJrQA(y)w(y)/ (yi — 03)|y —o| "do,
B(0,1) s 8B(0,1)



Thus,

10:£1(y)] < C /

ly =0l Qx(m)e(n) — Qa(y)e(y)ldn + Cry
B(0,1)

We write,

/B(O : ly=nl""|@x () () —Qxy)e(y)] = / ly=nl""1@x () (1) —Qx(y)e(y)ldn+

B(0,1)n{|n|>|yl/2}

+ 1y — 1" 1Qam)eln) — @) w)ldn
BO,1)n{InI<lyl/2}
Second integral We have || < |y|/2, thus |y — n| > |y|/2, and thus,
C’T,%

Wl JBongm<lyl/2}

2
Cry

|y

ly—nl7"Qxa(m)e(n) — Qxw)e(y)| < ly—n|'"dn <

/B(O,l)ﬂ{nléylﬂ}
First integral We write,

Qx(me(n) — x(y)e(y) = (n —y)VOA(E), with, & between n and y,
We remark that,
IVQA©)| < C(lg] + %),

If [y| < €] < |nl. then,

IVQAE)] < C(lyl + 1,72 < Cri/lyl
If [y[/2 < |n| < €] < Jyl,

IVQAE)] < C(Inl + 1,727 < Cri/lyl
Finally, we have:

10 fi(y)] < Cri/lyl

Now, we estimate v near 0, as for f we decompose v in two functions v; and vy, and we see that
y € X, small enough is far from the symmetral >3 of X. And we differentiate inside the integral
to have:

[9rv1(y)| < Cr and [9y02(y)| < C.

/

Now, for u — @, we use the fact that |y| > ar,?l 2 with o > 1 and the elliptic interior estimates to

have (we differentiate inside the integral)

lu — |0y < Cray [u—alevsory < Cry”, |u—ilezpo) < O
It follows that ) )
|dyiOmitt + by Oyt + ul = o(1)Q (64)
and that
Liu = (C1 + 0(1))Qs. (65)
]

As in Chen-Lin paper [11], we have the following lemma (which we state without proof)
16



Lemma 3.3. . For Q)), we have in 3\ for A < —1/4 and for large k:

7 [ P u@ndn = o060

A

If , we choose A > 0 small enough in the definition of h), we have,
hy >0,
Lihy > C1Qy.

We can now use Lemma of [11] to obtain a contradiction, and this completes the proof of Theorem
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