
HAL Id: hal-00695015
https://hal.science/hal-00695015v1

Preprint submitted on 7 May 2012 (v1), last revised 1 Mar 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harnack type inequality on Riemannian manifolds of
dimensions 5

Samy Skander Bahoura, Jyotshana V. Prajapat

To cite this version:
Samy Skander Bahoura, Jyotshana V. Prajapat. Harnack type inequality on Riemannian manifolds
of dimensions 5. 2012. �hal-00695015v1�

https://hal.science/hal-00695015v1
https://hal.archives-ouvertes.fr


HARNACK TYPE INEQUALITY ON RIEMANNIAN

MANIFOLDS OF DIMENSIONS 4, 5 AND 6.

SAMY SKANDER BAHOURA AND JYOTSHANA V. PRAJAPAT

ABSTRACT. We give some estimates of type sup× inf on Riemannian

manifold of dimensions 4, 5 and 6 for the Yamabe type equation.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we deal with the following Yamabe type equation in dimen-

sions n = 4, 5, 6

−∆gu+ h̄(x)u = n(n− 2)uN−1, u > 0, and N =
n + 2

n− 2
. (1)

where h̄ is a continuous function. In the case
4(n− 1)h̄

n− 2
= Rg the scalar

curvature, (1) is the Yamabe equation. Here, we assume h̄ a bounded func-

tion and h0 = ||h̄||L∞(M). The equation (1) has been well studied when

M = Ω ⊂ R
n open, or M = Sn, see for example, [2]-[4], [12], [16] and

references therein, where sup-inf inequality or Harnack type inequalities are

derived.

The corresponding equation in two dimensions on open set Ω of R2, is

−∆u = V (x)eu, . (2)

The equation (2) has also been studied by many authors and we can find

important results about a priori estimates in [9], [10], [13], [17], and [21].

In particular, in [10] we have the interior estimate

sup
K

u ≤ c = c(inf
Ω

V, ||V ||L∞(Ω), inf
Ω

u,K,Ω).

And, precisely, in [9], [13], [17], and [21], we have

C sup
K

u+ inf
Ω

u ≤ c = c(inf
Ω

V, ||V ||L∞(Ω), K,Ω),

and,

sup
K

u+ inf
Ω

u ≤ c = c(inf
Ω

V, ||V ||Cα(Ω), K,Ω).

where K is a compact subset of Ω, C is a positive constant which depends

on
infΩ V

supΩ V
, and, α ∈ (0, 1].
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When M is a compact Riemannian manifold, some compactness results

have been proved for the equation (1), see [19]. In [19], Li and Zhu proved

that the energy is bounded and if we assume that M not diffeomorphic to the

three sphere, then the solutions are uniformly bounded. To prove this result,

they use the positive mass theorem. For general Riemannian manifold M
of dimensions 3 and 4, not necessarily compact Li and Zhang [18] proved

that the product sup× inf is bounded. The first author obtained Harnack

type inequality for the solutions of

−8∆u+Rgu = V (x)u5, u > 0 (3)

under certain conditions on V in [5] and [3].

There are other estimates of type sup+ inf on complex Monge-Ampere

equation on compact manifolds, see [21-22] . They consider, on compact

Kahler manifold (M, g), the following equation:
{

(ωg + ∂∂̄ϕ)n = ef−tϕωn
g ,

ωg + ∂∂̄ϕ > 0 on M

And, they prove some estimates of type supM +m infM ≤ C or supM +m infM ≥
C under the positivity of the first Chern class of M.

In this paper, we will prove a Harnack type inequality for equation (1).

Precisely,

Theorem 1.1. Let (M, g) be a Riemannian manifold of dimension n = 4,

5 or 6 and let K ⊂ M be a compact set. Then, there exists a positive

constant c, which depending only on h0 = ||h̄||L∞, K, M , the metric g and

dimension n such that

sup
K

u× inf
M

u ≤ c, (4)

for any solution u of the equation (1).

Our proof is an extension of Brezis-Li [8] and Li-Zhang result in dimen-

sion 3 and 4 [18]. We refer to [18] for exposition on importance of studying

these inequalities on manifolds. The proof of Theorem 1.1 relies on moving

plane method together with some ideas in [18] and [19]. The equation (1)

is first written in local coordinates ([18]) which gives an expression for the

Laplace-Beltrami operator as a perturbation of the usual Laplace operator

and do blow up analysis. Then constructing suitable auxiliary function, we

apply Lemma 2.1 of [19]. Here, we wish to point out that the restriction on

dimension n is due to difficulty in estimating the perturbation terms of the

Laplace-Beltrami operator. With finer estimates, the result could possibly

be extended to higher dimension.

Note that our result is true for more general equations where h may not

be the scalar curvature. Also, we extend the result of [5], where in the case

h ≡ ǫ ∈ (0, 1) and uǫ solution of

−∆uǫ + ǫuǫ = Vǫu
N−1
ǫ , uǫ > 0. (Eǫ)

we have
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Corollary 1.2. For all compact set K of M there is a positive constant

c, which depends only on, K,M, g, n such that:

sup
K

uǫ × inf
M

uǫ ≤ c,

for all u solution of (Eǫ).

Now, if we assume M a compact Riemannian manifold and 0 < a ≤
Vǫ ≤ b < +∞ then

Theorem 1.3. (see [3]). For all positive numbers a, b,m there is a posi-

tive constant c, which depends only on, a, b,m,M, g such that:

ǫ sup
M

uǫ × inf
M

uǫ ≥ c,

for all uǫ solution of (Eǫ) with

max
M

uǫ ≥ m > 0.

As a consequence of the two previous theorems, we can argue as in [3]

that

Theorem 1.4. For n=4, 5, 6, we have

max
M

uǫ → 0,

and (up to a subsequence),

uǫ ≡ ǫ(n−2)/4.

2. PROOF OF THE THEOREM 1.1

We claim that for any ε > 0,

ǫn−2 max
B(0,ǫ)

u× min
B(0,4ǫ)

u ≤ c = c(a, b, A,M, g). (5)

Arguing by contradiction, we assume that there exists a sequence εk → 0
and solutions uk of (1) such that

max
B(0,ǫk)

uk × min
B(0,4ǫk)

uk ≥ kǫk
2−n. (6)

The proof of the theorem consists of two main steps. The first is blow

up analysis where we analyze the consequence of assuming (6) and obtain

equations in local coordinates. In the second part, we wish to apply Lemma

2.1 of [20] and the moving plane method. This involves constructing a

suitable auxiliary function and obtaining correct estimates.

Step 1: Blow-up analysis

For some x̄k ∈ B(0, ǫk), uk(x̄k) = maxB(0,ǫk) uk, due to (6),

uk(x̄k)
2ǫk → +∞.
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By a standard selection process, we can find xk ∈ B(x̄k, ǫk/2) and σk ∈
(0, ǫk/4) satisfying,

uk(xk)
2σk → +∞, (7)

uk(xk) ≥ uk(x̄k), (8)

and, uk(x) ≤ C1uk(xk), in B(xk, σk), (9)

where C1 is some universal constant. It follows from above (6), (8) that

uk(xk)× min
∂B(xk ,2ǫk)

ukǫk ≥ uk(x̄k)× min
B(0,4ǫk)

ukǫk ≥ k → +∞. (10)

Let {z1, . . . , zn} denote some geodesic normal coordinates centered at xk

(we use the exponential map). In the geodesic normal coordinates, the met-

ric g is given by g = gij(z)dzdz
j where

gij(z)− δij = O(r2), g := det(gij(z)) = 1 +O(r2), h(z) = O(1), (11)

where r = |z|. Thus,

∆gu =
1√
g
∂i(

√
ggij∂ju) = ∆u+ bi∂iu+ dij∂iju,

where

bj = O(r), dij = O(r2) (12)

We have a new function

vk(y) = M−1
k uk(M

−2/(n−2)
k y) for |y| ≤ 3ǫkM

2/(n−2)
k

where Mk = uk(0). From (9) and (10) we have

∆vk + b̄i∂ivk + d̄ij∂ijvk − c̄vk + vk
N−1 = 0 for |y| ≤ 3ǫkM

2/(n−2)
k

vk(0) = 1

vk(y) ≤ C1 for |y| ≤ σkM
2/(n−2)
k







(13)

where C1 is a universal constant and

b̄i(y) = M
−2/(n−2)
k bi(M

−2/(n−2)
k y), d̄ij(y) = dij(M

−2/(n−2)
k y) (14)

and,

c̄(y) = M
−4/(n−2)
k h̄(M

−2/(n−2)
k y). (15)

We can see that for |y| ≤ 3ǫkM
2/(n−2)
k ,

|b̄i(y)| ≤ CM
−4/(n−2)
k |y|, |d̄ij(y)| ≤ CM

−4/(n−2)
k |y|2, |c̄(y)| ≤ CM

−4/(n−2)
k

(16)

where C depends on n,M, g.

It follows from (13), (14), (15), (16) and the elliptic estimates, that, along

a subsequence, vk converges in C2 norm on any compact subset of R2 to a

positive function U satisfying

∆U + UN−1 = 0, in R
n, with N =

n+ 2

n− 2
U(0) = 1, 0 < U ≤ 1.

}

(17)
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According to Caffarelli-Gidas-Spruck, see [10] we have an explicit form of

U

U(y) = (1 + |y|2)−(n−2)/2. (18)

Step 2: The Kelvin transform and moving-plane method

For x ∈ R
n and λ ∈ R

∗
−, let,

v1k(y) :=
1

|y|n−2
vk

(

e +
y

|y|2
)

(19)

denote the Kelvin transformation of vk with respect to the unit ball, defined

on IRn ∪ {∞} \ {0} and e = (1, 0, ...0). If we denote

Ū0(y) =
1

|y|n−2
U

(

e +
y

|y|2
)

=

(

1

(1 + 2y1 + 2|y|2)

)(n−2)/2

(20)

then

vk1 → Ū0 in C2
loc(IR

n ∪ {∞} \ {0}). (21)

Note that Ū0 is still a solution of (17) and Ū0(−e/2) = 2(n−2)/2 is the

maximum of Ū0(y). Hence vk1 has a non degenerate, local maximum near

−e/2 for all large k. To arrive at a contradiction to our assumption (6),we

use the same method as in [19] of moving-plane, precisely Lemma 2.1 in

[19] to show that
∂v1k
∂x1

< 0 near the point e∗ = (−1/2, 0, ...0) = −e/2.

Note, that, if we consider x̃k = expxk
(M

−2/(n−2)
k e), we work in the con-

formal coordinates in the exponential map around this point, for the blow-up

analysis. A computation gives,

∂ivk(
y

|y|2 ) = |y|n−2((n− 2)yiv
1
k(y) + (δim|y|2 − 2yiym)∂mv

1
k(y)),

and,

∂ijvk(
y

|y|2 ) = α1v
1
k(y) + β1m∂mv

1
k(y) + γml∂mlv

1
k(y),

with,

α1 = (n− 2)(δij |y|n − nyiyj|y|n−2),

β1m = |y|n−2
{

(n− 2)(δim|y|2 − 2yiym)(yi − yj)

−2(δimyj|y|2 + δijym|y|2 + δjmyi|y|2 − 2yiyjym)
}

,

and,

γml = |y|n−2(δim|y|2 − 2yiym)(δjl|y|2 − 2yjyl).

The function v1k satisfies the equation:

∆v1k + (v1k)
N−1 = E1(y)
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where,

E1(y) = − 1

|y|n+2

{

b̄i(
y

|y|2 )∂ivk(e +
y

|y|2 ) + d̄ij(
y

|y|2 )∂ijvk(e +
y

|y|2 )

−c̄(e+
y

|y|2 )vk(e +
y

|y|2 )
}

. (22)

Thus, v1k is a solution of an equation

∆v1k + d̃ml∂mlv
1
k + b̃m∂mv

1
k + c̃v1k + (v1k)

N−1 = 0, (23)

with,

|d̃ml| ≤ C
M

−4/(n−2)
k

|y|2 , (24)

|b̃m| ≤ C
M

−4/(n−2)
k

|y|3 , (25)

and, |c̃| ≤ C
M

−4/(n−2)
k

|y|4 . (26)

Thus, if we denote

Lk := ∆ + d̃ml∂ml + b̃m∂m + c̃, (27)

then for any C2 function g,

Lkg → ∆g as k → ∞ (28)

if say, ∂mlg, ∂mg and c̃g are all uniformly bounded.

For λ < 0, set Tλ = {y, y1 = λ}, Σλ = {y, y1 > λ} and Σ′
λ = Σλ − {y :

|y| ≤ r
−1/2
k } . Let

v1,λk = v1k(2λ− y1, y2, . . . , yn) (29)

and,

wλ := v1k − v1,λk .

Then,

Lkwλ + b̃wλ = Vλ,

where,

Vλ = (d̃ml − d̃λml)∂mlv
1,λ
k + (b̃m − b̃λm)∂mv

1,λ
k + (c̃− c̃λ)v1,λk , (30)

and b̃(x) lies between v1k(x) and v1,λk (x).

From the expression of v1k and v1,λk , we have

|∂mv1,λk | ≤ C(
1

|yλ|n−1
+

1

|yλ|n ), (31)

|∂mlv
1,λ
k | ≤ C(

1

|yλ|n +
1

|yλ|n+1
). (32)
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Hence, for y ∈ Σ′
λ,

|d̃ml∂mlwλ| ≤ C
M

−4/(n−2)
k

|y|2 (
1

|y|n +
1

|y|n+1
)

|b̃m∂mwλ| ≤ C
M

−4/(n−2)
k

|y|3 (
1

|y|n−1
+

1

|y|n )

|c̃wλ| ≤ C
M

−4/(n−2)
k

|y|n−2
.

Recall that 1
2
RkM

2/(n−2)
k < rk ≤ η0RkM

2/(n−2)
k , Rk → 0 and η0 is a

constant chosen later. Observe that for dimensions 3 ≤ n ≤ 6, all of

|d̃ml∂mlwλ|, |b̃m∂mwλ|, |c̃wλ| → 0 uniformly as k → ∞, independent of λ < 0.
(33)

Furthermore,

|(d̃ml − d̃λml)∂mlv
1,λ
k | ≤ CM

−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2
,

|(b̃m − b̃λm)∂mv
1,λ
k | ≤ CM

−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2
,

and,

|(c̃− c̃λ)v1,λk | ≤ CM
−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2

implies that

Vλ ≤ |Vλ| ≤
CM

−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2
. (34)

First of all we have the following lemma as in [19]

Lemma 2.1. There exists constants λ0 ≤ −2 and c0 = c0(n, µ) > 0,

both independent of k such that:

v1k(y)− v1k(y
λ0) ≥ c0(1 + |y|)−n(y1 − λ)

for y1 ≥ λ0 and |y| ≥ r
−1/2
k .

Proof. To prove our estimate, we consider two sets |y| ≥ δ > 0 and δ ≥
|y| ≥ r

−1/2
k . For the first set we use the same technique as in Prajapat-

Lin paper ([19]), we use the C2 convergence of v1k to Ū0 and choose |λ| big

enough to have our estimate. For two positive constants C1 and C2 we write

the estimate as follows:

v1k(y)− v1k(y
λ) ≥ |λ| C1

|y|n (y1 − λ)− C2

|y|n (y1 − λ).
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For |y| > δ,

∣

∣

∣

∣

y

|y|2
∣

∣

∣

∣

= 1
|y|

< 1/δ. Using convergence of vk to U in C2 norm

in B(0, 1/δ) we have C ′ > vk > C > 0 for |y| > δ. We write

v1k(y)− v1k(y
λ)

=

(

1

|y|n−2
− 1

|yλ|n−2

)

vk

(

y

|y|2
)

+
1

|yλ|n−2

vk

(

y

|y|2
)

− vk

(

yλ

|yλ|2
)

y

|y|2 −
yλ

|yλ|2

(

y

|y|2 −
yλ

|yλ|2
)

=: I1 + I2. (35)

Note that

vk

(

y

|y|2
)

− vk

(

yλ

|yλ|2
)

y

|y|2 −
yλ

|yλ|2
appearing in the second term in (35) can be estimated by ∇U in the compact

set |y| ≤ 1
δ

as in [19] again using the C2 convergence of vk. While

y

|y|2 −
yλ

|yλ|2 =
y − yλ

|y|2 + yλ(
1

|y|2 −
1

|yλ|2 ) = 2
y1 − λ

|y|2 +
4(y1 − λ)yλ

|y|2|yλ|2 .

Since y1 > λ we have |yλ| > −λ thus,

|4(y1 − λ)yλ

|y|2|yλ|2 | < 4(y1 − λ)

−λ|y|2 .

It follows that
y

|y|2 −
yλ

|yλ|2 ≤ 6(y1 − λ)

|y|2
and

I2 <
C(y1 − λ)

|y|2|yλ|n−2
. (36)

To estimate the first term I1, since vk > c > 0 and y1 > λ, we have

I1 =

(

1

|y|n−2
− 1

|yλ|n−2

)

vk

(

y

|y|2
)

> c
|yλ|n−2 − |y|n−2

|y|n−2|yλ|n−2

We now use the binomial formula:

|yλ|n−2 − |y|n−2 = (|yλ| − |y|)(|y|k + ... + |yλ|k), k = n− 3.

Observe that

|yλ| − |y| = |yλ|2 − |y|2)
|y|+ |yλ| =

−4λ(y1 − λ)

|y|+ |yλ| .
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Thus,

|yλ|n−2 − |y|n−2 =
−4λ(y1 − λ)(|y|k + ... + |yλ|k

|y|+ |yλ|
and

(

1

|y|n−2
− 1

|yλ|n−2

)

vk

(

y

|y|2
)

> c
−4λ(y1 − λ)(|y|k + ... + |yλ|k

(|y|+ |yλ|)|y|n−2|yλ|n−2

Finally, because |yλ| > |y|, we have

|y|k + ... + |yλ|k
(|y|+ |yλ|)|y|n−2|yλ|n−2

>
|y|n−4(|y|+ |yλ|)

(|y|+ |yλ|)|y|n−2|yλ|n−2
=

1

|y|2|yλ|n−2
.

It follows that
(

1

|y|n−2
− 1

|yλ|n−2

)

vk

(

y

|y|2
)

>
c

|y|2|yλ|n−2
.

Therefore,

I1 + I2 > c
−4λ(y1 − λ)

|y|2|yλ|n−2
− C

−4(y1 − λ)

|y|2|yλ|n−2

with c, C > 0 and for −λ big enough, we have the required inequality. On

the annulus Ak(δ) := {y : r
−1/2
k ≤ |y| ≤ δ}, using the maximum principle

for v1k we have

min
Ak(δ)

v1k = min
∂Ak(δ)

v1k (37)

where the boundary ∂Ak(δ) is the union of two set |y| = r
−1/2
k and |y| = δ.

From (20), Ū0(0) = 1. Hence for given ε > 0 small, there exists δ0 > 0
such that for all |y| < δ0,

1− ε = Ū0(0)− ε < Ū0(y) < 1 + ε = Ū0(0) + ε. (38)

Choosing ε sufficiently small, we have

Ū0(y) > (1− ε

2
) for all |y| ≤ δ0. (39)

While, for y ∈ B(0, δ), yλ ∈ B(0λ, δ) where 0λ := (2λ, 0, . . . , 0) is the

reflection of origin. We have

Ū0(y
λ) =

1

(1 + 2(2λ− y1) + 2|yλ|2)(n−2)/2

≤ 1

(1 + 2(2λ− y1) + (2λ− y1)2)(n−2)/2

≤ 1

(1 + 2(2λ− δ) + (2λ− δ)2)(n−2)/2

=
1

(1− 2(δ − 2λ) + (δ − 2λ)2)(n−2)/2

=
1

(δ − 2λ− 1)(n−2)
(40)
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for λ ≤ −2 and 0 < δ ≤ δ0. From C2 convergence of v1k to Ū0 in B(0λ, δ),
we have

v1k(y
λ) < (1 +

ε

2
)Ū0(y

λ) in B(0, δ). (41)

Note that

min
{|y|=r

−1/2
k }

v1k = r
(n−2)/2
k min

{|y|=r
1/2
k }

vk

≥ (1 + ǫ)r
(n−2)/2
k min

{|y|=r
1/2
k }

U(e + y)

= (1 + ǫ) min
{|y|=r

−1/2
k }

Ū0(y)

≥ (1 +
ǫ

2
)Ū0(0) = (1 +

ǫ

2
). (42)

Using C2 convergence of v1k to Ū0 on the compact set |y| = δ we have,

min
{|y|=δ}

v1k ≥ (1− ǫ

10
) min
{|y|=δ}

Ū0. (43)

In either case, for δ ≤ δ0,

min
Ak(δ)

v1k ≥ (1 +
ǫ

2
)Ū0(0) = (1 +

ǫ

2
)

≥ (1 +
ǫ

2
)Ū0(y

λ)

> (1 +
ǫ

4
)v1k(y

λ) + ε/10 (44)

�

Recall that wλ satisfies

Lkwλ + b̃wλ = Vλ in Σ′
λ (45)

where

Vλ ≤ CM
−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2
. (46)

Now, consider the ”auxiliary function”

hλ = Ar
(2−n)/2
k Gλ(y, 0)−

∫

Σλ

Gλ(y, η)Q̃λ(η)dη, (47)

with

Q̃λ :=
C1M

−4/(n−2)
k

(|y|+ r
−1/2
k )4(|y| − λ)(n−2)

= C1M
−4/(n−2)
k Qλ (48)

where we define

Qλ =
1

(|y|+ r
−1/2
k )4(|y| − λ)(n−2)
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for simplicity of notations. Here we choose constant C1 > 0 (big enough)

later. Note that

∆hλ = Q̃λ =
C1M

−4/(n−2)
k

(|y|+ r
−1/2
k )4(|y| − λ)(n−2)

.

It can be verified that

Vλ ≤ CM
−4/(n−2)
k (y1 − λ)

|y|4|yλ|n−2
≤ Q̃λ. (49)

The function hλ
k satisfies the following properties:

Lemma 2.2. The functions b̃ and hλ satisfy the following properties

(i) For all λ0 ≤ λ ≤ −1
4
,

0 ≤ b̃(y) ≤ C

|y|4 in Σ′
λ (50)

(ii) The auxiliary function hλ
k(x) = 0 on x1 = λ, λ0 ≤ λ ≤ −1

4
and

hλ
k(x) = O(|x|−τ) for a constant τ > 0;

(iii) hλ
k(x) ∈ C1(Σ̄′

λ) and

0 < hλ(y) ≤ Ar
−(n−2)/2
k Gλ(y, 0) + C ′

1M
−2/(n−2)
k

(y1 − λ)

|y|n o(1) (51)

Lkhλ ≥ C1Q̃λ. (52)

(iv)hλ0

k (x) ≤ wλ0
and that both hλ

k and ∇xh
λ
k are continuous with respect to

both the variables x and λ in Σ′
λ. Moreover,

Lkwλ + b̃wλ ≤ C1Q̃λ ≤ Lkhλ (53)

and hence,

Lk(wλ − hλ) + b̃(wλ − hλ) ≤ −b̃hλ ≤ 0. (54)

Most of the estimates mentioned from (i)-(iv) above are similar, but much

simpler than those in section 4 of [19], and we refer the reader to that paper

for details.

However, observe that we cannot apply Lemma 4.1 of [19] directly, as

our operator is Lk. Here the crucial step is to have correct estimates for the

perturbation terms in Lkh
λ
k , which we obtain in the following lemmas.

3. ESTIMATES FOR Lkh
λ
k

Lemma 3.1. ( Estimate of Gλ(y, 0) ) The function Gλ(y, 0) satisfies

|d̃ml∂mlG
λ(y, 0) + b̃m∂mG

λ(y, 0) + c̃Gλ(y, 0)| ≤ r
(n−2)/2
k

CM
−4/(n−2)
k

|y|4|yλ|n−2
,

(55)

and hence

LkG
λ(y, 0) ≤ C2r

(n−2)/2
k Qλ. (56)
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Proof. From the fact that,

Gλ(y, 0) = cn(|y|2−n − |yλ|2−n),

we have, around 0 and +∞,

|c̃Gλ(y, 0)| ≤ CM
−4/(n−2)
k

|y|4|y|n−2
+

CM
−4/(n−2)
k

|y|4|yλ|n−2
,

|b̃m∂mGλ(y, 0)| ≤ CM
−4/(n−2)
k

|y|3|y|n−1
+

CM
−4/(n−2)
k

|y|3|yλ|n−1
,

and,

|d̃ml∂mlG
λ(y, 0)| ≤ CM

−4/(n−2)
k

|y|2|y|n +
CM

−4/(n−2)
k

|y|2|yλ|n ,

For the previous expression, we remark that, around 0

|y|3|y|n−1 = |y|2|y|n = |y|4|y|n−2 ≥ |y|4r−(n−2)/2
k ,

Thus,

|d̃ml∂mlG
λ(y, 0) + b̃m∂mG

λ(y, 0) + c̃Gλ(y, 0)| ≤ r
(n−2)/2
k

CM
−4/(n−2)
k

|y|4|yλ|n−2
,

and hence

LkG
λ(y, 0) ≤ C2r

(n−2)/2
k Q̃λ

�

Now, we look at the second term in hλ by setting,

u = −
∫

Σ′

λ

Gλ(y, η)Qλ(η)dη

We have that u is a solution of a Dirichlet problem on Σ′
λ.

Lemma 3.2. ( Estimate for u:) For the function u, we have

∆u = C1Qλ (57)

|d̃ml∂mlu+ b̃m∂mu+ c̃u| = o(1)Qλ. (58)

Proof. We want to prove that,

|d̃ml∂mlu+ b̃m∂mu+ c̃u| = o(1)Qλ

Because of the expression of Gλ, we consider u as a difference of two con-

volution product on Σλ. Thus, to differentiate u is equivalent to differenti-

ating Qλ inside the integral plus the boundary term. Our aim is to estimate

the auxiliary function and its derivatives of order less than two near infinity.

Write,

−ũ =

∫

Σλ

Gλ(y, η)Qλ(η)dη
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and,

u− ũ = −
∫

B(0,r
−1/2
k )

Gλ(y, η)Qλ(η)dη

We denote Σs
λ the reflection of Σλ, with respect to the hyperplane Tλ =

{y1 = λ}, i.e., Σs
λ := {y ∈ IRn : y1 < λ}. Thus,

−ũ =

∫

Σλ

cn(|y − η|2−n − |y − ηλ|2−n)Qλ(η)dη

=

∫

Σλ

|y − η|2−nQλ(η)dη −
∫

Σs
λ

|y − η|2−nQλ(η
λ)dη,

=

∫

Rn

|y − η|2−nQλ(η)dη −
∫

Σs
λ

|y − η|2−n(Qλ(η) +Qλ(η
λ))dη,(59)

=: f + v (60)

where

f ∈ C∞(Rn), ∆f = Qλ in IRn (61)

and ∆v = 0 in Σλ. (62)

Behavior of ũ and u − ũ near infinity: Let ϕ a cutoff function in the unit

ball, i.e.,

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B(0, 1/2) and, ϕ ≡ 0 in R
n \B(0, 1)

We write,

f = f1 + f2,

where,

f1 =

∫

Rn

|y − η|2−nQλ(η)ϕdη and

f2 =

∫

Rn

|y − η|2−nQλ(η)(1− ϕ) dη.

Then,

∆f1 = Qλϕ and ∆f2 = Qλ(1− ϕ),

We use the Fourier transform to prove that f2 is in the Schwartz space and

thus,

|f2| ≤ C|y|2−n, |∂f2| ≤ C|y|1−n, |∂2f2| ≤ C|y|−n

For f1 we use the fact that in the present case, |y| is big enough, and we

differentiate inside the integral, (|η| < |y|/2 ⇒ |y−η| > |y|/2) to conclude

|f1| ≤ C|y|2−n, |∂f1| ≤ C|y|1−n, |∂2f1| ≤ C|y|−n

Thus, for |y| large,

|f | ≤ C|y|2−n, |∂f | ≤ C|y|1−n, |∂2f | ≤ C|y|−n. (63)
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For v, we have y ∈ Σλ and the integral is taken over the reflected set Σs
λ.

We set,

Rλ(η) = Qλ(η) +Qλ(η
λ),

so that

v(y) =

∫

Σs
λ

|y − η|2−nRλ(η)dη,

=

∫

Σs
λ∩{|η|≥|y|/2}

|y − η|2−nRλ(η)dη −
∫

Σs
λ∩{|η|≤|y|/2}

|y − η|2−nRλ(η).(64)

Second integral: If |η| ≤ |y|/2 then |y − η| ≥ |y|/2 and thus,

∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≤|y|/2}

|y − η|2−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤
{

Crk|y|2−n if n = 4

C|y|2−n if n = 5, 6.
(65)

First integral: First, we have,

|Rλ(η)| ≤ C(1 + |η|)−2−n,

If |y − η| ≤ |y|/2, then,

∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

|y − η|2−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ |Rλ(|y|/2)|
∫

{|η−y|≤|y|/2}

|y − η|2−ndη ≤ C(1 + |y|)−n,

if |y|/2 ≤ |y − η| ≤ 3|y|,
∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

|y − η|2−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ |Rλ(|y|/2)|
∫

{|y|/2≤|η−y|≤3|y|}

|y − η|2−ndη

≤ C(1 + |y|)−n,



HARNACK TYPE INEQUALITY ON RIEMANNIAN MANIFOLDS OF DIMENSIONS 4, 5 AND 6.15

and for 3|y| ≤ |y − η|, |η| = |y − η − y| ≥ 2|y|, and thus, |η − y| =
|η|(|θη − y

|η|
| ≥ |η|/2. With |θη| = 1 the angular part of η. Thus

∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

|y − η|2−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ C|y|1−n

∫

{|η|≥|y|/2}

|η|−1−ndη

= C|y|1−n

∫

{r≥|y|/2}

r−2dr

= C|y|−n.

Thus, in this case too, we have

|∂iv| ≤
{

Crk|y|2−n if n = 4

C|y|2−n if n = 5, 6.
(66)

Estimate of the first derivatives of v: We have,

∂iv =

∫

Σs
λ∩{|η|≥|y|/2}

(yi−ηi)|y−η|−nRλ(η)dη−
∫

Σs
λ∩{|η|≤|y|/2}

(yi−ηi)|y−η|−nRλ(η)

Second integral: If |η| ≤ |y|/2 then |y − η| ≥ |y|/2 and thus,

∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≤|y|/2}

(yi − ηi)|y − η|−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤
{

Crk|y|1−n if n = 4,

C|y|1−n if n = 5, 6.

(67)

First integral: First, we have,

|Rλ(η)| ≤ C(1 + |η|)−2−n,

If |y − η| ≤ |y|/2, then,

∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

(yi − ηi)|y − η|−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ |Rλ(|y|/2)|
∫

{|η−y|≤|y|/2}

|y − η|1−ndη ≤ C(1 + |y|)−1−n.
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If |y|/2 ≤ |y − η| ≤ 3|y|,
∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

(yi − ηi)|y − η|−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ |Rλ(|y|/2)|
∫

{|y|/2≤|η−y|≤3|y|}

|y − η|1−ndη ≤ C(1 + |y|)−1−n.

For 3|y| ≤ |y − η|, |η| = |y − η − y| ≥ 2|y|, and thus, |η − y| = |η|(|θη −
y/|η|| ≥ |η|/2. With |θη| = 1 the angular part of η. Thus
∣

∣

∣

∣

∣

∣

∣

∫

Σs
λ∩{|η|≥|y|/2}

(yi − ηi)|y − η|−nRλ(η)dη

∣

∣

∣

∣

∣

∣

∣

≤ C|y|−n

∫

{|η|≥|y|/2}

|η|−1−ndη

= C|y|−n

∫

{r≥|y|/2}

r−2dr

= C|y|−1−n.

Thus,

|∂iv| ≤
{

Crk|y|1−n if n = 4

C|y|1−n if n = 5, 6.

Estimates for the second derivatives: We write,

∂ijv =

∫

Σs
λ∩{|η|≥|y|/2}

∂j((yi − ηi)|y − η|−n)Rλ(η)dη

−
∫

Σs
λ∩{|η|≤|y|/2}

∂j((yi − ηi)|y − η|−n)Rλ(η).

Second integral: If |η| ≤ |y|/2 then |y − η| ≥ |y|/2 and |∂j((yi − ηi)|y −
η|−n| ≤ |y − η|−n, thus,

|
∫

Σs
λ∩{|η|≤|y|/2}

∂j((yi − ηi)|y − η|−n)Rλ(η)dη| ≤
{

Crk|y|−n if n = 4

C|y|−n if n = 5, 6.

First integral: We use an integration by part,
∫

Σs
λ∩{|η|≥|y|/2}

∂j
(yi − ηi)

|y − η|−n
Rλ(η)dη =

−
∫

Σs
λ∩{|η|≥|y|/2}

(yi − ηi)

|y − η|−n
∂jRλ(η)dη +

∫

∂(Σs
λ∩{|σ|≥|y|/2})

(yi − σi)

|y − σ|−n
Rλ(σ)νj(σ)dσ.
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From, the computation for the first derivatives, we have,

|
∫

Σs
λ∩{|η|≥|y|/2}

(yi − ηi)

|y − η|−n
∂jRλ(η)dη| ≤ C|y|−n,

The boundary term has the following decomposition, ∂(Σs
λ∩{|η| ≥ |y|/2}) =

(∂Σs
λ) ∩ {|η| ≥ |y|/2})) ∪ (Σs

λ ∩ {|η| = |y|/2}). For the first boundary,

νj(σ) = 0 for j 6= 1, and thus,
∫

∂(Σs
λ∩{|σ|≥|y|/2})

(yi − σi)

|y − σ|−n
Rσ(σ)νj(σ)dσ =

∫

Σs
λ∩{|σ|=|y|/2}

(yi − σi)

|y − σ|−n
Rσ(σ)νj(σ)dσ

Clearly, we have,
∫

Σs
λ∩{|σ|=|y|/2}

|yi − σi|
|y − σ|−n

|Rσ(σ)||νj(σ)|dσ ≤ C|y|−n,

Thus, for j 6= 1, we have:

|∂ijv| ≤
{

Crk|y|−n if n = 4

C|y|−n if n = 5, 6.

But, ∆v = 0, thus,

|∂11v| = |
n

∑

i=2

∂iiv| ≤
{

Crk|y|−n if n = 4

C|y|−n if n = 5, 6.

Finally, we have:

|∂iu| ≤
{

Crk|y|1−n if n = 4

C|y|1−n if n = 5, 6.

and,

|∂iju| ≤
{

Crk|y|−n if n = 4,

C|y|−n if n = 5, 6.

Estimate for u − ũ: Around infinity, we use the fact that, y is big enough

(|η| < |y|/2 ⇒ |y − η| > |y|/2) and we differentiate inside the integral, to

have:

|u− ũ| ≤ C|y|2−n, |∂(u− ũ)| ≤ C|y|1−n, |∂2(u− ũ)| ≤ C|y|−n. (68)

Behavior of u and u−ũ near 0: The function f2 is smooth and solution of an

elliptic equation with Qλ(1−ϕ) ∈ C∞(Rn), thus, by the elliptic estimates,

we have,

||f2||C2(B(0,1)) ≤ C,

We write the function f1 as,

f1(y) =

∫

B(0,1)

|y − η|2−nQλ(η)ϕdη
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note that, |Qλ(η)| ≤ Cr2k and thus,

|f1(y)| ≤ Cr2k

Moreover, we can write

∂if1 =

∫

B(0,1)

(yi − ηi)|y − η|−nQλ(η)ϕdη

Thus,

|∂if1| ≤
∫

B(0,1)

|y − η|1−nQλ(η)ϕdη ≤ Cr2k,

Also, we can write, (see, Gilbarg-Trudinger),

∂ijf1(y) =

∫

B(0,1)

∂j((yi − ηi)|y − η|−n)(Qλ(η)ϕ(η)dη

+Qλ(y)ϕ(y)

∫

∂B(0,1)

(yi − σi)|y − σ|−ndσ.

Thus,

|∂ijf1(y)| ≤ C

∫

B(0,1)

|y − η|−n|Qλ(η)ϕ(η)−Qλ(y)ϕ(y)|dη + Cr2k

We write,
∫

B(0,1)

|Qλ(η)ϕ(η)−Qλ(y)ϕ(y)|
|y − η|n dη =

∫

B(0,1)∩{|η|≥|y|/2}

|Qλ(η)ϕ(η)−Qλ(y)ϕ(y)|
|y − η|n dη

+

∫

B(0,1)∩{|η|≤|y|/2}

|Qλ(η)ϕ(η)−Qλ(y)ϕ(y)|
|y − η|n dη.

Second integral: We have |η| ≤ |y|/2, thus |y − η| ≥ |y|/2, and thus,
∫

B(0,1)∩{|η|≤|y|/2}

|y − η|−n|Qλ(η)ϕ(η)−Qλ(y)ϕ(y)|

≤ Cr2k
|y|

∫

B(0,1)∩{|η|≤|y|/2}

|y − η|1−ndη

≤ Cr2k
|y| .

First integral: We write,

Qλ(η)ϕ(η)−Qλ(y)ϕ(y) = (η − y)∇Qλ(ξ), with, ξ between η and y,
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We remark that,

|∇Qλ(ξ)| ≤ C(|ξ|+ r
−1/2
k )−5,

If |y| ≤ |ξ| ≤ |η|, then,

|∇Qλ(ξ)| ≤ C(|y|+ r
−1/2
k )−5 ≤ Cr2k/|y|

If |y|/2 ≤ |η| ≤ |ξ| ≤ |y|,

|∇Qλ(ξ)| ≤ C(|η|+ r
−1/2
k )−5 ≤ Cr2k/|y|

Finally, we have:

|∂ijf1(y)| ≤ Cr2k/|y|
Now, we estimate v near 0, as for f we decompose v in two functions v1
and v2, and we see that y ∈ Σλ small enough is far from the symmetral Σs

λ

of Σλ. And we differentiate inside the integral to have:

|∂ijv1(y)| ≤ Cr2k and |∂ijv2(y)| ≤ C.

Now, for u− ũ, we use the fact that |y| ≥ σr
−1/2
k with σ > 1 and the elliptic

interior estimates to have (we differentiate inside the integral)

|u− ũ|C0(B(0,1)) ≤ Crk, |u− ũ|C1(B(0,1)) ≤ Cr
3/2
k , |u− ũ|C2(B(0,1)) ≤ Cr2k

It follows that

|d̃ml∂mlu+ b̃m∂mu+ c̃u| = o(1)Qλ (69)

and that

Lku = (C1 + o(1))Qλ. (70)

�

As in [19], we have the following lemma (which we state without proof)

Lemma 3.3. . For Qλ, we have in Σ′
λ for λ ≤ −1/4 and for large k:

r
(n−2)/2
k

∫

Σ′

λ

Gλ(y, η)Q̃λ(η)dη = o(1)Gλ(y, 0).

If , we chooseA > 0 small enough in the definition of hλ, we have,

hλ > 0,

Lkhλ ≥ C1Q̃λ.

We can now use Lemma 4.1 of [19] to obtain a contradiction, and this com-

pletes the proof of Theorem 1.1.
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