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Abstract: We have performed numerical simulations of a mayel of a bidisperse
suspension of colloidal particles in a cylindric@louette flow taking into account
hydrodynamic interactions (HI). We compare our dation results with a simple
phenomenological model and obtain good agreementti®e monodisperse case. For a
bidisperse suspension, we also obtain a good agraafithe ratio of the radii of the two kind
of particles is smaller than 0.5. In a second paet,simulate a two-dimensional bidisperse
suspension submitted to a simple shear flow aneéragbs when HI are disregarded, a local

segregation with the formation of stripes alonguélecity lines.

1. Introduction

An important amount of experimental studies death the influence of the shear rate on the
concentration profile of monodisperse particle sasmpns. One generally observe a
migration to the region of lower shear rate Kareisal. (1966), Arp and Mason (1977),
Gadala-Maria and Acrivos (1980), Leighton and Acs(1987), Abbott et al. (1991). This
phenomenon exists even for vanishingly small Resmalumber and inertia forces can be

neglected for Resmaller than 0.01 ,Han and Kim (1999). Some measha have been



proposed to explain the migration directed along tlow velocity gradient. Thanks to

technics not perturbative for the system (nucleagmetic resonance (NMR) and laser
Doppler anemometry), it is now possible to measheedensity and the velocity profiles in
dense suspensions.

The model proposed by Leighton and Acrivos (198Kg$ into account the spatial variation
of both the frequency of collisions between thepamded particles and the effective

viscosity. Using NMR, Abbot et al. (1991), obseryveda cylindrical Couette flow, a particle
volume flux proportional to the shear rate afd, wherea is the particle radius. The power

dependency with the particles radius is not exattlya® dependency found by Leighton and
Acrivos (1987) using dimensional arguments.

It is clear that the migration phenomenon can’tpbedicted by the Stokes equations
alone. These equations predict a symetric trajgcidong the velocity gradient for two
hydrodynamically interacting particles.On the cangr the presence of non hydrodynamics
interactions (magnetic forces, electrostatic foraemtact forces) breaks the reversibility of
the trajectories and induces some random motionctwiwill give rise to migration
mechanisms.. With the help of the ideas of Leiglaond Acrivos (1987), Philips & al. (1992),
have developped a constitutive equation for theigh@s flux. This one dimension model
predicts a migration of the particles towards tbheepwall ( where the shear rate is minimum)
and gives a satisfying agreement with the experiaieconcentration profile. In an axially
symetric Poiseuille flow, this model predicts agmation towards the axis of the tube, with
the onset of a blunted velocity profile which isngar to the well known “plug flow*
observed in cylindrical Poiseuille flows. For lsperse suspensions the results are scarce: it
has been observed by D.M.Husband et al (1994) dbatse particles go outwards in a
cylindrical Couette cell and some measurementshefttacer shear induced diffusion in
bidisperse suspension have been carried out byaiset al (1996), but we are not aware of
a detailed experimental study of the migration na@dms in a bidisperse suspension. The
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aim of this paper is to use Stokesian dynamic satrart in order to study the migration
mechanisms in sheared bidisperse suspension. Tieeafjeation of the model of Philipps &
al to bidisperse suspension was developped inr aoddeompare with the numerical results
obtained by Stokesian dynamics,R.Pesché (1998kseié &al (1998). A similar approach
was developped independently by Shauly &al (1998)atsame timethis model and we shto
model( and togeneralize the model of Philipps ¢t ahis case .

Several methods may be used to perform numericalilations of suspensions. A global
approach based on a description involving constgutquations has been done by Fang and
Phan-Thien (1995) with a finite volume method. Thain advantage is the small memory
amount required and rather quick computational $imeis therefore possible to simulate
complex systems using a simple workstation. Fand &tan-Thien have used the
phenomenological equation of Philips et al. (198&)two dimensional flows with various
geometries. In particular, in an excentred circgaometry, it appears a migration towards
the external cylinder.This approach could be usedidisperse suspensions if we know the
equations which describe the evolution of the vaunaction of each species.The derivation
of this system of equation is one of the goalshid paper, the other goal being to use a
Stokesian dynamics simulation in a Couette flovoider to provide data which can be used

to check the validity of these models.

Our paper is divided in to main parts. First, witle help of a Stokesian Dynamic numerical
method (Durlofsky et al. (1987), Bossis and Brad992)), we simulate a suspension of
colloidal particles in a cylindrical Couette flonegmetry. In this part, we introduce the
formalism and the numerical method we used to siteu suspension of bidisperse particles.
We also adopt a phenomenological point of vue efdifusive mechanisms that induce a
shear induced migration (and even a size segregatiaghe suspension. We then compare the

two approaches (phenomenological and numerical)thim second part, we present a



numerical simulation of a two-dimensional bidisgesystem undergoing a simple shear flow
and assess the importance of the hydrodynamicictien (HI).

In this whole work, we consider suspensions of Inawnian particles.

2. Shear-induced migration in a cylindrical Couetteflow

2.1 Simulation method

Let us consider N suspended particles. Under tieeimce of an imposed velocity field, the
particles move and interact indirectly through suspending fluid. The linearity of Stokes
equations allows to relate the translationnal arglikar velocities of the particles to the forces

and torques acting on each particle. This can peessed as, Brenner and O"Neill (1972):

AU=U-U"=R;[F"+R :E"], (1)

where U” is the imposed fluid velocity without the presemdehe particles;U —U” being
the perturbation velocity due to the presence ef plarticles. Note that these 6N vectors

contain both the translational and rotational viles. The matrix R links the

hydrodynamic forces to the symmetric part of thieeity gradient tensor":

The resistance matriR ., links the force-torque vector to the velocity wctTheR_, and

Rg matrices depend only on the instantaneous comdigur of the particles Happel and



Brenner (1965). Their analytical expression is giby Jeffrey and Onishi (1984), Kim and

Mifflin (1985), Jeffrey (1992).F™ is a pairwise additive non hydrodynamic colloiftaice.

We took a Debye-Huckel force in the linear Derjagapproximation:

N )

where ¢ is the surface separation berween two spherestolldsv Brady et al. (1985) and

take r/a =227 wherea is the particle radius. The parameteris chosen in such a way that

F"™(e/a= 001) is of the order of the hydrodynamic force.

Since we are interested in radial migration, weusate one layer of fluid perpendicular to the
cylinders axis. As a consequence, each particleohistwo translational degrees of freedom

and one for rotation. The computational cost walldbrongly reduced.

We compute the hydrodynamic interactions only #0a angular area (fig. 1). The other part
of the system is taken into account witlf60° rotations from the central angular sector.Nlet

be the number of particles in this angular sedbe two neighbouring sectors contain each N
image-particles. Let us writting the link betweéie force-torque vector of the 3N particules

(central angular sector and the two neighbouringtoss) and the respective velocity

perturbations:
Fo RFO_VO RFO_V> RFO_V< RFO_QO RFO_Q> RFO_Q Wo
I:> RF>_VO RF V. RF>_V< RF>_QO RF _Q. RF>_Q W>
I:< — RF< Vo RF A RF<_V< RF<_QO RF _Q. RF<_Q< W< (4)
To RTO_VO RTO_V RTO_V RTO—QO RTO_Q RTO_Q< JZ()
T> RT> Vo RT>_V RT _Vo RT>—QO RT>_Q RT _Q. &
T< RT< Vo RT<_V RT _V. RT<—Q0 RT<_Q RT _Q. &




Here, F, is the force vector (containing the hydrodynami anon-hydrodynamic parts)
applied to the particles in the central sectBr, and F. are its equivalent for the sector
obtained by a +60° and -60° rotation respectivdly. is the torque vector applied to the
particles that belong to the central sector elthe vectorsdv, . . and X, _ are related to

the translational velocity and angular velocity tpdvations respectively. For example, the

2Nx2N submatrixR¢ _, is the resistance matrix that links the forces aeldcities of the

particles located in the central sector. We cancadhat the torque and the angular velocity
perturbation applied to a particle is identicathe torque and angular velocity applied to its

image.

To=T. =T, Ay =KL = A, (5)

It is possible to write in a simply way a resistamgatrix relative to the N particles located in
the central box considering that each of them imteraction with N-1 particles located in a
60° angular sector around it (fig. 1). From (3)d @aking into account that the force vectors
and velocities vectors of the image angular secwoesobtained from the central box by a

+ 60° rotation, a straighforward calculation gives:

with:



whereJ, and[]_ are respectively +60° and -60° rotation matridése matrixR,,, is then

smal

a 3Nx3N matrix.

As done in a previous work Pesche and Bossis (1989)will only consider hydrodynamic
interaction in the near field approximation. Insthwork, it has been shown that this
simplification is justified in a shear flow.

To take into account the presence of the wallsusae the work by Bossis et al. 1991 that
deals with the trajectory of a particle near a plate will suppose that a sphere coming close
to a wall undergoes the influence of the plan tatigeto this wall (fig. 2). Each couple
sphere-wall will contribute to the building of thesistance matrix.

Let us briefly explain how we calculate the mat&X of Eqg. (2). In a cylindrical Couette

flow, the velocity at a distance r from the axis & written

V,=Pr+Q/r, (8)

Where P and Q depend on the velocities and sizes of the cylmdéfe finally obtain, with

the help of Eq. (2):

—ZQrXX r—?(xz—yz) 0
e = 200-y) 22 o ()
0 0 0
with:
_(Ql_Qz)Rlszz
= B (o



where Q, and Q, are the angular velocity of the inner and outdindgr respectively.R,

and R, are the radii of the inner and outer cylinders.Elq. (9), x and y are the two-
dimensional cartesian coordinates of the point wilibe shear matrix is evaluated. We have
alsor? =x*+y?.

The radial dependency of tHe” tensor shows that the hydrodynamic forces willaeshepbon
the location of pair particles in the gap betwdss ¢ylinders. For a given pair, we compute
the shear matrix that corresponds to the centethef separating distance between the

particles. This approximation is justified since ghear rate is nearly constant in the vicinity

of two close spheres.

2.2 Phenomenological study

We generalise the work of Philips et al. (1991)tfer bidisperse case. Let ldg, the volume
fraction of the big specie an®, the volume fraction of the small one. The corresidog

particle radii area, anda, .

2.2.1. Variable space interaction frequency

bb
c !

The particle volumic flux,J.”, induced by pair collisions between big partigtesbtained in

the same way as Philips et al.:

I =-Kepa0(@,p) . (11)



where y is the local shear rate. The coefficielif can be experimentaly evaluated. We

suppose the casa, >>a, and therefore consider that the motion of thegagicles is not
disturbed by the small ones:

J>*=0. (12)
We have also for collisions between the small pldt
J&=-Kpal(®,p) (13)

Now comes the problem of the small particles ditinsnduced by the big ones. In the frame

of a small particle, the rate of collisions witlhig one is:

n® =yp, (@, +a,)’v,, with A=2= , (14)
a,

wherepy, is the number density of large particles angthe relative velocity between the two

particles. If we takey(@, +a, )/2for its mean value:

1 J‘as+ab

V =
b
¥ a +a,

yydy =) . (15)

Over a distance equal to the radius of a big partibe difference in the collision humber

along the radial direction can be approximated as:

sb

An® = % a, - (16)



Eventually, taking into account Eqg. (13), we cantevthe total flux of small particles:

35 =-Ko 220(P ) - K P a0(P,p), (17)
1 1.2
whereK!' == @1+ 1)1 +3)(=K?%).
c 8( )7 ( 2)(3 c)

2.2.2. Viscosity gradient

A non uniform distribution of particles induces pasally dependence of the effective
viscosity. The volumic flux of big particles indutdy a gradient in the viscosity can be

written:

bb 2, P;
— y b
J, ——K”abVTD/]. (18)

In this section, we also suppose no modificatiotheftrajectories of the big particles induced
by the small ones. We will consider that the speei® close enough to be in the lubrication

range. Of course, we have:

2

ss _ . CDS
‘]r] - _anSZVFDU (19)

Once again, we meet the difficulty to estimate difusion of the small particles induced by
collisions with big ones. The hydrodynamic forcenpmnent parallel to the velocity gradient

which is exerced on the small particle is Kim aratrida (1991):
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12ma.ély .
F=(15+—j;2y/7, (20)

where 7' =n* or n~ when the small particle pass over or under theroffig. 3). & is the

normalised surface separation:

_r-a-a

¢=7 (21)
(@ ta,)
2 S
The small particle’s velocity is given by:
v,=F /X% with,, (22)

wherer is here an estimation of the mean viscosity. Bvaliyt, we have:

v, =3 o3
n

The displacement difference between the two trajexg (fig. 3) over a time interval/y is:

Ay=ay -y =0 AT 3T o)
noon 0

WhereAn is the viscosity variation over a lengéf). We have then:
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The corresponding flux is then:
3P =nlAyd,. (26)
Using Egs. (14) and (26), we get:

S S SS . 1 [I
3 =30+ ——K”{§¢b(1+/1)3a§q>s+a§¢§j7,7, (27)

2.2.3. Curvature effect

In a curved geometry (flow between two paralletgdy Chow & al. (1994), have observed a
new kind of flux. This is due to the fact that ttieect colloidal force acting between a couple
of particles has a radial outward component. Ferflinxes corresponding to particles of the

same specie, we follow Krishnan & al. (1996):

oo _ e a2 Do

J7 =Ky a,—, (28a)
r
2

1=Ky a2 (280)
r

We are once again confronted with the interactietwben a big and a small particle. We use

the notations of Fig. 4. The radial velocity ofjpdes 1 and 2 are given by:
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v = F,cos@g-6) . V. = cmos@+6).

1 stl; ’ 2 XsAb (29)

We suppose thak, = F, = F,. The difference can be written:

2F, <sin(g) >sin(@)  2F, <sin(¢) > a, +a,
XA X% ro

Av=v, -V, [ (30)

The repulsive force is of the order of the hydraawic force in the lubrication area. We then

F . . .
can suppose tha{X—;zyab. Then comes the following expression for the snpaliticle
sb

displacement:

Ay® 02 ab@, (31)

where we have supposed that the quan)% is of the order ofja, . The small particle flux,
sb

with the participation of eq. (29b) can be written:

=k oo, ra ra) et (@)

It seems reasonable to consider that the collislmaggen with such a configuration that

¢ =nl2.We have therefore takensin(g) >= . 1

At equilibrium, the small particles flux and theylparticles flux vanish:
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— KC
by

L K K
D(quy)_#DIﬁTr: (33a)

K K
— e O(P ) -—©
o, PN

: &, \On 1 ()

0@, ) -K, |1+m,—2 |—+K, = 1+m,—2 |=0. 33b
mU(P,)) ,,( mz(DSJ” rr( m3q>J (33b)

Eq. (33a) is obtained taking together (11), (183a) and dividing the sum byZa’y for the
big particles. For the other specie, eq. (33b) ®ffnem (13), (17), (32) and dividing by
®2a’y. We have also supposed th&t® =K? =K_. Indeed, we can suppose that the
amplitude of the displacement of a particle, afteollision, in the direction perpendicular to

the flow, is of the order of a particle’s radiuse\lWave also:

_1@a+n’ 1

1 (1N 1
m=5 e G

A M =T M= ae

@+1)* (34)

We have also taken into account the fact thatayliadrical Couette flow:

ldy __1ldn 2
ydr  ndr r (35)

Now comes the question of the spatial dependandkeofiscosity for a two species media.

We consider the suspension as an effective medén@da (1977), Van de Ven (1976):

B
(o, ¢s)=(1—¢;¢3j . (36)

0
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where ® =®_+®,_ is the total particule concentratiom, is the maximal monodisperse
compacity & 068 for hard spheres). We follow Gondret (1994) arletg =—-3/2. At last,

eg. (33a) and (33b) become:

Gocoros ot w0
° § P (37a)
3 -0 K
"2¢c,-P+d,c T
2%, 1 3 1 no-o)¢
2¢c,-d+dc, P-D, r° P-O,
1 3 o-dc | 2
O (=—— b1 47— b)) -
q)_q)bml( b(ZCO_CDJrCDbC1 r) b) , (37b)

K1em,—Po |3 _PPG -1y, P (g
P-P, )2¢c,-P+D,c r d-d,

whereK, =K /K andK; =K /K.

2.3. Numerical simulation against phenomenologicatiel

We have performed numerical simlations of systeors#aning 64 or 80 particles. We will

. . . a .
present here four different radius ratiok=—=0.1, 0.2, 0.5, 1. In the monodisperse case

(A =1), Fig. 5 shows the concentration profile for atsgs of 64 particles with mean volume

fraction ® = 045. This result was obtained after 100 laps of tmircylinder, the outer one
is still. At this time, the concetration profilenn@ins constant. For every time step, the inner
cylinder does a 5.19radian rotation. This choice of the time step remahe same for the
other following simulations in this section.The kled line of Fig. 5a corresponds to the
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solution of the equation of Philips et al. (1992jma parameteIK,;‘1 = 0.75. Note that this

equation was obtained without taking into accotet ¢uvature of the streamlineK (= ).0
The full line is obtained withK,™ = 065 and K, ™ =1and allows to get a good agreement

with the numerical points.
The figure 6a shows the concentrations profilesafdridisperse suspension (40 big and 40

small) obtained by numerical simulation after 1804 of the inner cylinder. The radius ration

is A =02 and the mean concentratiofs = 045 and ®_ = 002. We have also reported the
solution of (37a) and (37b) takink,™ = 065 and K; =1. We can see a picture of the half

Couette flow with figure 6b. We observe a strongessegregation that is pretty good
predicted by the phenomenological model. The bidiggas migrate toward the outer wall
since they undergo greater deviations after colisi

Figure 7 shows the concentrations profiles fordiusratio A = 0.1. Also in this case, the
agreement between numerical and phenomenologiodilestis good. However it is bad with
a radius ratio of 0.5 (figure 8). Indeed we havepmsed that the motion of the big particles is
not perturbed by the presence of the small oneis. pproximation suffers when the radius
ratio approachesi =1. We can see in Fig. 8 a size segregation obtaedumerical

simulation that is not observed using the phenorognmal model.

3. Phase separation under simple shear rate
Suspended particles interact each other with thHidal repulsive force of Eq. (3). We
present first results disregarding the HI. Eachiglas undergoes a Stokes drag for8eaf if
it were alone in the fluid. At each time step, vewé :

F"+F7=0. (38)
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The velocity of the particles is given by :

rep

V= + X, (39)
6ran

with a velocity in the x-direction due to the shegwen by py. The time step ised in the

simulation isAt = 0.001™. Fig. 9 shows that the system becomes stripetated: Santra et
al. (1996) have obtained such a phase separalomytato account inertia of particles.

We have then performed numerical simulation ofghme kind of system including HI. We
proceed in the same way as in section 2.1. Therdifte is that in this case, the imposed
shear rate is constant and the periodic boundanglitons are those usually used for a
rectangular box. Because of the computational imeesasing, we used a small number of
particles. Fig. 10 allows to compare the effechydrodynamic interactions - that make little
clusters of aggregating particles and preventsthiges formation - with the case of a single

repulsive force.

4. Conclusion

We have developed a numerical simulation includithgvhich allows to reproduce patrticle’s
migration in a monodisperse or a bidisperse suspensonfined in a two dimensional
Couette flow. The concentration profiles obtaineg fumerical simulation have been
compared to the predictions of a phenomenologicadeh For a monodisperse suspension,
we obtain a good agreement when we take into atabenflux due to the curvature of the

strealines. In the bidisperse case for a radius tat 0.2, we observe a strong segregation
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with the large particles going towards the lowegastrate gradients. Our model for bidisperse
suspensions fairly well predicts this behaviouthwiit the addition of others parameters.

We assess the importance of HI in a two-dimensiaadibidal suspension undergoing a
simple shear rate. The HI avoid the formation ofpss observed in the simple case of

particles interacting with a repulsive pairwise itisid potential.
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Figure captions

Figure 1: picture of the half Couette flow. Thel ftifcles represent the particles in the central
angular area. The empty ones are their images. flilhebright particle undergoes the
influence of the nearest particles located in a &@jular sector (delimited with dash lines)

centered on it.

Figure 2: we consider that a particle (black circtoming close to a wall interacts

hydrodynamically with the plan tangential to thiallw

Figure 3: the small particle will undergo a morgortant displacement after collision since it

will move in a media of weaker viscosity.

Figure 4: collision of two small particles with glone. Particle 1 and 2 are ejected outward

and inward respectively.

Figure 5: Results obtained for a monodisperse sisspe with mean volume fraction
® = 045. (a) concentration profile compared with theomtijsrediction. The dashed line is

obtained withK; = Oand K™ = 075; the full line with K, = 1and K™ = 065. (b) picture

of the half Couette system.

Figure 6: 4 = 0.2. (a) concentration profile for the two species.

Big particles,®, = 045: « numerical simulatiori] phenomenological model.

Small particles (x10)®P, = 002: = numerical simulation, -phenomenological model.

(b) picture of the half Couette flow after 100 laggghe inner cylinder.
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Figure 7:A = 0.1. Concentration profile for the two species.

Big particles,®, = 045: « numerical simulatior;] phenomenological model.

Small particles x10®P, = 0.0045: m numerical simulation, -phenomenological model.

Figure 8: 1 = 0.5. Concentration profile for the two species.

Big particles,®, = 041: « numerical simulatiori] phenomenological model.

Small particles®, = 0.1: m numerical simulation, -phenomenological model.

Figure 9: Two-dimensional suspension of 2000 pagi¢80 big and 1920 small) with mean

concentration®, = 021 and ®_ = 020 at dimensionless tim& = 400y " .

Figure 10: Two-dimensional suspension of 100 pasigvith mean concentratio®, = 021

and ®_ = 020 at dimensionless tim& = 400y ". (a) with HI; (b) with HI disregarded.
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