
HAL Id: hal-00694958
https://hal.science/hal-00694958

Preprint submitted on 7 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulation of particle segregation in a
bidisperse suspension

Raphael Pesche, Georges Bossis, Alain Meunier

To cite this version:
Raphael Pesche, Georges Bossis, Alain Meunier. Numerical simulation of particle segregation in a
bidisperse suspension. 1998. �hal-00694958�

https://hal.science/hal-00694958
https://hal.archives-ouvertes.fr


 1

NUMERICAL SIMULATION OF PARTICLE SEGREGATION IN A B IDISPERSE 
SUSPENSION 

 
 

Raphaël PESCHE 
Fakultät für Physik, Universität Konstanz, Postfach 5560, D-78457 Konstanz, Germany 

 
Georges BOSSIS and Alain MEUNIER  

Laboratoire de Physique de la matière condensée, CNRS UMR 6622, Université de Nice-
Sophia-Antipolis, 06108 Nice Cedex 2, France 

 

Key words: shear-induced migration, bidisperse suspension, cylindrical Couette flow, simple 

shear flow, hydrodynamic interactions. 

 

Abstract:  We have performed numerical simulations of a monolayer of a bidisperse 

suspension of colloidal particles in a cylindrical Couette flow taking into account 

hydrodynamic interactions (HI). We compare our simulation results with a simple 

phenomenological model and obtain good agreement for the monodisperse case. For a 

bidisperse suspension, we also obtain a good agreement if the ratio of the radii of the two kind 

of particles is smaller than 0.5. In a second part, we simulate a two-dimensional bidisperse 

suspension submitted to a simple shear flow and observe, when HI are disregarded, a local 

segregation with the formation of stripes along the velocity lines. 

 

1. Introduction 

 

An important amount of experimental studies deals with the influence of the shear rate on the 

concentration profile of monodisperse particle suspensions. One generally observe a 

migration to the region of lower shear rate Karnis et al. (1966), Arp and Mason (1977), 

Gadala-Maria and Acrivos (1980), Leighton and Acrivos (1987), Abbott et al. (1991). This 

phenomenon exists even for vanishingly small Reynolds number and inertia forces can be 

neglected for Rep smaller than 0.01 ,Han and Kim (1999). Some mechanisms have been 
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proposed to explain the migration directed along the flow velocity gradient. Thanks to 

technics not perturbative for the system (nuclear magnetic resonance (NMR) and laser 

Doppler anemometry), it is now  possible to measure the density and the velocity profiles in 

dense suspensions. 

The model proposed by Leighton and Acrivos (1987) takes into account the spatial variation 

of both the frequency of collisions between  the suspended particles and the effective 

viscosity. Using NMR, Abbot et al. (1991), observed, in a cylindrical Couette flow, a particle 

volume flux proportional to the shear rate and 6.2a , where a  is the particle radius. The power 

dependency with the particles radius is not exactly  the 2a  dependency found by Leighton and 

Acrivos (1987) using dimensional arguments. 

It is clear that the migration phenomenon can’t be predicted by the Stokes equations 

alone. These equations predict a symetric trajectory along the velocity gradient for two 

hydrodynamically interacting particles.On the contrary, the presence of  non hydrodynamics 

interactions (magnetic forces, electrostatic forces, contact forces) breaks the reversibility of 

the trajectories and induces some random motion which will give rise to migration 

mechanisms.. With the help of the ideas of Leighton and Acrivos (1987), Philips & al. (1992), 

have developped a constitutive equation for the particles flux. This one dimension model 

predicts a migration of the particles towards the outer wall ( where the shear rate is minimum) 

and gives a satisfying agreement with the experimental  concentration profile. In an axially  

symetric Poiseuille flow,  this model predicts a migration towards the axis of the tube, with 

the onset of a  blunted velocity profile which is similar to the well known “plug flow“ 

observed in cylindrical Poiseuille flows. For  bidisperse suspensions the results are scarce: it 

has been observed  by D.M.Husband et al (1994) that coarse particles go outwards in a 

cylindrical Couette cell and some measurements of the tracer shear induced diffusion  in 

bidisperse suspension have been carried out by Krishnan et al (1996), but we are not aware of 

a detailed experimental study of the migration mechanisms in a bidisperse suspension. The 
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aim of this paper is to use Stokesian dynamic simulation in order to study the migration 

mechanisms in sheared bidisperse suspension. The generalization of the model of Philipps & 

al  to bidisperse suspension was developped in order to compare with the numerical results 

obtained by Stokesian dynamics,R.Pesché (1998), R.Pesché &al (1998). A similar approach 

was developped independently by Shauly &al (1998)at the same timethis model and we shto 

model( and togeneralize the model of Philipps et al to this case . 

Several methods may be used to perform numerical simulations of suspensions. A global 

approach based on a description involving constitutive equations has been done by Fang and 

Phan-Thien (1995) with a finite volume method. The main advantage is the small memory 

amount required and rather quick computational times. It is therefore possible to simulate 

complex systems using a simple workstation. Fang and Phan-Thien have used the 

phenomenological equation of Philips et al. (1992) for two dimensional flows with various 

geometries. In particular, in an excentred circular geometry, it appears a migration towards 

the external cylinder.This approach could be used for bidisperse suspensions if we know the 

equations which describe the evolution of the volume fraction of each species.The derivation 

of this system of equation is one of the goals of this paper, the other goal being to use a 

Stokesian dynamics simulation in a Couette flow in order to provide data which can be used 

to check the validity of these models.  

 

Our paper is divided in to main parts. First, with the help of a Stokesian Dynamic numerical 

method (Durlofsky et al. (1987), Bossis and Brady (1992)), we simulate a suspension of 

colloidal particles in a cylindrical Couette flow geometry. In this part, we introduce the 

formalism and the numerical method we used to simulate a suspension of bidisperse particles. 

We also adopt a phenomenological point of vue of the diffusive mechanisms that induce a 

shear induced migration (and even a size segregation) in the suspension. We then compare the 

two approaches (phenomenological and numerical). In the second part, we present a 
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numerical simulation of a two-dimensional bidisperse system undergoing a simple shear flow 

and assess the importance of the hydrodynamic interaction (HI). 

In this whole work, we consider suspensions of non brownian particles. 

 

2. Shear-induced migration in a cylindrical Couette flow 

 

2.1 Simulation method 

 

Let us consider N suspended particles. Under the influence of an imposed velocity field, the 

particles move and interact indirectly through the suspending fluid. The linearity of Stokes 

equations allows to relate the translationnal and angular velocities of the particles to the forces 

and torques acting on each particle. This can be expressed as, Brenner and O´Neill (1972): 

 

]:[1 ∞−∞ +=−= ERFRUUU FE
nh

FUδ  ,  (1) 

 

where ∞U  is the imposed fluid velocity without the presence of the particles; ∞− UU  being 

the perturbation velocity due to the presence of the particles. Note that these 6N vectors 

contain both the translational and rotational velocities. The matrix FER  links the 

hydrodynamic forces to the symmetric part of the velocity gradient tensor, ∞E : 
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The resistance matrix FUR  links the force-torque vector to the velocity vector. The FUR  and 

FER  matrices depend only on the instantaneous configuration of the particles Happel and 
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Brenner (1965). Their analytical expression is given by Jeffrey and Onishi (1984), Kim and 

Mifflin (1985), Jeffrey (1992). nhF  is a pairwise additive non hydrodynamic colloidal force. 

We took a Debye-Huckel force in the linear Derjaguin approximation: 
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where ε  is the surface separation berween two spheres. We follow Brady et al. (1985) and 

take 227/ =aτ  where a  is the particle radius. The parameter f  is chosen in such a way that 

)01.0/( =aF nh ε  is of the order of the hydrodynamic force. 

 

Since we are interested in radial migration, we simulate one layer of fluid perpendicular to the 

cylinders axis. As a consequence, each particle has only two translational degrees of freedom 

and one for rotation. The computational cost will be strongly reduced. 

 

We compute the hydrodynamic interactions only in a 60° angular area (fig. 1). The other part 

of the system is taken into account with ± 60° rotations from the central angular sector. Let N 
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Here, 0F  is the force vector (containing the hydrodynamic and non-hydrodynamic parts) 

applied to the particles in the central sector, >F  and <F  are its equivalent for the sector 

obtained by a +60° and -60° rotation respectively. 0T  is the torque vector applied to the 

particles that belong to the central sector etc... The vectors <>,,0Vδ  and <>,,0Ωδ are related to 

the translational velocity and angular velocity perturbations respectively. For example, the 

2Nx2N submatrix 
00 VF −R  is the resistance matrix that links the forces and velocities of the 

particles located in the central sector. We can notice that the torque and the angular velocity 

perturbation applied to a particle is identical to the torque and angular velocity applied to its 

image. 

 

<> == TTT0 ;  <> == ΩΩΩ δδδ 0  (5) 

 

It is possible to write in a simply way a resistance matrix relative to the N particles located in 

the central box considering that each of them is in interaction with N-1 particles located in a 

60° angular sector around it (fig. 1). From (3), and taking into account that the force vectors 

and velocities vectors of the image angular sectors are obtained from the central box by a 

± 60° rotation, a straighforward calculation gives: 
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where >ℜ  and <ℜ  are respectively +60° and -60° rotation matrices. The matrix smallR  is then 

a 3Nx3N matrix. 

As done in a previous work Pesche and Bossis (1999), we will only consider hydrodynamic 

interaction in the near field approximation. In this work, it has been shown that this 

simplification is justified in a shear flow. 

To take into account the presence of the walls, we use the work by Bossis et al. 1991 that 

deals with the trajectory of a particle near a plan. We will suppose that a sphere coming close 

to a wall undergoes the influence of the plan tangential to this wall (fig. 2). Each couple 

sphere-wall will contribute to the building of the resistance matrix. 

Let us briefly explain how we calculate the matrix ∞E  of Eq. (2). In a cylindrical Couette 

flow, the velocity at a distance r from the axis can be written 

 

v Pr Q rθ = + /  , (8) 

 

Where P  and Q  depend on the velocities and sizes of the cylinders. We finally obtain, with 

the help of Eq. (2): 
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where 1Ω  and 2Ω  are the angular velocity of the inner and outer cylinder respectively. 1R  

and 2R  are the radii of the inner and outer cylinders. In Eq. (9), x  and y  are the two-

dimensional cartesian coordinates of the point where the shear matrix is evaluated. We have 

also 222 yxr += . 

The radial dependency of the ∞E  tensor shows that the hydrodynamic forces will depend on 

the location of pair particles in the gap between the cylinders. For a given pair, we compute 

the shear matrix that corresponds to the center of the separating distance between the 

particles. This approximation is justified since the shear rate is nearly constant in the vicinity 

of two close spheres. 

 

2.2 Phenomenological study 

 

We generalise the work of Philips et al. (1991) for the bidisperse case. Let be bΦ  the volume 

fraction of the big specie and sΦ  the volume fraction of the small one. The corresponding 

particle radii are ba  and sa . 

 

2.2.1. Variable space interaction frequency 

 

The particle volumic flux, bb
cJ ,  induced by pair collisions between big particles is obtained in 

the same way as Philips et al.: 

 

)(2 γɺbbb
b
c

bb
c aKJ Φ∇Φ−=  , (11) 
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where γɺ  is the local shear rate. The coefficient bcK  can be experimentaly evaluated. We 

suppose the case sb aa >>  and therefore consider that the motion of the big particles is not 

disturbed by the small ones: 

0≈bs
cJ . (12) 

 

We have also for collisions between the small particles: 

 

)(2 γɺsss
s
c

ss
c aKJ Φ∇Φ−=  (13) 

 

Now comes the problem of the small particles diffusion induced by the big ones. In the frame 

of a small particle, the rate of collisions with a big one is: 
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where ρb is the number density of large particles and sbv  the relative velocity between the two 

particles. If we take 2/)aa( bg +γɺ   for its mean value: 
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Over a distance equal to the radius of a big particle, the difference in the collision number 

along the radial direction can be approximated as: 
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Eventually, taking into account Eq. (13), we can write the total flux of small particles: 

 

)()( 22 γγ ɺɺ bbs
I
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2.2.2. Viscosity gradient 

 

A non uniform distribution of particles induces a spatially dependence of the effective 

viscosity. The volumic flux of big particles induced by a gradient in the viscosity can be 

written: 
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2 b
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In this section, we also suppose no modification of the trajectories of the big particles induced 

by the small ones. We will consider that the species are close enough to be in the lubrication 

range. Of course, we have: 
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s
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Once again, we meet the difficulty to estimate the diffusion of the small particles induced by 

collisions with big ones. The hydrodynamic force component parallel to the velocity gradient 

which is exerced on the small particle is Kim and Karrila (1991):  
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where += ηη i  or −η  when the small particle pass over or under the other (fig. 3). ξ  is the 

normalised surface separation: 
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The small particle´s velocity is given by: 

 

A
sbs XFv /≈   with ,,  (22) 

 

where η  is here an estimation of the mean viscosity. Eventually, we have: 
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The displacement difference between the two trajectories (fig. 3) over a time interval 1 / ɺγ  is: 
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Where ∆η  is the viscosity variation over a length ba . We have then: 
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η
η∇=∆

2
ba

y  (25) 

 

The corresponding flux is then: 
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Using Eqs. (14) and (26), we get: 
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2.2.3. Curvature effect 

 

In a curved geometry (flow between two parallel plates), Chow & al. (1994), have observed a 

new kind of flux. This is due to the fact that the direct colloidal force acting between a couple 

of particles has a radial outward component. For the fluxes corresponding to particles of the 

same specie, we follow Krishnan & al. (1996): 
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We are once again confronted with the interaction between a big and a small particle. We use 

the notations of Fig. 4. The radial velocity of particles 1 and 2 are given by: 
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We suppose that sFFF == 21 . The difference can be written: 
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The repulsive force is of the order of the hydrodynamic force in the lubrication area. We then 

can suppose that bA
sb

s a
X

F γɺ≈ . Then comes the following expression for the small particle 

displacement: 
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where we have supposed that the quantity 
A
sb

s

X

F
is of the order of gaγɺ . The small particle flux, 

with the participation of eq. (29b) can be written: 
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It seems reasonable to consider that the collisions happen with such a configuration that 

2/πφ ≈ . We have therefore taken 1)sin( >=< φ . 

 

At equilibrium, the small particles flux and the big particles flux vanish: 
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Eq. (33a) is obtained taking together (11), (18), (28a)  and dividing the sum by γɺ22
bbaΦ  for the 

big particles. For the other specie, eq. (33b) comes from (13), (17), (32) and dividing by 

γɺ22
ssaΦ . We have also supposed that c

b
c

s
c KKK == . Indeed, we can suppose that the 

amplitude of the displacement of a particle, after a collision, in the direction perpendicular to 

the flow, is of the order of a particle’s radius. We have also: 
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We have also taken into account the fact that in a cylindrical Couette flow:  
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Now comes the question of the spatial dependance of the viscosity for a two species media. 

We consider the suspension as an effective media Quemada (1977), Van de Ven (1976): 
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where bs Φ+Φ=Φ  is the total particule concentration, 0c  is the maximal monodisperse 

compacity ( 68.0≈  for hard spheres). We follow Gondret (1994) and take 2/3−=β . At last, 

eq. (33a) and (33b) become: 
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where cKKK /*
ηη =  and crr KKK /* = . 

 

2.3. Numerical simulation against phenomenological model 

 

We have performed numerical simlations of systems containing 64 or 80 particles. We will 

present here four different radius ratios: 
b

s

a

a
=λ =0.1, 0.2, 0.5, 1. In the monodisperse case 

( 1=λ ), Fig. 5 shows the concentration profile for a system of 64 particles with mean volume 

fraction 45.0=Φ . This result was obtained after 100 laps of the inner cylinder, the outer one 

is still. At this time, the concetration profile remains constant. For every time step, the inner 

cylinder does a 5.10-3 radian rotation. This choice of the time step remains the same for the 

other following simulations in this section.The dashed line of Fig. 5a corresponds to the 
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solution of the equation of Philips et al. (1992) with a parameter 75.01* =−
ηK . Note that this 

equation was obtained without taking into account the cuvature of the streamlines ( 0* =rK ). 

The full line is obtained with 65.01* =−
ηK  and 11* =−

ηK and allows to get a good agreement 

with the numerical points. 

The figure 6a shows the concentrations profiles for a bidisperse suspension (40 big and 40 

small) obtained by numerical simulation after 100 laps of the inner cylinder. The radius ration 

is 2.0=λ  and the mean concentrations 45.0=Φb  and 02.0=Φ s . We have also reported the 

solution of (37a) and (37b) taking 65.01* =−
ηK  and 1* =rK . We can see a picture of the half 

Couette flow with figure 6b. We observe a strong size segregation that is pretty good 

predicted by the phenomenological model. The big particles migrate toward the outer wall 

since they undergo greater deviations after collisions. 

Figure 7 shows the concentrations profiles for a radius ratio 1.0=λ . Also in this case, the 

agreement between numerical and phenomenological studies is good. However it is bad with 

a radius ratio of 0.5 (figure 8). Indeed we have supposed that the motion of the big particles is 

not perturbed by the presence of the small ones. This approximation suffers when the radius 

ratio approaches 1=λ . We can see in Fig. 8 a size segregation obtained by numerical 

simulation that is not observed using the phenomenological model. 

 

3. Phase separation under simple shear rate 

 
Suspended particles interact each other with the colloidal repulsive force of Eq. (3). We 

present first results disregarding the HI. Each particles undergoes a Stokes drag force Fη as if 

it were alone in the fluid. At each time step, we have : 

 

0=+ ηFF nh  . (38) 
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The velocity of the particles is given by : 

 

x
F

v ˆ
6

y
a

rep

γ
ηπ
ɺ+= , (39) 

 

with a velocity in the x-direction due to the shear given by yγɺ . The time step ised in the 

simulation is 1001.0 −=∆ γɺt . Fig. 9 shows that the system becomes stripe structured. Santra et 

al. (1996) have obtained such a phase separation taking into account inertia of particles.  

We have then performed numerical simulation of the same kind of system including HI. We 

proceed in the same way as in section 2.1. The difference is that in this case, the imposed 

shear rate is constant and the periodic boundary conditions are those usually used for a 

rectangular box. Because of the computational time increasing, we used a small number of 

particles. Fig. 10 allows to compare the effect of hydrodynamic interactions - that make little 

clusters of aggregating particles and prevents the stripes formation - with the case of a single 

repulsive force. 

 

4. Conclusion 

 

We have developed a numerical simulation including HI which allows to reproduce particle’s 

migration in a monodisperse or a bidisperse suspension confined in a two dimensional 

Couette flow. The concentration profiles obtained by numerical simulation have been 

compared to the predictions of a phenomenological model. For a monodisperse suspension, 

we obtain a good agreement when we take into account the flux due to the curvature of the 

strealines. In the bidisperse case for a radius ratio 2.0=λ , we observe a strong segregation 
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with the large particles going towards the lower shear rate gradients. Our model for bidisperse 

suspensions fairly well predicts this behaviour without the addition of others parameters. 

We assess the importance of HI in a two-dimensional colloidal suspension undergoing a 

simple shear rate. The HI avoid the formation of stripes observed in the simple case of 

particles interacting with a repulsive pairwise additive potential. 
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Figure captions 

 

Figure 1: picture of the half Couette flow. The full circles represent the particles in the central 

angular area. The empty ones are their images. The full bright particle undergoes the 

influence of the nearest particles located in a 60° angular sector (delimited with dash lines) 

centered on it. 

 

Figure 2: we consider that a particle (black circle) coming close to a wall interacts 

hydrodynamically with the plan tangential to this wall. 

 

Figure 3: the small particle will undergo a more important displacement after collision since it 

will move in a media of weaker viscosity. 

 

Figure 4: collision of two small particles with a big one. Particle 1 and 2 are ejected outward 

and inward respectively. 

 

Figure 5: Results obtained for a monodisperse suspension with mean volume fraction 

45.0=Φ . (a) concentration profile compared with theoretical prediction. The dashed line is 

obtained with 0* =rK  and 75.01* =−
ηK ; the full line with 1* =rK  and 65.01* =−

ηK . (b) picture 

of the half Couette system. 

 

Figure 6: 2.0=λ . (a) concentration profile for the two species.  

Big particles, 45.0=Φb : • numerical simulation,  phenomenological model. 

Small particles (x10), 02.0=Φ s : � numerical simulation, --- phenomenological model. 

(b) picture of the half Couette flow after 100 laps of the inner cylinder. 
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Figure 7: 1.0=λ . Concentration profile for the two species.  

Big particles, 45.0=Φb : • numerical simulation,  phenomenological model. 

Small particles x10, 0045.0=Φs : � numerical simulation, --- phenomenological model. 

 

Figure 8: 5.0=λ . Concentration profile for the two species.  

Big particles, 41.0=Φb : • numerical simulation,  phenomenological model. 

Small particles 1.0=Φs : � numerical simulation, --- phenomenological model. 

 

Figure 9: Two-dimensional suspension of 2000 particles (80 big and 1920 small) with mean 

concentration 21.0=Φb  and 20.0=Φs  at dimensionless time 1400 −= γɺT . 

 

Figure 10: Two-dimensional suspension of 100 particles with mean concentration 21.0=Φb  

and 20.0=Φs  at dimensionless time 1400 −= γɺT . (a) with HI; (b) with HI disregarded. 
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