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Interaction Matter-Polarized Light

Yves Joly

Abstract This chapter presents the process of interaction of light, mainly in the x-
ray range, with matter. The subject is introduced by some experimental evidences
of x-ray absorption, emission or scattering by different kinds of material. The ways
of describing the electromagnetic wave field are then briefly presented before de-
veloping its interaction with an electron in an atom. This process is then applied
in the context of core x-ray spectroscopies. The absorption, the dichroism and the
resonant diffraction are then specifically presented before giving some key elements
to manage monoelectronic simulations.

1 Introduction

When an electromagnetic wave meets matter, many processes can be observed. The
incoming wave can simply be partially -or completely - absorbed by the sample. It
can be scattered elastically or inelastically, coherently or incoherently. We can also
observe emission of photons at specific wavelengths or of electrons also at charac-
teristic energies or on the contrary on large energy ranges. From the explanation of
the photoelectric effect by Einstein, huge progress in the understanding of the phys-
ical processes involved in all these phenomena have been done. Moreover enormous
advances in the use of these process, often spectroscopies, have been reached. They
permit to analyze all kinds of material, solid, liquid or gaseous, ordered or disor-
dered, used in many fields, as biology, geology, chemistry or in condense matter
physics. It is impossible to give an exhaustive overview of such a subject. We shall
focus mainly in the x-ray regime and consider essentially the absorption and elas-
tic scattering of the photons. To introduce the subject, we first present some of the
basic observations. Then, we will give the main concepts of the electromagnetic
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waves before developing their interaction with matter, first in a microscopic point
of view and second using terminology used for the study of dielectrics in order to
make the connection between both approaches. The microscopic point of view will
concern mainly the transition process between two electronic levels and not the full
multi-electronic aspect. The last part will concern the x-ray spectroscopies, mainly
absorption including dichroism and resonant diffraction.

2 Experimental observations of x-ray interaction with matter

Here we give some important measurements showing general aspect connected to
the absorption - scattering of x-ray by material. We shall see that the absorption de-
pends on energy, polarization, chemical specie and on the geometrical environment.

2.1 Absorption

From its discovery by Roentgen in 1896, the most important use of x-ray comes
probably from its faculty to cross matter with different absorption rates depending
on its constituents. It is thus an exceptional tool to investigate the structure and the
composition of all class of samples. For an homogeneous isotropic material, there
is a simple exponential decrease of the transmitted beam intensity I in term of the
sample thickness D:

I = I0exp(−μD) , (1)

where I0 is the incident intensity. This equation, equivalent to the Beer-Lamber law
(ln(I0/I) = μD), introduces the total linear absorption coefficient μ . This coeffi-
cient, for a crystalline solid, is related to the absorption cross-section, σ i, of the n
different chemical elements of the unit cell [16]:

μ =
1
V

i=1

∑
n

σi . (2)

where V is the volume of the unit cell. Most often, it is the absorption cross-section
which is used. It is usually expressed in square centimeter or in mega barn (1 Mbarn
= 10−18 cm2).

2.2 Dependence on energy

When measuring the energy dependence of the photoelectric absorption cross-
section for the interaction of x-rays with material, one can see a decrease from some
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Fig. 1 X-ray absorption spec-
tra of Au metallic foil in
a 2.5 Kev energy range.
The experiment by Proux
and Hazemann[41] shows
the abrupt increases in the
absorption cross-section at
typical value of the chemical
element present in the sam-
ple and called edges. See the
so-called EXAFS oscillations
after each edge. Note also
that the LIII edge is two times
higher than the LII edge.
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Mbarn at low energy down to some barns at around 1 MeV [3]. At some energies,
there are strong and brusque increases of the cross-section. For example in Fig. 1,
we show the 11.8 - 15 keV energy range for a gold metallic foil [41]. One can see
three edges labeled LI , LII and LIII . Note also the oscillations after the edges which
are very reach in information on the close neighborhood of the absorbing atoms as
it will be seen further on.

Fig. 2 X-ray absorption spec-
tra at different edges of Ura-
nium in Uranyl (UO7). All the
edges are shifted by the value
of the ionization energy of the
corresponding edge in order
to compare their shapes. The
LIII and MIII are step like and
very similar. The other edges
have a very different shape.
This difference is due to the
selection rule imposed on the
electronic transition.
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When looking the different edges of a same element in the same material, as for
instance the Uranium edge in Uranyl (UO7) (Fig. 2) in the experiment performed
by Ch. Den Auwer et al. [20], we can see the different kinds of shape of the edges.
In this case, we see that the LIII and MIII have very similar step-like shape. On
the other side the MV , OIV and OV present only a single peak, more or less wide.
We shall see, Sect. 4.6, that this is due to selection rules in the transition. Another
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observation which is often done is that, as in the Fig. 1, the L III edges is twice higher
than the LII edge.

The energy of the edges are a signature of the chemical specie of the absorbing
atom. A closer look shows that small shifts up to some eV can be observed in the
threshold energy for a same element but in different chemical environments. When
increasing the oxidation, the edge tends to shift toward higher energy. This fact is
often used to check the valence state of a metal atom in an oxide.

2.3 Dependence on the atomic environment

Now let us have a look on the oscillations after a typical edge. We compare two
different surroundings of a same chemical specie, as for example the copper K-edge
in pure copper metal and in YCuO0.25. In Fig. 3 we can observe the very different
oscillation shapes. From other measurements in gas phase or in disordered material
we also know that these oscillations do not need a long range order. They are thus a
signature of the close environment of the absorbing atoms. The connection between
the spectra shape and the neighborhood will be seen in Sect. 6.

Fig. 3 X-ray absorption spec-
tra at the K-edge of copper
in (top) Cu metallic foil and
(down) in YCuO0.25. The
edges are roughly at the same
energy, but the oscillations are
very different.
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2.4 Dependence on the polarization light

Pleochroism or dichroism is the change in color when a mineral is rotated under
plane-polarized light. Due to adsorption of particular wavelengths of light, trans-
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mitted light appears colored depending on the thickness and the particular chemical
and crystallographic nature of the mineral.

By extension, the difference of absorption, under rotation only, is called dichro-
ism. This phenomena is also observed in the X-ray energy range. To observe this,
one needs a single crystal of a non cubic material (note that very small dichroism can
also be observed in cubic material). For example, Poumellec et al. [40] measured
the absorption along three orientations of a TiO2 single crystal, two are shown in
Fig. 4. The effect of the tetrahedral symmetry of the material can be easily verified.

Fig. 4 X-ray absorption spec-
tra of rutile TiO2 around the
K-edge of Titanium. The ex-
periment by Poumellec et
al. [40] is performed using a
single crystal under two orien-
tations of the sample in front
of the incoming linear wave
field. The difference shown
in the figure is called linear
dichroism and is relatively
strong when the sample is not
cubic.
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These studies are performed with linear polarized light (the concept of linear
or circular polarized light are given in the Sect. 3). In the visible light as well as
in the x-ray regime, circular polarized light gives also useful informations. Special
interest comes from experiments where one looks at the difference between two
spectra recorded respectively with left and right circular polarization. At the L II,III

edges of magnetic material the dichroic signal can reach several percent of the total
absorption edge. For example at the Er L III edge in ErZn (see Fig. 5) we see an
oscillating behavior around the rising edge energy. At the K-edges, on the contrary,
this kind of observations are always very small.

The explanation of these polarization phenomena comes from the dependence
of the absorption spectroscopies on the electronic structure around the absorbing
atoms. This is detailed in Sect. 6.
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Fig. 5 X-ray absorption spec-
tra of ErZn and the circular
dichroic signal at the rare
earth LIII edge. The latter is
a signature of magnetism on
the Er atom. The experiment
were performed at the ESRF
ID12 beam line by Galera et
al. [23]
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2.5 Diffraction around edges

Another kind of experiment increasingly popular at the different synchrotron facil-
ities concerns the measurement of diffracted peaks in a more or less wide energy
range around some edges. The technique called diffraction anomalous fine struc-
ture (DAFS) or resonant X-ray scattering (RXS) [8] gives set of spectra rich with
information on the crystalline material studied. For example in Fig. 6 are shown
two spectra of diffraction peaks in NaV2O5 compared with two absorption spec-
tra measured for two orientations of the sample. The diffracted intensity becomes
highly energy dependent around the absorption edges. In some cases, the intensity
is nearly zero, but close to the edge, where the variation of intensities have similar-
ities with what is observed in the absorption spectra. This spectroscopy is indeed
very close to the absorption spectroscopy, and it is explained for the photon-matter
interaction process in Sect. 4 and in an unified scheme to get the final amplitudes in
Sect. 6.

3 The light

Before considering the interaction of light with matter, one has to recall the basic
definitions used to describe the electromagnetic waves.
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Fig. 6 Two diffraction peaks
measured by S. Grenier et
al. [25] around the Vanadium
K-edge in NaV2O5 at 13 K.
Their intensity is nearly zero
far from the edge and shows
strong variations around the
edge. They also strongly
depend on the polarization
conditions. For comparison
the absorption spectra is
also shown for two linear
polarizations. The pre-peak
visible in this spectra is also
present but eventually slightly
shifted in the diffraction
spectra.
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3.1 Definitions and notations

The vector potential, A, the electric and magnetic field, E and B of the electro-
magnetic waves are obtained from the Maxwell equations. These ones give first the
propagation equations in vacuum:

ΔA = ε0μ0
∂ 2A
∂ t2 , ΔB = ε0μ0

∂ 2B
∂ t2 , ΔE = ε0μ0

∂ 2E
∂ t2 . (3)

A plane wave is a wave with infinitely long and wide wavefront. From the prop-
agation equations it can be shown that in this case:

• the vector potential depends only on time (t) and coordinate corresponding to the
propagation direction z,

• A, E and B are perpendicular to the propagation direction,
• E and B are perpendicular to each other.
• E = cB

The solutions of the propagation equations are necessarily of the form:

s(z,t) = f (z− ct)+g(z+ ct) , (4)

where f and g are scalar functions.
Progressive plane waves are such that f or g is always zero. That is:

• s(z,t) = f (z− ct) is a traveling plane wave propagating along z,
• s(z,t) = g(z+ ct) is a traveling plane wave propagating along -z.
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Monochromatic traveling plane waves can be written as :

Ax (z,t) = A0x cos
[
2πν

( z
c
− t
)

+ ϕ0x

]
, (5)

Ay (z,t) = A0y cos
[
2πν

( z
c
− t
)

+ ϕ0y

]
,

where the amplitudes A0x and A0y and the phases ϕ0x and ϕ0y, can have peculiar
relations.

Linearly polarized plane waves have both components in phase, that is ϕ 0x = ϕ0y.
E, B and A are thus in phase. E and A are moreover collinear.

Circularly polarized plane waves are such that A0x = A0y and ϕ = ϕ0y −ϕ0x =
±90◦. The sign plus and minus are respectively for left and right circular polariza-
tions.

Complex notation are more tractable. A, E and B are then given by:

A = A0ei(k·r−ωt) , E = E0ei(k·r−ωt) , B = B0ei(k·r−ωt) . (6)

where k is the wave vector which is collinear to the propagation direction and ω =
2πν is the pulsation. Moreover we have the relations: E =−iωA, B = −ik×A and
k2 = ω2/c2.

In this context we define the polarization vector by:

ε = i
E0

E0
. (7)

The polarization vector of a circularly polarized wave propagating along z is thus :

ε =
1√
2

⎛⎝ 1
±i
0

⎞⎠ . (8)

In diffraction, the terms of σ (or s) and π (or p) polarizations are often used. They
designate the orientation of the polarization, versus the scattering plane. When the
polarization is perpendicular to the scattering plane it is called σ ; when it is parallel
it is called π . In classical diffraction, most of the intensity of the diffraction peaks
is obtained in the σ in - σ out channel (one says directly σ −σ ). With magnetism
or/and around the absorption edge one can get important σ − π contribution. The
information obtained from the polarization analysis of the diffraction peaks can be
very rich.

3.2 Stokes parameters

There is another way to characterizing the polarization. It is the use of the Stokes pa-
rameters. They are used in many contexts: in astrophysics, in the instrumentation to
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validate the quality of the beam lines and in x-ray physics to describe with common
tools the effect of the interaction with matter. The Stokes parameters describe com-
pletely the polarization state of an electromagnetic radiation. It is a four component
vector S such that:

S =

⎛⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎠=

⎛⎜⎜⎜⎝
|Ex|2 +

∣∣Ey
∣∣2

|Ex|2 −
∣∣Ey
∣∣2

2ℜ
(
ExE∗

y

)
2ℑ
(
ExE∗

y

)
⎞⎟⎟⎟⎠ . (9)

The polarization itself (or rate of polarization) is thus given by :

p =

√
S2

1 +S2
2 +S2

3

S0
. (10)

For practical purposes, one normalizes by S0 and thus one gets for example:

• (1,0,0,0): unpolarized,
• (1,1,0,0): linearly polarized along x,
• (1,−1,0,0): linearly polarized along y,
• (1,0,1,0): linearly polarized at 45 degrees,
• (1,0,0,1): left-hand circularly polarized,
• (1,0,0,−1): right-hand circularly polarized.

3.3 Quantization of the electromagnetic field

In the next section we will give the expression of the interaction between the electro-
magnetic wave and an electron in an atom. For this purpose we have first to derive
the quantization of the electromagnetic field. When it is confined in a volume V ,
the potential vector, A(r,t), is expressed using the previous expressions and the
annihilation aε,k and creation a+

ε,k operators:

A(r,t) = ∑
ε,k

A0,k

(
aε,kei(k·r−ωt)ε +a+

ε,ke−i(k·r−ωt)ε∗
)

, (11)

with:

A0,k =

√
h̄

2ε0Vωk
(12)

The Hamiltonian of the field is given by :

HR = ∑
ε,k

h̄ωk

(
a+

ε,kaε,k +
1
2

)
. (13)
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4 Process of interaction of light with an electron in an atom

Having defining the electromagnetic waves, one can now consider its interaction
with matter. In this section we consider the interaction of a photon with one electron
making a transition between two atomic levels. From the interaction Hamiltonian,
we shall have, at the end of this chapter, the important processes involved in the
absorption and resonant and non resonant scattering phenomena.

4.1 Linear and non linear interactions

A first distinction between the linear and non linear interactions should be carried
out. When there is a single incoming or/and a single outgoing photon in the interac-
tion, the process is said linear. With more photons one gets the nonlinear physics in-
volved for example in frequency doubling. The subject, extensively studied specially
in the infra-red - visible - ultra-violet regime, very rarely concerns x-ray physics. In-
deed it needs huge radiation power, that is typically 1MW/mm2 or in other words
around 1024 photons per second. This can be reached by laser but not at synchrotron,
even with the very high brilliance one gets now. In a close future, with the free elec-
tron laser which gives pulsed x-ray source with brilliance 1000 times stronger than
the synchrotron, the radiation power will be probably sufficient to reach the non-
linear phenomena in the x-ray regime. For the moment it is not yet done and thus
the following sections are limited to the linear response.

4.2 Interaction Hamiltonian

The non relativistic Hamiltonian of one photon and one particle of mass m and
charge q is given by [6, 15]1:

H =
1

2m
(P−qA)2 +qV −gL

q
2m

S ·B+HR , (14)

where gL is the Landé factor (= 2 in this case). HR is the Hamiltonian of the field
already seen in 3.3. The relativistic Hamiltonian brings terms resulting in a spin-
orbit component which can be neglected in the X-ray regime. The non relativistic
Hamiltonian can be split between its non interaction part H0 and a perturbation VI:

H0 =
p2

2m
+qV +HR , (15)

1 The Hamiltonian is in SI unit. When expressed in CGS unit, there is a 1/c extra factor in front of
A.
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VI = − q
m

P ·A+
q2

2m
A2 −gL

q
2m

S ·B . (16)

We consider a transition between an initial state and a final state. The initial state
contains one photon with wave vector k i and polarization ε i and one electron in the
state ϕg. In the same way the final state contains the photon (k s, εs) and the electron
ϕ f . The solutions of H0 can be written:∣∣φg

〉
=
∣∣ϕg;ki,ε i

〉
, H0

∣∣φg
〉

= Eg
∣∣φg
〉

with Eg = Eg + h̄ωi , (17)∣∣φ f
〉

=
∣∣ϕ f ;ks,εs

〉
, H0

∣∣φ f
〉

= E f
∣∣φ f
〉

with E f = Ef + h̄ωs , (18)

where Eg (E f ) is the total initial (final) energy, Eg (Ef ) is the electron initial (final)
energy and h̄ωi, (h̄ωs) the initial (final) photon energy. For practical purposes, we
shall use this formulation in the context of transition from one electronic localized
state state up (or down) to some unlocalized state. We shall thus ascribe a density of
states ρ f to the final state which is supposed to be not zero on some energy range.
In this context the transition probability from

∣∣φg
〉

to
∣∣φ f
〉

is given by:

Wf g =
2π
h̄

∣∣〈φ f
∣∣TI
∣∣φg
〉∣∣2 ρ f , (19)

where TI is the transition operator given by:

TI = VI +VIG(Eg)VI . (20)

G(Eg) is the resolvent (Green function) of the total Hamiltonian, that is :

G(Eg) = lim
η→0+

1
Eg −H + iη

. (21)

The zero order approximation using TI ≈VI gives the second golden rule. In the
following we shall use the first order approximation where we replace the Green
function of the total Hamiltonian by that of the ground state Hamiltonian. The tran-
sition probability we get is the first golden rule where:

TI ≈VI +VIG0 (Eg)VI . (22)

Inserting in eq. 22 the expression of VI given in eq. 16 and using q = −e, gL = 2
and B = −ik×A, one gets to the second order in an e/m expansion:

TI ≈ e
m

(P ·A− iS ·k× A) (23)

+
( e

m

)2 [m
2

A ·A+(P ·A− iS ·k× A)G0 (Eg)(P ·A− iS ·k× A)
]
+O

(
e3

m3

)
.

In this expression, the terms containing just one A reveal process with one photon,
that is absorption or emission. The terms with two A reveal situation with two pho-
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tons, one photon in and one photon out, that is a scattering process. Let’s introduce
the expression of the potential vector given in eq. 11.

4.3 Absorption and Emission

When keeping the annihilation term alone, one gets the operator corresponding to
the absorption process:

TI,abs =
e
m ∑

ε,k
A0,kaε,k (ε ·P− iSk× ε)ei(k·r−ωt) . (24)

To get the absorption cross-section one introduces this operator in the expression 19
and we divide by the incoming flux (c/V ). We get:

σabs =
V
c ∑

f

2π
h̄

∣∣〈φ f
∣∣TI,abs

∣∣φg
〉∣∣2 ρ f (25)

=
4π2α h̄
m2ω ∑

f

∣∣〈ϕ f
∣∣Ô∣∣ϕg

〉∣∣2 ρ f
(
Ef = Eg + h̄ω

)
, (26)

where α = e2/(2ε0hc) ∼= 1/127.036 is the fine structure constant, and the operator
Ô is given by :

Ô = (ε ·P− iSk× ε)eik·r . (27)

The total energies are given by :

Eg = Eg + h̄ω , E f = Ef . (28)

Most often the term corresponding to the magnetic field can be neglected in the
X-ray energy range. This means that we use Ô ∼= ε ·Peik·r.

The emission is treated identically by keeping the creation operator only. There
is no incident flux and the normalization depends on the peculiar process. For a
coupling between the continuum and a discrete final level, one gets an emission
cross-section proportional to the absorption cross-section but with the total energies
given by:

E f = Ef + h̄ω , Eg = Eg . (29)

4.4 Scattering

Now one considers the two photon case. For a scattering process, to get the intensity,
one has to divide by the incoming flux (c/V ) and to multiply by the density of pho-
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ton in the final state V (h̄ωs)2/(2π h̄c)3. One thus multiplies and divides the matrix
element

〈
φ f |T |φn

〉
by the square root of the previous factors. To get the scattering

amplitude in the conventional unit scale, that is in number of electron, one also di-
vides by the electron radius r0 = e2/

(
4πε0mc2

)
= 2.82×10−5 Å. We have thus to

calculate:

f =
Vh̄ωs

(2π h̄c)3/2 r0

〈
φ f |T |φg

〉
. (30)

4.4.1 Thomson scattering

We consider the first term with A ·A in the equation 24. The corresponding ampli-
tude gives:

f =
Vh̄ωs

(2π h̄c)3/2 r0

e2

2m

〈
φ f |A ·A|φg

〉
(31)

=
ωs

ωi
ε∗s ε i

〈
φ f

∣∣∣ei(ki−ks)·r (aia
+
s +a+

s ai
)∣∣∣φg

〉
. (32)

In the elastic case one gets the Thomson scattering:

f0 = ε∗s · ε i

〈
ϕg

∣∣∣ei(ki−ks)·r
∣∣∣ϕg

〉
= ε∗s · ε i

∫
|ϕ (r)|2 e−iQ·rd3r , (33)

where Q = ks −ki

We now compare this result with the classical demonstration. Thus, Thomson
scattering is the elastic interaction with a free electron. The vibrating electron acts
as a source and the ratio of the radiated field Er (r) over the incoming field Ei is:

Er (r)
Ei

= −r0
eikr

r
cosψ , (34)

ψ being the angle between the incoming polarization and the outgoing one. It is the
scattering angle only when the polarizations are parallel with the scattering plane.
One has cosψ = ε∗

s · ε i. The scattering amplitude expressed in number of electron
is then:

f = ε∗
s · ε i . (35)

For one atom with a distribution of charge ρ(r), one just has to integrate over
it, taking into account the phase difference between the paths (Fig. 7). This one is
given by:

Δφ (r) = (ki −ks) · r = −Q · r , (36)

and the scattering length is thus:

f (Q) =
∫

ρ (r)e−iQ·rd3r , (37)
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that in the limit Q → 0 yields f (Q = 0) = Z. Finally just multiplying by the scat-
tering amplitude for one electron (eq. 35), one gets again the formula giving the
Thomson scattering amplitude (eq. 33).

In periodic systems, the diffracted peaks are mainly due to this effect. The phase
difference between the atoms of the unit cell is taken into account by the Bragg
factor, eiQ·Ra , in such a way that the intensity is given by:

I (Q) ∝
∣∣∣∣ε∗s · ε i ∑

a
eiQ·Ra f0a (Q)

∣∣∣∣2 , (38)

where Ra and f0a are respectively the position and Thomson scattering amplitude of
the atom a. The summation is over all the atoms of the unit cell. From this equation,
one sees that there is no σ −π Thomson scattering. Most often the electronic den-
sity can be considered as spherical around the atoms. Consequently the Thomson
scattering for a specific diffraction vector Q is mostly isotropic. Finally note that
a temperature dependent Debye-Waller factor must also be included in the Bragg
factor to take into account the thermal disorder.

Fig. 7 Thomson scattering
where is shown the incoming
beam with wave vector ki

scattered at the center and at
a point r in the atom giving
thus a phase difference.

-ki.r 

ks ki 

ks.r 
r 

4.4.2 Compton scattering

For completeness one has to touch on the Compton scattering. It corresponds to the
inelastic interaction with a free electron. Contrary to Thomson scattering, it can-
not be explained purely with light as a wave phenomenon. One has to apply the
relativistic energy and momentum conservations (Fig. 8), and we gets then:

ki

ks
=

h̄ωi

h̄ωs
=

λs

λi
= 1+ λCki (1− cosθ ) , (39)

where θ is the scattering angle and λC = h̄/mc is the Compton wavelength. the
Compton scattering is incoherent and it is often seen as a simple background. This
one is small in the x-ray range but increases at higher energy (see Fig. 8) and with
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the scattering angle. For electron in solid, it gives nevertheless information on the
electronic momentum distribution (see chapter by S. P. Collins).

Fig. 8 Compton scattering
with the ratio of the outgoing
and incoming photon wave
vectors versus the scattering
angle and at different ener-
gies. The diagram in the inset
shows the particles with their
momenta.
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4.4.3 Resonant scattering

Now we consider the second term in the two photon process, the one containing
G0 (Eg) in eq. 24. This Green’s function applied on the state |ϕ n〉 is:

G0 (Eg) |ϕn〉 = lim
η→0+

|ϕn〉 |εn,kn〉
Eg −H0 + iη

. (40)

There are two possibilities. In the first one, the intermediate state already contains
the photon of energy h̄ωs. In other word, the emitted photon is created before the
annihilation of the incoming one. We have thus:

En = En + h̄ωs . (41)

In the second case, there is no photon in the intermediate state. The emitted photon
is created after the annihilation of the incoming one. In this case one gets:

En = En . (42)

In both cases one also has for the initial state Eg = Eg + h̄ωi. Consequently the
expression of the scattering amplitude becomes:
Resonant case:
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f(a) =
ωs

ωi

1
m

lim
η→0+ ∑

n

〈
ϕ f
∣∣Ô∗

s

∣∣ϕn
〉〈

ϕn
∣∣Ôi
∣∣ϕg
〉

Eg −En + h̄ωi + iη
(43)

Non resonant case with the photon in the intermediate state:

f(b) =
ωs

ωi

1
m ∑

n

〈
ϕ f
∣∣Ôi
∣∣ϕn
〉〈

ϕn
∣∣Ô∗

s

∣∣ϕg
〉

Eg −En− h̄ωs
(44)

In these expressions the operator Ôi,s has now subscripts corresponding to the in-
coming and outgoing photons and thus their corresponding wave vector and po-
larization. Note that for the expression of f (b) one does not need the limit with η
because Eg −En and h̄ωs are generally of the same sign. On the contrary, f (a) is
a resonant process because we can have Eg −En + h̄ωs = 0. We get a virtual tran-
sition because there is an uncertainty on the energy during the time Δ t, such that
Δ tΔE = h̄ with ΔE =

∣∣En −Eg− h̄ωs
∣∣. One can also remark that around an absorp-

tion edge the denominator of the resonant term is nearly zero. On the contrary the
denominator of f(b) is around 2 times the energy edge. Thus f (b) is nearly always
negligible in comparison with f (a).

The resonant term is used in many spectroscopies. Depending on the wave-length
different properties of the material can be investigated. Section 6 is partly devoted
to its use in the X-ray regime.

4.4.4 Non-resonant magnetic scattering

To end up this part on scattering, one can consider the non-resonant magnetic scat-
tering. This scattering was explained by Blume and Doon Gibbs [7] and first ob-
served in 1981 by de Bergevin and Brunel [17]. It contains the interaction between
the magnetic field of the incoming wave with the spin of the electron. It contains also
an angular momentum part. This one comes from the expansion at the first order in
h̄ω/(En −Eg) of the two resonant f(a) and non-resonant f(b) scattering amplitudes.
At high energy one then gets a magnetic scattering amplitude given by:

fm = − h̄ω
mc2

(
1
2

L (Q) ·a+S(Q) ·b
)

, (45)

where a and b are two vectors depending on the incoming and outgoing wave vec-
tors and polarizations:

a = 2(1−ui ·us)εs × ε i − (ui × ε i)ui · εs +(us × εs)us · ε i , (46)

b = εs × ε i − (ui × ε i)ui · εs +(us × εs)us · ε i − (us × εs)× (ui × ε i) . (47)

where u = k/k. S(Q) is the Fourier transform of the spin density, that is of ρ (r) ↑−
ρ (r)↓. L (Q) is relied to the Fourier transform of the orbital momentum. It is often
a good approximation to take L (Q) and S(Q) in the same direction.
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The amplitude of the non-resonant magnetic scattering is very small and neutron
diffraction is most often far more sensitive to measure magnetic ordering. Neverthe-
less, when studying magnetic material using resonant processes, because this term
interferes with the other terms, it can gives notable effects on the intensity of some
peaks.

4.5 Transition matrix

In order to obtain the absorption and emission cross-sections and the resonant scat-
tering amplitudes, matrix elements of the form

〈
ϕ f
∣∣Ô∣∣ϕg

〉
have to be evaluated.

The exponential in the operator can be expanded in terms of k · ε and we gets at
second order for respectively its electric and magnetic part:

Ôe = ε ·Peik·r = ε ·P
(

1+ ik · r− 1
2

(k · r)2 + . . .

)
, (48)

Ôm = −iSk× εeik·r = −iSk× ε
(

1+ ik · r− 1
2

(k · r)2 + . . .

)
. (49)

For the first expression, the first term of the expansion is called the electric dipole
or E1. The corresponding operator ε ·P can be rewritten thanks to its relation with
the commutator:

ε ·P =
m
ih̄

[ε · r,H0] . (50)

Using the relation:〈
ϕ f |[ε · r,H0]|ϕg

〉
=
(
Eg −Ef

)〈
ϕ f |ε · r|ϕg

〉
, (51)

one gets:

Mf g,E1 =
〈
ϕ f |ε ·P|ϕg

〉
= i

m
h̄

(
Ef −Eg

)〈
ϕ f |ε · r|ϕg

〉
, (52)

Let us calculate now the second term of the expansion of the electric operator. To
get the corresponding matrix one sets the polarization along the y-axis and the wave
vector along z. Then we use:

m
2h̄

[zy,H0] =
m
2h̄

([z,H0]y+ z [y,H0]) =
i
2

(Pzy+ zPy) (53)

=
i
2

(2Pzy−Pzy+ zPy) = iPzy− i
2

Lx ,

where Lx is the x component of the angular moment L. For any direction we thus
get:

iP · εk · r =
m
2h̄

[ε · rk · r,H0]+
i
2

k× ε ·L . (54)
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The first term of the second member of this expression gives the E2 contribution,
or electric quadrupole:

Mf g,E2 = i
m
h̄

(
Ef −Eg

) i
2

〈
ϕ f |ε · rk · r|ϕg

〉
, (55)

The second term of the second member depending on orbital moment L is mag-
netic. Consequently it is grouped with the zero order of the expansion coming from
the spin contribution. The new term is called the magnetic dipole or M1:

Mf g,M1 =
1
2

〈
ϕ f |k× ε · (L+2S)|ϕg

〉
. (56)

The M1 contribution is very small in the x-ray energy range because the radial
integral part in its calculation is nearly zero (its selection rules gives Δ� = 0, it acts
only on m and σ ).

4.6 Selection rules

We have to calculate:〈
ϕ f |ô|ϕg

〉
= ∑

σ

∫
ϕ∗

f (r,σ) ô(r)ϕg (r,σ)d3r (57)

When considering only the E1 and E2 transitions, there is no possibility of spin-flip
during the transition, thus the sum on the spin is reduced to one index, σ , set outside.
Here the operator just contains the terms inside the matrix of eq. 52 for E1 and eq.
55 for E2, that is:

ô = ε · r
(

1+
1
2

ik · r
)

. (58)

The core state g is localized, thus the integral has to be performed only inside the
absorbing atom. The expansion of f , ô and g in spherical harmonics is consequently
very convenient because it singles out the angular momentum quantum numbers
explicitly, and separates the radial and angular dependences.

4.6.1 Final states

In the non magnetic case, the final (or intermediate) state can be written as:

ϕ f (r) = ∑
�,m

a f
�,mb� (E,r)Y m

� (Ω) , (59)

where r = (r,Ω) is expressed in spherical coordinates, b� (E,r) is the radial com-
ponent of the wave function inside the atom. It is obtained by solving the radial
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Schrödinger equation in the atom. It weakly depends on the photo electron energy
E. The a f

�,m are the amplitudes2.
In the magnetic case, if one neglects the spin-orbit, a single sum over σ is to be

included:
ϕ f (r) = ∑

�,m,σ
a f

�,m,σ b�,σ (E,r)Ym
� (Ω)χσ , (60)

where the spin state is given by:

χ 1
2

=
(

1
0

)
, χ− 1

2
=
(

0
1

)
. (61)

When one considers the spin-orbit, the final state is written as:

ϕ f (r) = ∑
�,m,s

a f
�,m+ 1

2−s,s
bσ

�,m+ 1
2−σ ,s

(E,r)Y
m+ 1

2−σ
� (Ω)χσ . (62)

Note that in this case, the spherical harmonics are necessarily the complex ones.
This expression comes from the solution in the atom of the Dirac equation. σ is not
anymore a good quantum number. We replace it by the index s. Due to the spin-orbit
the
(
�,m, 1

2

)
and

(
�,m+1,− 1

2

)
components are part of the same state. This is what

gives the eventual spin-flip during the photo electron scattering.

4.6.2 Initial states

Now let us look at the initial states. They are localized and the expansion seen in
the previous expression is limited to one or two components. For example at the
K-edge, one has � = 0 and two initial states:∣∣∣∣12 ,−1

2

〉
= b0 1

2
(r)Y 0

0 χ− 1
2

, (63)∣∣∣∣12 ,
1
2

〉
= b0 1

2
(r)Y 0

0 χ 1
2

. (64)

At the LII-edge; one has � = 1, j = 1/2 and two initial states:∣∣∣∣12 ,−1
2

〉
= b1 1

2
(r)

(
−
√

2
3

Y−1
1 χ 1

2
+

√
1
3

Y 0
1 χ− 1

2

)
, (65)

2 When using the monoelectronic approach, the af
�,m contain the main dependence on the energy

E. They are obtained using the continuity of the wave function and its derivative between the atom
and its surrounding (see Sect.6.4 and 7.2). In the other approaches, they are just normalization
coefficients, and the dependence in function of energy is put outside of the transition matrix. At
this stage, whatever is the method, our demonstration is general.
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1
2

〉
= b1 1

2
(r)

(
−
√

1
3

Y 0
1 χ 1

2
+

√
2
3

Y 1
1 χ− 1

2

)
.

At the LIII-edge; one has � = 1, j = 3/2 and four initial states:∣∣∣∣32 ,−3
2

〉
= b1 3

2
(r)Y−1

1 χ− 1
2

, (66)∣∣∣∣32 ,−1
2

〉
= b1 3

2
(r)

(√
1
3

Y−1
1 χ 1

2
+

√
2
3

Y 0
1 χ− 1

2

)
,

∣∣∣∣32 ,
1
2

〉
= b1 3

2
(r)

(√
2
3

Y 0
1 χ 1

2
+

√
1
3

Y 1
1 χ− 1

2

)
,∣∣∣∣32 ,

3
2

〉
= b1 3

2
(r)Y 1

1 χ 1
2

.

In general when using complex harmonics one can just write:

ϕg = ∑
σ

Gσ
g bg(r)Y

mg+ 1
2−σ

�g
χσ . (67)

4.6.3 Operator

The operator can also be expanded in spherical harmonics:

ô = ε · r
(

1+
1
2

ik · r
)

= ∑
�o,mo

(
i
2

k

)�o−1

c�o,mor�oY mo
�o

(Ω) (68)

where the c�o,mo are specific coefficients with their operator quantum numbers
(�o,mo). For example for a polarization along z and a wave vector along x one gets:

ε · r = z = rcosθ =

√
4π
3

rY 0
1 , (69)

i
2

ε · rk · r =
i
2

kzx =
i
2

kr2 sinθ cosϕ =
i
2

k

√
4π
15

r2Y 1
2 , (70)

where we have used the real spherical harmonics. These ones can eventually be
expressed in terms of the complex spherical harmonics.

4.6.4 The transition matrix

We can now gather the equations 62, 67 and 68. The transition matrix for each spin
σ is then:
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〈
ϕ f |ô|ϕg

〉
σ = ∑

o

(
i
2

k

)�o−1

c�o,mo ∑
�,m

Γ �g,mg+ 1
2−σ ,�o,mo

�,m+ 1
2−σ

(71)

× ∑
s

Rg,�o,σ
�,m+ 1

2−σ ,s
(E)a f

�,m+ 1
2−s,s

,

where:

Rg,�o,σ
�,m+ 1

2−σ ,s
(E) =

∫ R

0
bσ∗

�,m+ 1
2−s,s

(E,r)bg (r) r2+�odr , (72)

is the radial integral performed up to the atom radius R, and

Γ �g,mg,�o,mo
�,m = Gσ

g

∫
sphere

Y m∗
� (Ω)Y mo

�o
(Ω)Y

mg
�g

(Ω)dΩ , (73)

is the angular integral or Gaunt coefficient multiplied by the factor G σ
g coming from

the initial state. It is usually expressed in terms of Clebsch-Gordon coefficients. The
angular integral is not zero only for peculiar value of �,m:

• � must have the same parity than �g + �o,
• ∣∣�g − �o

∣∣≤ � ≤ ∣∣�g + �o
∣∣,

• m = mo +mg.

The last condition on m is when using complex spherical harmonics. When using
the real ones the conditions are:

• when momg = 0, m = mo +mg,
• when momg > 0, m =

∣∣mo +mg
∣∣ and m =

∣∣mo −mg
∣∣,

• when momg < 0, m = −|mo|−
∣∣mg
∣∣ and m = − ∣∣mo +mg

∣∣.
For the dipole and quadrupole components, we have respectively � o = 1 and

�o = 2. Thus, the difference on � between the initial and the final state is:

• dipole: Δ� = ±1,
• quadrupole: Δ� = 0,±2.

The orbitals probed at the different edges are summarized in Table 1.

Table 1 Probed states for the dipole and quadrupole transition for the different edges

Edge Dipole probed state Quadrupole probed state

K, LI , MI , NI , OI p s - d
LII , LIII , MII , MIII , NII , NIII , OII , OIII s - d p - f
MIV , MV , NIV , NV , OIV , OV p - f s - d - g

At the K-edge, the initial state is 1s and the Gaunt coefficients are equal to
1√
4π δ�,�oδm,mo . The corresponding effect of the selection rule on the probed orbital

is shown in Fig. 9. One considers a sample containing an octahedron surrounding,
for instance, a 3d element. This one is oriented in a specific way with respect to
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the incoming electromagnetic wave, which has its polarization along z and the wave
vector along x. The electric field of the wave makes that the core 1s electron is vi-
brating at the first order (for the dipole) in the vertical direction, like a p z. The core
electron can thus jump into the empty 4pz state above the Fermi level. When the
energy is sufficiently high, or the wave length sufficiently short in comparison with
the 1s orbital radius, the vibration is not anymore exactly along z. There is a phase
difference along x resulting in a dxz-like vibration component. The core electron can
thus jump into the 3dxz final state. This is a quadrupole transition.

Fig. 9 Selection rule in the K-edge case. An octahedron is surrounding a 3d element. When the
polarization is along z, and the wave vector along x, the dipole probed orbital is the pz one, and the
quadrupole probed orbital is the 3dxz one. When rotating the sample by 90 degrees, the probed 3d
state by the E2 channel can correspond to an eg state or to a t2g state.

5 Dielectric function or macroscopic point of view

We briefly recall the definitions of the values permitting to describe macroscopically
a dielectric. The aim is to make the connection of the susceptibility, permittivity and
refractive index with the scattering factor used in the microscopic point of view.

A dielectric is a nonconducting substance where any volume element dτ , have a
dipole electric moment dM . This one can be permanent or induced by an external
electric fields E. The polarization vector P is defined by:

dM = Pdτ . (74)

The electric displacement at a point M is defined by:

D(M) = ε0E (M)+P(M) . (75)

For a linear (see Sect. 4.1) dielectric media the relation between the electric dis-
placement and the electric field is given my:
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Dy

Dz

⎞⎠=

⎛⎝ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞⎠⎛⎝Ex

Ey

Ez

⎞⎠ . (76)

We define the electric susceptibility χ and the relative permittivity ε r with ε =
ε0εr = ε0 (1+ χ). Thus one gets:

P = ε0χE . (77)

For an isotropic material, the refractive index is just given by:

n =
√

εr . (78)

For an anisotropic material, the refractive index is a vector defined by:

n =
c
ω

k . (79)

where k is the wave vector, c the speed of light and ω the pulsation. One gets the
components of the refractive index from the Maxwell equations. Indeed for a plane
wave we find:

D = n2E− (n ·E)n . (80)

Using the matrix relation between D and E and substituting D by eq. 80, one obtains
the Fresnel equation:

n2 (ε̂xn
2
x + ε̂yn

2
y + ε̂zn

2
z

)−n2
x ε̂x (ε̂y + ε̂z)−n2

y ε̂y (ε̂x + ε̂z)−n2
z ε̂z (ε̂x + ε̂y)+ ε̂xε̂yε̂z = 0 .

(81)
where (ε̂x, ε̂y, ε̂z) are the eigenvalues of the permittivity matrix, defining the principal
axis.

Complex permittivity

In this section we use classical equations to define a resonant system. When com-
paring with the quantum mechanical scattering factor calculated in Sect 4.4.3, we
shall see that the resulting expressions have strong similarities. First we consider the
differential equation of motion of an electron in a molecule:

m
d2r
dt2 = −kr− m

τ
dr
dt

− eEl , (82)

where El = E + P/3ε0 is the local field, τ some damping, m, e and r the mass,
absolute charge and position of the electron respectively. Putting P = 2Ner, where
N is the number of electron per unit volume, we find the relation between E and P
and the electric susceptibility is given by:
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χ =
χ0ω2

1

ω2
1 −ω2 + i ω

τ
, (83)

where:

χ0 =
2Ne2

ε0mω2
1

, (84)

is the susceptibility at ω = 0. From the equation 83, the complex relative permittivity
(or dielectric function) can be expressed as:

εr (ω) = ε ′r (ω)+ iε ′′r (ω) , (85)

where its real and imaginary parts are given by:

ε ′r (ω)−1 =
χ0ω2

1

(
ω2

1 −ω2
)(

ω2
1 −ω2

)2 + ω2

τ2

, ε ′′r (ω) =
χ0ω2

1
ω
τ(

ω2
1 −ω2

)2 + ω2

τ2

. (86)

When plotting (Fig. 10) these quantities, we find the typical resonant shapes for
the imaginary and real part of the amplitude. From this simple consideration and
taking into account that the main resonance pulsation ω 1 are in the ultra-violet range,
one gets the Cauchy formula giving the dependence of the refractive index on the
wavelength at low frequency (that is in the visible):

n2 = n2
0 +

A
λ 2 , (87)

with A = 4π2χ0c2/ω2
1 . We also obtain the value inferior to one for the refractive

index at high frequency that is in the x-ray range.

Complex refractive index

With a complex permittivity one also gets a complex refractive index and a complex
wave vector. We have :

k2 =
ω2

c2

(
ε ′r + iε ′′r

)
. (88)

Setting k = k′ + ik′′, one gets:

k′2 − k′′2 =
ω2

c2 ε ′r , k′k′′ =
ω2

c2 ε ′′r . (89)

So, for a plane wave along z, there is a damping given by e ikz = eik′ze−k′′z. The
complex refractive index is simply defined by :

• n′ = k′c/ω is the refractive index,
• n′′ = k′′c/ω is the extinction index.
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Around ω1 there is an absorption and an abnormal dispersion. Far from ω 1, there is
no absorption and a normal dispersion.

From these relations, reflection and transmission coefficients can be calculated
for an incident electromagnetic wave when interacting with a surface separating two
media of different refractive indices. It is then possible to get a relation between the
orientation of the polarization of an electromagnetic wave after reflection by a sur-
face in term of the permittivity. In the visible range, one of the goals of ellipsometry
is to find this parameter. Another one is, knowing the refractive index, to determine
the thickness and roughness of a surface. For magnetic material, the equivalent tech-
nique is called Kerr effect.

At higher energy, in the soft x-ray range, reflectivity is a tool to get magnetic
moment and thickness versus depth in a material. The connection with resonant
scattering factor, f (Q,ω), is in this technique effective and, we can write the relation
between the refractive index n and f (Q,ω):

n(Q,ω) = 1− 2πNar0

k2 f (Q,ω) , (90)

with r0 the electron radius, Na the number of atom per volume unit and Q the diffrac-
tion vector. For a magnetic system the scattering factor itself depends, as seen pre-
viously, on a non resonant and a resonant part. The Q dependence of n shows its
angular dependence.

Fig. 10 Real and imaginary
part of the permittivity for
τω1 = 5. At high frequency
corresponding to the x-ray
range, the real part is negative.
The refractive index is thus
less than one.
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6 X-ray spectroscopies

In Sect. 4, we have seen the case of the interaction of a photon with an electron
making a transition between two levels. It is implied that the electron is in some
atom. In this section we focus now on the x-ray spectroscopies. The corresponding
energies make that the transition is necessarily between a core level and some other
free level above the Fermi energy (or above the highest molecular occupied orbital
to adopt the chemistry terminology).

The series of ionization edges follows the series of the atomic levels. They are
thus labeled with the letter K, L, M, N, O according to the first atomic quantum
number, n = 1, 2, 3, 4 and 5. The atomic levels are also split according to the second
quantum number � and to the third one j = |�+ s|, where s = ± 1

2 is the spin. All
these sub levels are labeled using the subscripts I, II, III, IV , V as is shown in
Table 2.

Table 2 Correspondance between the edge names and the quantum numbers of the core states.
The two last columns give the corresponding spectroscopic name and the number of electron.

Edge � j spectro numb. of states

K, LI , MI , NI , OI 0 1/2 s1/2 2
LII , MII , NII , OII 1 1/2 p1/2 2
LIII , MIII , NIII , OIII 1 3/2 p3/2 4
MIV , NIV , OIV 2 3/2 d3/2 4
MV , NV , OV 2 5/2 d5/2 6

The expression of the core level wave functions corresponding to the K, L II and
LIII edges was given in Sect. 4.6.2. The energy of the edges follows the order of
the atomic levels, K being the most energetic, then comes L I , LII , LIII , MI , MII ,
MIII , MIV , MV and so on. They spread from 13.6 eV for the K-edge of Hydrogen
(defining the Rydberg unit) up to 115606 eV for the K-edge of Uranium. The K
edges of the light elements and the LII,III edges of the 3d elements are in the soft
x-ray energy range.

In fact, the atom is embedded in a molecule or in a solid and most often, the
arrival states for the photo electron cannot be considered as completely localized.
The description is very different depending upon the localization of the arrival lev-
els (atom-like or band-like). For the moment we remain with a final (or intermediate
state) at least partially non localized and thus with some hybridization with the en-
vironment. The probability of transition depends on the transition matrix seen in
Sect. 4 which itself depends on the final states. X-ray spectroscopies are thus neces-
sarily a direct probe of the density of states, or at least its projection on the absorbing
atom. This density of states depends on the position of the neighborhood atoms and
thus absorption spectroscopies are also indirectly a probe of the geometrical sur-
rounding (inter atomic distances and symmetry).
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The transition can be observed by different detection modes. One can simply
measure the absorption rate, that is the damping of the x-ray beam through a sam-
ple. This is the most frequent measurement of x-ray absorption fine structure spec-
tra for samples in powder. For mono crystalline samples, or for surface sensitive
measurements, fluorescence or secondary electron emission measurements, can be
preferred. They are in principal nearly proportional to the transition process, but
for practical purposes, strong divergence can be observed. One of the main reason
comes from the self-absorption process.

Irrespective of the detection mode, X-ray absorption spectroscopies are local
spectroscopies. They are selective on the chemical specie because of the position
of the edge energy as well as on the second and third quantum numbers of the final
states. However the processes involved are complex. There is no a single transi-
tion of one electron from one level to another level. The scheme is more complex
because during this transition, all the other electrons would have to be included in
the process. The photo electron probes final states which see a core-hole. When the
interaction with the hole is too strong, it must be taken into account within a multi-
electronic scheme. The other electrons tend also to screen the core-hole. In any case,
the probed density of states is not the ground density of states but an excited one.

6.1 Characteristic times

The main aspect in the interaction of light with matter, at least in the domain exposed
here, is the absorption of a photon induced by a transition of a core (for the x-
ray energy) electron up to some higher level. The transition process of this single
electron comes thus with a complete reorganization of the multi-electronic (and
vibrating ...) configuration. The limit of validity of the mono electronic approach can
be understood looking the different characteristic times in the absorption process:

• Time of process absorption of the photon. It is given by t1 = 1/Wf g where Wf g is
the transition probability. We have t1 < 10−20 s.

• Lifetime of the core-hole. It is given by t2 = h̄/ΔEg where ΔEg is the core level
width. For the 1s level for Z = 20 up tp Z = 30, ΔEg ≈ 1eV and t2 spreads from
10−15 down to 10−16 s.

• Relaxation time of the electrons. It is the effect on all the electrons of the field
created by the hole and the photo electron. There are many kinds of process. It
is intrinsically multi-electronic. The associated time also ranges from t3 ≈ 10−15

down to to 10−16 s.
• Transit time of the photo electron outward from the atom. It depends on the photo

electron kinetic energy. For Ec = 1 up to 100 eV, t4 spreads from around 10−15

down to 10−17 s.
• Thermal vibration. The time scale associated to the thermal displacements ex-

tends from about 10−11 down to 10−14 s.
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We see that the thermal time scale is far larger that the other ones, thus in most
cases the thermal aspect can be seen as independent of the other phenomena. For this
adiabatic approximation, it is often said that the photon sees a rigid but slightly dis-
ordered arrangement of atoms. Nevertheless in the smooth x-ray range, for example
at the K-edge of carbon in small molecules, the orders of vibration can sometimes be
observed. Nevertheless the usual energy range for this kind of observation remains
the infra-red.

More interestingly, it can be noted that t2, t3 and t4 can be of the same order. It is
the condition to have multi-electronic processes involved. For this, the first condition
is that the photo electron has a very low kinetic energy. The second condition, as
stated above, is that the final state is localized. We know that it is typically the case
of the LII,III edges of the 3d elements and even more of the M IV,V edges of the 4 f
elements. Nevertheless, there is an experimental way to check when it is the case.
One just has to look at the edge shape. When the edge is more or less step-like,
the final states are not localized. It is the case of the K edges (but for some light
elements when the electron probes bounded unoccupied molecular orbital), and at
the LII,III edges of the heavy elements. On the contrary the edge shape can be more
or less peak-like, that is that some eV after the usual increase, the absorption cross-
section completely decreases, to go back to nearly zero. This means that the probed
states are localized in energy as well as in space. In the first case the simulation of
such spectra can be performed using mono-electronic simulations. The difficulties
is that, the state being not localized, the electronic structure must be evaluated in
a sufficiently large volume around the absorbing atom. In the second case, multi-
electronic calculations are necessary. When the localization is very high, atomic
multi-configuration calculations where the surrounding symmetry breaking is just
parametrized, is often sufficient. It is the domain of multiplet theory. Unfortunately it
exists intermediate situations, where the edge starts with a high peak, the absorption
cross-section then decreases rather strongly but does not completely vanish after the
edge. In these cases, multi-electronic and multi-atomic calculations are mandatory.
The theories that account for this multi-processes are actually in progress. There are
three main tracks. The first uses a multi-channel approach [30], the second uses the
Bethe-Salpeter equation [44] and the third the time-dependent density functional
theory (TDDFT) [33, 2].

6.2 The different spectroscopies

We treat the spectroscopies related to the transition of a core level up to some excited
level. We recall that this transition which induces a photon absorption can be real or
virtual.
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Real absorption

X-ray absorption spectroscopy (XAS) is the general name for the techniques mea-
suring in some way the photon absorption. A distinction is first made according
to the energy range of study. In the wide range from around 50 eV after the edge
up to several hundredth (or even some thousands) of eV, the spectroscopy is called
EXAFS for extended x-ray absorption fine structure. This spectroscopy is specially
sensitive to the radial distances of the different shells of neighboring atoms (2 shells,
sometimes more) around the absorbing atom. It also gives the number of atoms by
shell albeit with less precision, because this parameter is correlated with the thermal
disorder. The data analysis is performed by comparison with simulations where the
calculated spectra is built by simple superposition of outgoing and backscattered
electron waves by the different shells. It is the interference phenomena on the ab-
sorbing atom which depends on the shell distances from the central atom, and on
the photo electron energy which is responsible of the oscillating aspect of the spec-
tra [32] and thus of the sensitivity of the method. Actual analyzes go farther than the
single scattering process by considering a multiple scattering phenomena limited to
some paths between the atoms.

At low kinetic energy of the photo electron, that is from the rising edge up to
around 100 eV, the absorption spectroscopy is called XANES for X-ray absorption
near edge spectroscopy. This spectroscopy is sensitive to the three-dimensional as-
pect of the geometry around the absorbing atom. As stated above, it is also directly
sensitive to the electronic structure around the absorbing atom.

In the XANES energy range, analysis as a function of the polarization are often
done. Using a single crystal of a media with some preferential arrangement, as on
a surface, one can perform study with different orientations of the samples. When
the incoming electromagnetic wave field is linearly polarized, the corresponding
spectroscopy is called linear dichroism. When it is circularly polarized, one usu-
ally makes measurements under right and left polarizations and one computes the
difference (Fig. 5). This technique is specially useful to study ferro or ferri mag-
netic systems (in antiferro it gives no intensity!). It is called x-ray magnetic circular
dichroism (XMCD). Without magnetism this technique also exists for peculiar sym-
metry of material. It gives small but detectable signal. It is called natural circular
dichroism. More recently a new technique has surged with the time analysis of the
rotation of orbitals under magnetic field. It is called x-ray detected magnetic reso-
nance (XDMR).

From the absorption techniques, one derives many other techniques as x-ray
photo electron spectroscopy (XPS) or with angular resolution on the emitted electron
photodiffraction. At lower energy and with a better resolution it is called angular
resolved photo electron spectroscopy (ARPES)[9]. The latter is specially adapted
to study tiny details in the band structure and is actually extensively used for the
analysis of supra conducting materials.

It can be noted that an equivalent spectroscopy is performed in the electronic
microscope. It is the electron energy loss spectroscopy (EELS) where the incoming
photons are replaced by an incoming energetic electron beam. The measured spec-
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tra are very similar (but with a slightly less good resolution) to the ones obtained
at synchrotron. The main dipolar contribution is equivalent. The smaller quadrupo-
lar one obtained when increasing the electron scattering angle is different. Recent
studies claim for Angstrom lateral resolution thanks to the Angstrom-size electron
beam.

Virtual absorption

When the transition is virtual, or as is more usually said, for resonant scattering
process, different spectroscopies are used. In the context of elastic scattering in
diffraction mode, a distinction is done according to the energy range, as in the
XAS case. The equivalent to EXAFS is called diffraction anomalous fine struc-
ture spectroscopy (DAFS). The diffraction peaks are then measured along a wide
energy range. On the contrary, when measuring spectra just around the edge (as in
XANES), the DAFS is called diffraction anomalous near edge structure (DANES)
or resonant x-ray spectroscopy (RXS) or resonant x-ray diffraction (RXD). There
is a third technique where the intensity of the reflections is recorded only at some
points in energy around the edge. This is a way to increase the sensitivity of the
diffraction technique on some specific atoms (corresponding to the energy edge).
This technique is called multi-wavelength anomalous diffraction (MAD). It is often
used in complex material and specially in biology to help with the structure resolu-
tion.

6.3 Fluorescence and Auger

Two spectroscopies are a direct consequence of the photoelectric effect. Due to the
expulsion of the electron from its atomic level, a hole remains in the atom. The atom
is thus excited and two main concurrent channels can put back the atom in a less
excited state. Both channels result from the transition of a second electron down
to the level let free (Fig. 11). The resulting energy from this new transition can be
directly emitted through a photon of energy E 1 - E2 or through a third electron of the
atom (at level E3) keeping the kinetic energy E1 - E2 - E3. Both effects give typical
signature of the material by the energy of their appearance and sometimes by the
shape of the resulting spectra. The first gives the x-ray emission spectroscopy (XPS)
or UPS in the ultra-violet regime, the second, gives the Auger electron spectroscopy
(AES). 3 The relative effect of both phenomena depends on the atomic number of
the element. Below Z = 32, the Auger emission dominates. At higher value, it is
the X-ray emission which is dominating. Note also that due to the difference in the
detectable particle, the electron having a far less mean free path, the Auger technique

3 Note that the first core hole can in the same way be created by an incident energetic electron and
not a photon.
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is mainly surface sensitive and indeed it is one of the most popular technique to
check the purity of a surface.

E2 

E1 

E3 

ω

E 

Fig. 11 The two channels for the desexcitation of an atom when a hole is left after the transition
of a core electron. In the left panel, the transition of a secondary electron from level E2 down to
the E1 core level gives directly a photon of energy E1 - E2. In the Auger effect, right panel, the
corresponding energy is given to a third electron which keeps the kinetic energy E1 - E2 - E3.

6.4 XANES and RXS Formula

The initial and final states must contain all the electrons of the system and one would
have to calculate matrix terms of the form:〈

Φ f (r1,r2,r3, ...) |ô|Φg (r1,r2,r3, ...)
〉

(91)

where r1, r2, r3 ... are the positions of the different electrons and Φ the multi-
electronic states. Such a general formulation is developed in the Ligand Field Mul-
tiplet scheme. All the possible transitions from all the multi-electronic states up to
all the multi-electronic final states are then sum up. They occur at different ener-
gies, each one with an amplitude related to the multiplicity of the states. The comb
figure is then convoluted to get spectra to be compared with the experimental data.
In the mono electronic approach we write Φ (r1,r2,r3, ...) = ϕ1(r1)ϕ2(r2)ϕ3(r3)....
One also supposes that there is a specific electron which makes the transition, the
others being spectators. The different states are seen through a continuum and with
a density of states that can be calculated. In this condition the general formula seen
in Sect. 4 still apply. The effect of the other electrons is then a simple multiplicative
factor :

S0 = ∏
i=2,N

〈
ϕ f

i (ri) |ϕg
i (ri)

〉
. (92)

S0 is typically of the order of 0.8 and is supposed to be energy independent. It
comes from the fact that the core hole screening induces a contraction of the final
state atomic orbitals resulting in the scalar product less than 1. The screening also
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makes the energies of the other atomic levels change so that in the transition one
has:

h̄ω ∼= E f −Eg = Ef −Eg + ΔEa , (93)

where ΔEa is the sum of the differences between the initial and final energies of the
other electrons. This fact is mostly often forgotten and ΔEa is not written. Never-
theless it can represent several hundredth of eV in typical K edges.

With this simplification we can use the matrix product which appears in both
absorption (eq. 26) and RXS (eq. 43) formulas:

A = ∑
f ,g

〈
ϕg |ô∗s |ϕ f

〉〈
ϕ f |ôi|ϕg

〉
. (94)

In the absorption cross-section case one just has to impose ô s = ôi. Using moreover
the eq. 72 in the Sect. 4.6 on the selection rules which express the transition matrix
in terms of the radial and angular integrals and of the atomic amplitudes, one gets:

A = ∑
oi,os

c�oi ,moi
c�os ,mos ∑

σ ,g
∑

�,m,�′,m′
Γ �g,mg+ 1

2−σ ,�oi ,moi

�,m+ 1
2−σ

Γ �g,m′
g+ 1

2−σ ,�os ,mos

�,m′+ 1
2−σ

(95)

× ∑
s,s′

R
g,�oi ,σ
�,m+ 1

2−σ ,s
(E)Rg,�os ,σ

�,m+ 1
2−σ ,s′ (E)∑

f

a f
�,m,sa

f∗
�′,m′,s′ .

where we omit the index f on the energy because in this summation, they all have
the same value.

When using the monoelectronic approximation, the density of states does not
appear explicitly in the formula because it is included in the atomic amplitudes
and in the normalization of the radial wave functions. This one is built by conti-
nuity with an outer sphere where the potential is constant. The solutions are there,
the Bessel and Hankel functions normalized by the density of states in vacuum,
that is by

√
k/π where k is the photo-electron wave-vector. One thus gets the nor-

malized radial solutions b̄� (E,r) instead of the b� (E,r) which are normalized to
one. In the same way one gets R̄ instead of R. Thus one replaces in the formulas〈
ϕg |ô∗s |ϕ f

〉〈
ϕ f |ôi|ϕg

〉
ρ (E) by 1

π
〈
ϕg |ô∗s | ϕ̄ f

〉〈
ϕ̄ f |ôi|ϕg

〉
.

In many cases this expression can be simplified. For example when quadrupole
transitions are negligible as in the LII,III edges of 3d elements, the summation on
the operators often reduces to one element. In the absorption case where ô s = ôi we
can write:

σ = 4π2α h̄ωc2
�o,mo ∑

σ ,g
∑

�,m,s

(
Γ �g,mg+ 1

2−σ ,�o,mo

�,m+ 1
2−σ

R̄
g,�oi ,σ
�,m+ 1

2−σ ,s
(E)
)2

(96)

× 1
π ∑

f

∣∣∣a f
�,m,s (E)

∣∣∣2 .
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From this equation, one has to introduce a broadening due to the core-hole and fi-
nal state life times to get a signal equivalent to the measured one. This is achieved by
convoluting eq. 97 by a Lorentzian with an increasing width in energy. At the Fermi
energy, it is typically the initial state width. At higher energy, plasmons and other
phenomena contributes also to the damping. Often the width follows an arctangent-
like function versus the photo electron kinetic energy. Note that new measurements
improve the resolution by selecting sub-channel using the fluorescence detection.
This limit the hole width to smaller value.

For the RXS, the infinitely small η in eq. 43 is replaced by a finite value equiva-
lent to the width broadening in absorption. The summation on the intermediate states
n can be made in two steps. We first group, as in XANES, the states of same energy
(we shall call them now f of energy E, to be homogeneous with the XANES for-
mula), that we still sum in a discrete form. The sum over the states of different ener-
gies is performed in a second step through an integral spreading from the Fermi level
up to infinity. In the elastic case where we are supposed to have E−E g +ΔEa

∼= h̄ω
the resonant or anomalous scattering amplitude is given by:

f ′ − i f ′′ ∼= mω2
∫ ∞

EF

1
π ∑ f ,g

〈
ϕg |ô∗s | ϕ̄ f

〉〈
ϕ̄ f |ôi|ϕg

〉
h̄ω − (E −Eg + ΔEa)+ iΓ

2

dE , (97)

where EF is the Fermi energy and Γ is the broadening. Note the minus sign in front
of the imaginary part of the scattering amplitude to get the conventional way where
f ′ is negative and f ′′ positive4. When the incoming and outgoing polarizations are
parallel, the absorption cross-section is nearly proportional to h̄ω × f ′′.

The RXS and XANES formula we have derived stand for an atom embedded in
some surrounding. In fact the absorption or scattering comes from all the atoms in
the molecule or in the unit cell. Thus one has to sum over them eventually using the
symmetry operations of the space group. For the XANES this gives:

σcell =
N

∑
a=1

σa =
Ne

∑
a=1

na

∑
b=1

Sb (σa) , (98)

where N is the number of atom, b is the index of the na equivalent atoms related
by the symmetry operation Sb to the prototypical atom a. Ne is the number of non
equivalent atoms. We see in this way that the tensor dependence (or anisotropy) of
the absorption cross-section depends not on the individual point group but on that
of the unit cell. On the contrary, the shape of the spectra is related to the individual
surroundings and symmetries.

For RXS, one uses the same summation but now taking into account the Bragg
factors and the non resonant contributions. The intensity for a diffraction peak of
diffraction wave vector Q is then given by:

4 This sign as well as the plus sign in the exponent of the Bragg factor of eq. 38 and eq. 99
comes from a different convention in the time arrow between the crystallograph community and
the theorists of quantum mechanics.
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I =
K
V 2

∣∣∣∣∣ Ne

∑
a=1

na

∑
b=1

Sb

(
eiQ·Ra

(
f0a + i fma + f ′a (ω)+ i f ′′a (ω)

))∣∣∣∣∣
2

, (99)

where we have the non resonant Thomson f 0a and non resonant magnetic scattering
amplitude fma of the atom a and the resonant terms f ′a and f ′′a . The latter terms
contain the eventual magnetic resonant contribution, sometimes written in separate
terms. In the formula K is a constant, V the volume of the unit cell and R a the
position of the atom a.

In this context, during the last years there has been a strong interest in the so-
called forbidden reflections which are nearly zero far from the absorption edges but
with sharp intensity around the edge (as in the example of Fig. 6). These reflections
are such that the sum of the Bragg terms are zero, and the intensity can be nearly
proportional to | fa − fb|2 where a and b are the two atoms possibly related by a
symmetry operation (a rotation-translation or a glide plane). Thus the isotropic con-
tributions disappear and one remains with the anisotropic ones giving the so-called
Templeton effect [45]. Very weak peaks often come from a slight symmetry break-
ing, thus they are, let say, nearly forbidden. These reflections can give information
on the change occurring during the transition between two previously equivalent
atoms. In XANES one measures always a sum (and no f ′ neither). It is clear that
the sensitivity is enhanced when measuring a difference. It is what has been used in
the study of charge ordering in different compound as magnetite [38].

In Fig. 12 typical resonant scattering amplitudes for isolated atoms and for iron
atoms in magnetite are shown. The relative amplitude of these terms with the Thom-
son scattering amplitude (which is typically equal to the atomic number) shows the
importance of the anomalous effect around the absorption edge. The effect of the
surrounding atoms is shown when comparing the atomic and the atom embedded in
real structure spectra. For magnetite there are two different iron sites, one in octahe-
dral environment, the other in tetrahedral environment. They have also very different
shapes. Note also that their f ′′ is typical of the XANES spectra shapes.

Relation with the density of states

With the same notation, but without spin for simplicity, the density of states (or its
projection on the atom) is given by:

ρ�′,m′
�,m (r,E) =

∣∣∣∣∣∑f

a f
�,m (E)a f∗

�′,m′ (E) b̄� (r,E) b̄∗�′ (r,E)

∣∣∣∣∣ . (100)

One can integrate the radial part up to the atom radius and we get:

n�′,m′
�,m (r,E) =

∣∣∣∣∣∑f

a f
�,m (E)a f∗

�′,m′ (E)

∣∣∣∣∣R�,�′ (E) , (101)

where R�,�′ (E) is the radial integral:



Interaction Matter-Polarized Light 35

-8

-6

-4

-2

0

2

4

6

7.10 7.12 7.14 7.16 7.18 7.20

Photon energy (keV)

Octahedral iron

f'

f''

-8

-6

-4

-2

0

2

4

6

7.10 7.12 7.14 7.16 7.18 7.20A
no

m
al

ou
s 

sc
at

te
rin

g 
am

pl
itu

de
(n

br
 o

f e
le

c.
)

Photon energy (keV)

f''

f'

Tetrahedral iron

-15

-10

-5

0

5

5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7
Photon energy (KeV)

V

C

Fe

E - 1.6 keV

E + 5.1 k eV

f"

f'

A
no

m
al

ou
s 

sc
at

te
rin

g 
am

pl
itu

de
 (

nb
r.

 o
f e

le
c.

)

Fig. 12 Anomalous scattering amplitudes. Top: atomic spectra for carbon, vanadium and iron
atoms. Bottom spectra for the iron atom in its octahedral and tetrahedral sites in magnetite at
room temperature. The imaginary parts, f ′′, of the amplitudes have shapes similar to the XANES.
The spectra are calculated using the FDMNES code [29].

R�,�′ (E) =
∫ R

0

∣∣b̄� (r,E) b̄∗�′ (r,E)4πr2dr
∣∣ . (102)

The diagonal term is the number of electron per unit of energy in the atom:

n�,m (E) = ∑
f

∣∣∣a f
�,m (E)

∣∣∣2 R�,� (E) . (103)

The formulas for the absorption cross-section and for RXS contain the same
a f

�,m (E)a f∗
�′,m′ (E) terms than in the density of states formula. The difference is in

the radial integral and other constant parameters. We thus see that the expressions
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are nearly proportional in most cases, except for the radial part which depends only
slightly on energy. Note also, that the proportionality coefficient is different for
dipole and quadrupole transitions, the dipole one being far stronger. From all this
we can confirm that the absorption spectroscopy are measurements of the projection
of the density of states on the absorbing atoms. Due to the selection rules, it is even
a peculiar projection of the density of states, resolved in � and eventually also in
m, which is measured. When playing with the polarization and sometimes with the
magnetic field, more selective processes can be taken into account. A good example
is the measurement of circular magnetic dichroism. What is measured is then the
magnetic momentum as is seen in the Sect. 6.6.

6.5 Multipole analysis

We have seen in the previous section that we have access to specific projection of the
density of states. The access to a particular component can be obtained by playing
with the polarization and taking into account the symmetry of the material. Depend-
ing on this symmetry, the different terms can be zero or not zero. The consequence is
that the measurement under specific conditions can give information on the symme-
try, including the magnetic state of the material. The mathematical tools, cartesian
and spherical tensor algebra, which permits to make a complete analysis of these
terms are seen in the following5.

6.5.1 Cartesian tensors

We have seen that the matrix elements can be expanded into dipole and quadrupole
components : 〈

ϕ̄ f |ôi|ϕg
〉

= Df
i + i

k
2

Qf
i + . . . . (104)

The signal amplitude can thus be written as:

〈
ϕg |ô∗s | ϕ̄ f

〉〈
ϕ̄ f |ôi|ϕg

〉∼= Df∗
s D f

i + i
k
2

(
Df∗

s Q f
i −Qf∗

s D f
i

)
+

k2

4
Qf∗

s Q f
i . (105)

We can then introduce three cartesian tensors. The dipole-dipole or E1-E1 rank
2 tensor:

Dαβ = ∑
f ,g

〈
ϕg |rα | ϕ̄ f

〉〈
ϕ̄ f
∣∣rβ
∣∣ϕg
〉

, (106)

where rα and rβ represent x, y or z.
In the same way we get the dipole-quadrupole or E1-E2 rank 3 tensor and the

quadrupole-quadrupole or E2-E2 rank 4 tensor:

5 Using other tools, Ch. Brouder gives, in a very useful paper[10], the relation between the angular
dependence of the absorption cross-section and the punctual group of the studied system
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Iαβ γ = ∑
f ,g

〈
ϕg
∣∣rαrβ

∣∣ ϕ̄ f
〉〈

ϕ̄ f
∣∣rγ
∣∣ϕg
〉

, (107)

Qαβ γ = ∑
f ,g

〈
ϕg
∣∣rαrβ

∣∣ ϕ̄ f
〉〈

ϕ̄ f
∣∣rγ rδ

∣∣ϕg
〉

. (108)

where α , β , γ and δ label the three directions of space in Cartesian coordinates.
With this, the signal amplitude (but the multiplicative factor in the absorption

cross-section and the denominator in RXS) is given by:

A = ∑
α ,β

εs∗
α ε i

β Dαβ + i
k
2 ∑

α ,β ,γ
εs∗

α ε i
β

(
ui

γ Iαβ γ −us
γI∗αβ γ

)
+

k2

4 ∑
α ,β ,γ,δ

εs∗
α ε i

β us
γui

δ Qαβ γδ .

(109)
To fix the idea the E1-E1 amplitude is given by:

AE1E1 =
(
εs∗

x ,εs∗
y ,εs∗

z

)⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠⎛⎝ ε i
x

ε i
y

ε i
z

⎞⎠ . (110)

The matrix is hermitic (Dαβ = D∗
β α) and off-diagonal elements are complex when

the material is magnetic. For example, the Dxx term is proportional to the absorption
cross-section when the polarization is along x.

The E1-E2 terms can be observed only for peculiar symmetry. We can remark
that, for a same final state f , one has a product of a dipole and a quadrupole term.
Due to the different selection rules (Δ� odd for the first and Δ� even for the second),
this means that f must have at the same times odd and even components. In other
words f must be an hybridized state between odd and even components. This is
possible only when the atom is not at a center of symmetry. In absorption, because
of the sum on the equivalent atoms, it is sufficient to have a center of symmetry
anywhere (and not necessarily on the atom) to make the E1-E2 signal zero. In RXS,
on the contrary, for some reflections such that the Bragg factor is opposite on two
equivalent atoms related by inversion, the signal can be observed only for the E1-E2
term, the E1-E1 and E2-E2 contributions being zero. When there is no center of
symmetry, the signal can also be observed using the natural circular dichroism [37,
24]. The subtraction between the spectra obtained with the left and right polarized
light eliminates the E1-E1 and E2-E2 contributions as in the diffraction technique
given above. In his chapter, A. Rogalev develops examples of optical activities using
the E1-E2 process (see also Ref. [42]).

6.5.2 Spherical tensors

The use of cartesian tensor is rather natural. Nevertheless the spherical tensors are
often preferred. The reason is that their components can be related with specific
observable values as for example, the orbital occupancy, the magnetic moment or
the toroidal moment. These tensors are also separated in the E1-E1, E1-E2 and E2-
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E2 contributions. The amplitude can be written as:

A = ∑
0≤�≤2

−�≤m≤�

(−1)�+m T m
� Dm

� + i ∑
1≤�≤3

−�≤m≤�

(−1)�+mUm
� Im

� (111)

+ ∑
0≤�≤4

−�≤m≤�

(−1)�+mV m
� Qm

� ,

where Dm
� , Im

� and Qm
� are the components of the absorption-scattering tensors and

T m
� , Um

� and V m
� are the same for the polarization - wave vectors.

All these spherical coefficients are related to the cartesian ones. For example for
the E1-E1 tensor the relations are:

D0
0 =

1√
3

(Dxx +Dyy +Dzz) , D0
1 = − i√

2
(Dxy −Dyx) ,

−
D1

1 = − i√
2

(Dyz −Dzy) ,
+

D1
1=

1√
2

(Dxz −Dzx) ,

D0
2 =

i√
6

(2Dzz −Dxx −Dyy) ,
−
D1

2= − 1√
2

(Dxz +Dzx) ,

+
D1

2 = − i√
2

(Dyz +Dzy) ,
−

D2
2=

i√
2

(Dxy +Dyx) ,

+
D2

2 =
i√
2

(Dxx −Dyy) . (112)

where we have used for all the tensors the transformation:

±
Tm
� =

1√
2

(
Tm
� ±T−m

�

)
, (113)

which gives:

T m
� Dm

� =
+

T m
�

+
Dm

� −
−

T m
�

−
Dm

� . (114)

The � = 1 components are directly proportional to the magnetic moment vector
per unit energy, m:

m =

⎛⎜⎜⎝
−
D1

1

i
+

D1
1

D0
1

⎞⎟⎟⎠ . (115)

where we omitted the proportionality coefficient. To get the polarization spherical
tensor one first writes the polarization in the matrix form :

T =

⎛⎝ εs∗
x ε i

x, εs∗
x ε i

y, εs∗
x ε i

z
εs∗

y ε i
x, εs∗

y ε i
y, εs∗

y ε i
z

εs∗
z ε i

x, εs∗
z ε i

y, εs∗
z ε i

z

⎞⎠ . (116)
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The spherical components of the polarization are then calculated with the same
transformation than in equation 112. For example:

T 0
0 =

1√
3

(
εs∗

x ε i
x + εs∗

y ε i
y + εs∗

z ε i
z

)
=

1√
3

εs · εi ,

T 0
1 = − i√

2

(
εs∗

x ε i
y − εs∗

y ε i
x

)
= − i√

2
(ε∗s × εi)z . (117)

Using all these relations one gets for the E1-E1 signal:

AE1E1 =
1
3

εs ·εiTr (D)− i√
2

(ε∗s × εi)·m+T 0
2 D0

2−
+
T 1

2

+
D1

2 +
−
T 1

2

−
D1

2 +
+
T 2

2

+
D2

2 −
−
T 2

2

−
D2

2 .

(118)
where Tr (D) is the trace of D.

The first term in this equation does not depend on the polarization orientation
in XANES because the scalar product is just one (it is also the case in RXS when
keeping the relative orientation of ε i and εs). It is thus called the electric monopole
component because it probes only the electronic density and not its magnetic part.
It gives the E1-E1 isotropic part of the signal in the absorption cross-section and in
RXS for the σ -σ polarization (there is also an E2-E2 isotropic part). It is the main
contribution in the XANES cross-section. When the final states are rather localized,
one gets the so-called white line at the beginning of the edge. Because the electric
monopole measures the charge of the non occupied states, the surface of this white
line is roughly proportional to the number of hole in the corresponding state of the
atom (for example the 3d state in a L II,III edge). By difference, one thus can get an
idea of the electron occupancy rate in the atom: larger is the white line, less electrons
are in the atom 6.

The second term is strictly magnetic. One sees that it is proportional to the mag-
netic moment through a scalar product with ε ∗

s × εi. It can thus be probed with
circular polarization. The last terms are the electric quadrupole components. They
are, as the first term, purely electric. They measure the anisotropy of the electric
cloud around the absorber and are responsible of the main part of the linear dichro-
ism (see Fig. 4). A smaller part in the pre-edge region can comes from the E2-E2
contribution. Note that the present terms, magnetic dipole and electric quadrupole,
must not be confused with the dipole and quadrupole electric transition E1 and E2.

To illustrate more this, one can have a look on three formal examples following
three different punctual group on the absorbing atom. We use a polarization ε =
εs = εi, that is like in the absorption or in RXS σ -σ .

6 Note that another factor can gives an idea of the atom valence state. It is the energy shift of the
edge. Indeed, when an atom is more oxidized, its electrons tend to leave the atom. Consequently the
potential at the core of the atom decreases and the core level becomes deeper. The incoming photon
needs thus more energy to eject the electron from its core level and the edge is shifted towards
higher energy. This phenomena is stronger at the K edges. Typically 1 electron corresponds to a
shift of several eV.
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m3m symmetry (Oh)

This cubic symmetry is for instance the case of a 3d atom surrounded by a non
distorted octahedron. Let’s put the 6 surrounding atoms at the same distance along
the positive and negative directions of the 3 axis. Due to the symmetry plane per-
pendicular to Ox, Oy and Oz, the off-diagonal components of the E1-E1 Cartesian
tensor are zero, because of the three-fold axis its diagonal elements are equal. The
amplitudes of the signal is in this case:

AE1E1 = ε+

⎛⎝Dzz 0 0
0 Dzz 0
0 0 Dzz

⎞⎠ε =
1
3

ε · εTr (D) = Dzz (119)

The signal amplitude is isotropic. It does not depend on the polarization orientation.

4/mmm symmetry (D4h)

This symmetry can be obtained for instance by a single elongation of the previous
octahedron along the z-axis. There is no more the three-fold axis but a four-fold axis
around z, which makes Dxx = Dyy. One thus gets:

AE1E1 = ε+

⎛⎝Dxx 0 0
0 Dxx 0
0 0 Dzz

⎞⎠ε =
1
3

(2Dxx +Dzz)+
1
3

(Dzz −Dxx)
(

3 |εz|2 −1
)

(120)
When using the spherical coordinates for the linear polarization :

ε =

⎛⎝ sinθ cosφ
sinθ sinφ

cosθ

⎞⎠ , (121)

we see that one gets a polarization orientation dependence equivalent to the harmon-

ics Y 0
2 =

√
5

16π
(
3cos2 θ −1

)
. The signal is not anymore isotropic.

4/m′m′m symmetry

Let us see now a magnetic case with spin-orbit. Starting again from the non dis-
torted octahedron, one supposes a magnetic moment along the z axis on the central
atom. The diagonal three-fold axis are broken as in the previous example. Due to the
magnetic moment, the symmetry planes perpendicular to Ox and Oy are now mul-
tiplied by time reversal, thus one gets the 4/m ′m′m symmetry. The Cartesian tensor
contains now off-diagonal imaginary terms which are proportional to the magnetic
moment per energy unit:
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AE1E1 = ε+

⎛⎝ Dxx iDi
xy 0

−iDi
xy Dxx 0

0 0 Dzz

⎞⎠ε (122)

=
1
3

(2Dxx +Dzz)− i√
2

ε∗ × ε ·m+
1
3

(Dzz −Dxx)
(

3 |εz|2 −1
)

.

We get a new magnetic term. This one can be directly measured with x-ray circular
dichroism, using the polarizations:

ε =
1√
2

⎛⎝ 1
±i
0

⎞⎠ , (123)

such that:
A+

E1E1 −A−
E1E1 = Di

xy = mz . (124)

For linear polarization one gets the same angular dependence than with the 4/mmm
symmetry but probably with a smaller amplitude. This term reveals a non spherical
electric cloud. It is not magnetic. Nevertheless it is present even without elongation
of the z axis. Its presence comes from the spin-orbit coupling which makes that the
orbital electric cloud tends to align along the spin direction. It can then be said that,
though electric, it is an indirect signature of the magnetic moment. Note that when
there is also an elongation along z, this anisotropy reveals both phenomena together.
All this means that such a linear measurement cannot be considered as a proof of a
magnetization. One really needs circular polarization.

The expansion in spherical tensors can be performed also for the E1-E2 and E2-
E2 terms. All the components have a peculiar physical significance. They are clas-
sified in Table 3. The different terms change in sign with time reversal when they
are magnetic and with inversion when they are E1-E2. This allows peculiar mea-
surements on specific reflections or/and with peculiar polarization conditions. Time
reversal can be obtained when inverting a magnetic field making one measurement
with one way and another one in the other way. The different contributions can be
often measured separately playing with the incoming (and outgoing in RXS) polar-
izations, the choice of the reflections in RXS, the way of the magnetic field and the
orientation of the sample.

To finish this part we recall that the magnetic dipole transition M1 term can also
exist. Thus one can get M1-M1 or E1-M1 components. These ones are neverthe-
less necessary very small when not zero. In the x-ray range definite proof of their
measurement remains to be done.

6.6 X-ray magnetic circular dichroism

When making the difference between spectra recorded with left and right circular
polarization one measures the circular dichroism. In the x-ray range and applied
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Table 3 List of the spherical tensor components with some of their physical significance. The
couple of signs ++, +−, −+ and −− gives the change in sign under time reversal for the first
and inversion for the second. The magnetic terms are odd by time reversal. The E1-E2 components
are odd by inversion. The electric monopole term measures the charge density ch�+1 in E1-E1
and a part of it ch�+2 for E2-E2. The magnetic dipole terms measure the moment density m�+1 in
E1-E1 and a part of it m�+2 for E2-E2. The magnetic dipole E1-E2 measures the toroidal moment
(or anapole) t. The electric quadrupole E1-E2 measures the toroidal axis (t,m). Other components
measure higher order of electric charges or magnetic moments.

� E1-E1 E1-E2 elec. E1-E2 magn. E2-E2

0 monopole ++ ch�+1 ++ ≈ ch�+2
1 dipole −+ m�+1 +− n −− t −+ ≈ m�+2
2 quadrupole ++ +− (t,m) −− (n,m) ++
3 octupole +− (n,m,m) −− (t,m,m) −+
4 hexadecapole ++

on magnetic material, this technique is called x-ray magnetic circular dichroism
(XMCD). We have already seen in the previous chapter, that is is a way to measure
the magnetic moment on the atoms. Let us see a bit more in detail how the measure-
ments can give a quantitative evaluation of these parameters. We shall also see that
using sum rules one can in many cases separate the angular and the spin momen-
tum. The x-ray sum rules were derived at the beginning of the 90s by Thole, Carra
and coworkers [46, 13] from magneto-optics sum rules. Numerous experimental and
theoretical studies were aimed at investigating their validity for itinerant magnetic
systems. The adequacy of the sum rules varied from very good to poor. It is with
the experimental work of Chen [14] with a special care on the experimental artifacts
that their validity were proved.

For the LII,III edges of the 3d elements, we can use the simplified equation 97
because the quadrupolar transition is negligible. We choose polarizations such that:

ε · r =

√
4π
3

rY±1
1 , (125)

using the complex harmonics and with m = ±1 for the left and right circular po-
larized light. There are 4 initial states in the p3/2 configuration corresponding to
the LIII edge and only 2 for the p1/2 configuration corresponding to the L II edge7.
From the different values of the Gaunt coefficients for the L II and LIII edges and
from the different values of the Gσ

g in the equations 66 and 67, we can show that
the transition probability for the XMCD is not the same for the orbital and spin part
in LII and LIII .

We use also the fact that the 3d are rather localized. This means that they spread
in a small energy range and thus integration in an energy range containing all the

7 The relative number of state (and so of electron) in the initial state, gives the often observed ratio
2 between both edges. Note also that the ratio is exactly equal to 2 when there is no multi-electronic
effect and no spin-orbit in the final state. Getting the good branching ratio is one of the challenges
for the multi-electronic theories
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empty 3d states is possible. When measuring the absorption cross-section, whatever
is the polarization, one probes the unoccupied states. The idea is that by integration,
one measures the number of free states in electron unit, the occupied states being
given by the difference with the total number of electrons per atom in a 3d band, that
is 10. The difficulties is that the states spread in the continuum. The photo electron
mainly probes the 3d states but also all the 4d, 5d, 6d and so on. Because we are
in the continuum, n is not anymore a good quantum number and the n > 3 (and the
s states) must be considered as a continuous background. Thus, before making the
integration, a double step like function, with each height equal to the absorption after
each white line, is subtracted. For practical purposes, the integrations are performed
on an range extending typically from 20 eV before the L III edge up to 40 eV after
the LII edge.

From all this, one gets 2 equations for the two unknowns. The normalization is
performed with the absorption edge which is, as we know, a measurement of the
density of states. At the end one gets the sum rules:

morb = − 4
3N

(10−n3d)
∫

LII+LIII

(
σ+−σ−)dE , (126)

mspin = − 2
N

(10−n3d)
(

1+
7〈Tz〉
2〈Sz〉

)−1

(127)

×
(

3
∫

LIII

(
σ+ −σ−)dE −2

∫
LII+LIII

(
σ+−σ−)dE

)
with the normalization :

N =
∫

LII+LIII

(
σ+ + σ−)dE (128)

where morb and mspin are respectively the orbital and spin magnetic moments in unit
of μb/atom. n3d is the 3d electron occupation number of the specific transition metal
atom. The LII and LIII denote the integration range. 〈Tz〉 is the expectation value
of the magnetic dipole operator and 〈Sz〉 is equal to mspin in Rydberg atomic units.
The ratio 〈Tz〉/〈Sz〉 can be estimated by first principal calculation but for practical
purposes, it is only some percents and thus this term can often be neglected. On the
contrary one has to make an estimation for n3d . These sum rules are sufficient to
extract, experimentally, the morb and mspin values.

7 Mono electronic simulations

As stated above simulations can be very helpful in the interpretation of the experi-
ments. Moreover, in order to quantitatively access to parameters such as atom posi-
tions, charges or magnetic moments, they can be absolutely necessary. We have seen
that in some cases ligand field multiplet theory is necessary. This point is developed
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by F. de Groot in another chapter. Here we focus on the mono electronic simula-
tions. They often gives satisfactory results for the K-edges and the L II,III edges of
heavy elements.

The mono electronic simulations uses the local (spin) density approximation
(L(S)DA) of the density functional theory (DFT). There are two groups of calcu-
lation method: the one solving the Schrödinger (or Dyson, or Dirac) equation in a
cluster centered around the absorbing atom and the one, usually derived from band
structure calculations, using the 3D periodicity of the material. The calculations can
also be performed with or without self-consistency.

Whatever the method is, the first thing we need is a potential. It is seen briefly
in the next section. About the different methods of calculation (Linear augmented
plane wave (LAPW) [5], tight-banding, linear combination of atomic orbital (LCAO),
pseudo-potential [12], linear muffin-tin orbital (LMTO), KKR [22], finite differ-
ence...) the most used for practical purposes is the multiple scattering theory (MST)
that is discussed a bit more in Sect. 7.2. At the end, a table shows the different codes
available.

7.1 The potential

It is often said that all the methods are equivalent, at the end. Although it might be
true, in fact, they give different results... This is due to the fact that, inside each
method, approximations are done. Expansion in spherical harmonic or in plane
waves are limited, there are interpolations in the building of the potential, calcu-
lations are in single or double precision, but in particular, there are the potential
problems. The first one comes from the approximation done on the potential shape.
The second is related to the choice of the exchange correlation potential.

The multiple scattering theory, as the LMTO, usually makes an approximation on
the potential shape. To have the calculation simpler, the potential is taken as spher-
ically symmetric in the atoms and constant between them, in the interstitial region.
This is the so-called muffin-tin approximation. The radius of the atoms (of the spher-
ical part) is thus a technical difficulty, each code author having its own recipe. Most
often a small overlap is authorized because, pragmatically, this improves the agree-
ment with the experiments. Nevertheless from a mathematical point of view this
trick is not justified. Now, using the finite difference method, pseudo potential or
FLAPW technique for example, it is possible to have free-shape (or full) potential.
The price to pay is that calculations are heavier. Nevertheless when the structures
are sparse, when there are few symmetry elements or when the absorbing atom is
relatively light, important differences are observed due to the muffin-tin approxima-
tion [29]. A recent work has nevertheless shown that the multiple scattering theory,
up to now always using the muffin-tin approximation, can also be applied with a full
potential shape [26].

In the LSDA the exchange-correlation problem is treated with a local potential
which depends only on the local density of electrons (that is, on the point where one



Interaction Matter-Polarized Light 45

calculates the potential). In the magnetic case it depends as well on the local differ-
ence between the spin-up and spin-down density. This one can have different forms.
Presently the most used ones are the Hedin and Lundqvist [27] and the Perdew
and Wang [39]. Globally they give an attractive potential of increasing amplitude
with increasing electron density. For XAS it is important to consider the energy
dependence of this potential, as proposed by Von Bart and Hedin [48]. Indeed the
amplitude of the potential decreases with increasing electron kinetic energy. In a
relatively narrow energy range around the plasmon energy, that is between 10 and
30 eV, this potential changes by several eV. Without considering this phenomena
one gets structures in the spectra shifted by the same amount. Because the position
of the oscillations are related to the inter atomic distances, this could lead to false
agreement with wrong fit of the corresponding parameters.

7.2 The multiple scattering theory

Explain this theory in a single paragraph is difficult. Readers can find detailed de-
scription by Natoli and coworkers [35] or Brouder [11]. There are two ways to
explain it. The first way uses the Green’s function approach, the second uses the
scattering wave approach. Let us use the second one.

First, one considers just one atom. We build a complete basis in the surrounding
vacuum. There, the potential is constant and the solutions of the radial Schrödinger
equation are the Bessel, j�, Neuman and Hankel functions. Using the phase shift
theory one looks how the atom scatters all the Bessel functions. One uses the con-
tinuity of the wave function and its derivative at the border. For simplicity we keep
the non magnetic case, and we can write:

a� (k)b� (k,R)Y m
� =

√
k
π
(

j� (kR)− it�h
+
� (kR)

)
Y m

� , (129)

for the wave function at the muffin-tin radius R. h+
� (r) is the Hankel outgoing func-

tion, t� is the atomic scattering amplitude, b� the solution of the radial Schrödinger
equation in the atom, k the electron wave vector and a � the amplitude inside the
atom. All these terms depend on the kinetic electron energy. We have introduced the

normalization by the density of states in vacuum
√

k
π . By continuity this normaliza-

tion makes that the density of states is included in the atomic amplitudes. Using the
two equations of continuity (function and derivative), one gets a � and t�.

Now the atom is embedded in a cluster. Thus the incoming wave is not anymore
included in a simple Bessel function, but the superposition of this Bessel function
and all the other waves of Hankel type, backscattered by the other atoms. The prob-
lem is thus not anymore spherical, and the scattering and atomic amplitudes will
also depend on the quantum number m (and eventually on the spin index). One has
to consider all the scattering processes from one atom to any other atom. To do
that, one fills a (big) multiple scattering matrix, containing, for all the atoms, all
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their individual expansion in spherical harmonics. Its diagonal contains the atomic
scattering amplitudes. The off-diagonal part contain the propagation terms connect-
ing the scattering from the (�,m) of an atom a, to the (� ′,m′) of another atom a′.
The inversion of this matrix gives the multiple scattering amplitudes, τ �′,m′,a′

�,m,a , by the
relation:

τ�′,m′,a′
�,m,a =

[
1

1−TH
T

]�′,m′,a′

�,m,a
. (130)

T is a diagonal matrix containing the atomic scattering amplitudes. H is the matrix
containing the propagation terms.

Most of the computing time resides in the inversion of this matrix. When we are
not interested in the low photo-electron energy range, it is possible to perform a
Taylor expansion (this is the so-called path expansion):

τ�′,m′,a′
�,m,a

∼=
[
T +THT +(TH)2 T +(TH)3 T + ...

]�′,m′,a′

�,m,a
, (131)

where the number of paths increases with the power of TH. The limitation of this
number is one of the key point in the IFEFfit [28] and GNXAS [18] codes. At the
rising edge it is not possible to perform this path expansion, because terms in the
denominator are bigger than 1 and the series never converge [36].

Using a = a′ and skipping the atom index, the optical theorem gives:

−ℑ
(

τ�′,m′
�,m

)
=

∣∣∣∣∣∑f

a f∗
�,ma f

�′,m′

∣∣∣∣∣ . (132)

when the potential is real. Introducing this in the XANES formula, one gets :

σ = −4πα h̄ω ∑
g

∑
�,m,�′,m′

ℑ
(〈

ϕg |ô∗| b̄�Y
m
�

〉
τ�′,m′
�,m

〈
b̄�′Y

m′
�′ |ô|ϕg

〉)
. (133)

The central term
∣∣b̄�Y m

�

〉
τ�′,m′
�,m

〈
b̄�′Y

m′
�′
∣∣∣ is the Green’s function.

One can do the same for the RXS case. To be more complete, we have written
the equation in the spin-orbit case:

f ′ − i f ′′ = mω2 (134)

× ∑
g,σ

∑
�,m,s

�′,m′,s′

〈
ϕσ

g |o∗s | b̄σ
�,m+ 1

2−σ ,s
Ym

�

〉
τ�′,m′+ 1

2−s′,s′

�,m+ 1
2−s,s

〈
b̄σ

�′,m′+ 1
2−σ ,s′ |oi|ϕσ

g

〉
.

When the potential is complex, the expression contains more terms because the
irregular solutions of the radial Schrödinger equation have to be considered, as well.
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7.3 Available codes

There are a number of codes which permits to perform mono-electronic simulations
of the absorption spectra. We present a probably non exhaustive list of them in Ta-
ble 4. Some use the 3D periodicity of the solid, some others use the cluster approach.
One has first to recall that the first theories are due to Dill and Dehmer in 1974 [19]
and Lee and Pendry in 1975 [31]. The first calculations using a cluster MST ap-
proach are due to Natoli et al. [35] and those using a band structure approach were
first performed by Mattheiss and Dietz [34], both in 1980.

Table 4 Some of the most used mono electronic codes for absorption spectroscopy. Cl and 3D
means respectively cluster and 3D approach, SCF means self-consistent calculation, Fit means
there is a fit procedure with experimental spectra to get parameters. Note that a Feff version used in
the intermediate energy range called IFEFfit [28] and the code GNXAS [18] use the path expansion
in the MST frame and allows a fit procedure to get geometrical parameters. Cabaret et al. uses a
pseudo-potential approach having modified first the PARATEC code and more recently the PWSCF
code.

Authors Name Technique 3D SCF Fit Note and Reference

Natoli CONTINUUM MST Cl [35] The first !
Benfatto MXAN MST Cl X [4]
Rehr et al. FEFF MST Cl X [1] The most used
Joly FDMNES MST & FDM Cl X X [29]
Ebert et al. SPRKKR KKR 3D X [22]
Blaha et al. Wien2k FLAPW 3D X [5]
Cabaret et al. Pseudo 3D X [12]
Saint-Amant et al. StoBe LCAO 3D X [43]
Vedrinskii et al. XKDQ MST Cl [47]
Yaresko et al. Py-LMTO LMTO 3D X [49]

8 Conclusion

We have reviewed the different phenomena governing the x-ray spectroscopies re-
lated to the transition of an electron from a core level up to some other level. The
number of applications of these processes is huge. They permit a precise under-
standing of spectroscopies giving different pieces of information on the materials.
Because the process of transition is complex, the interpretation is not always direct.
Some of them need multiplet calculations as explained by F. de Groot in another
chapter. Some others can use mono electronic simulations as presented here. Some
of the spectroscopic techniques are presented in details in the following chapters of
this book. These are the Inelastic X-ray Scattering by J.-P. Rueff, the X-ray detected
Magnetic Resonance by J. Goulon, A. Rogalev and F. Wilhelm, Resonant X-ray
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Scattering by S. P. Collins and A. Bombardi. A. Rogalev develops also examples of
optical activities.
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Sebilleau for their support and their useful advices.

References

1. A.L. Ankudinov, B. Ravel, J.J. Rehr and S.D. Conradson, Phys. Rev. B 58, 7565 (1998).
http://leonardo.phys.washington.edu/feff/

2. A.L. Ankudinov, A.I. Nesvizhskii, and J.J. Rehr, Phys. Rev. B 67, 115120 (2003).
3. V.V. Balashov in Interaction of Particles and Radiation with Matter, (Springer, Berlin, Hei-

delberg, New York, 1997), p. 136
4. M. Benfatto and S. Della Longa, J. Synchrotron Rad. 8, 1087 (2001).
5. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz in An augmented plane wave +

local orbital program for calculationg crystal properties, (TU WIEN 2001).
6. M. Blume, J. Appl. Phys 57, 3615 (1985).
7. M. Blume, Doon Gibbs, Phys. Rev. B 37, 1779 (1988).
8. M. Blume, in Resonant Anomalous X-ray scattering, edited by G. Materlik, J. Sparks and K.

Fisher (Elsevier, Amsterdam, 1994), p. 495.
9. S.V. Borisenko, A. A. Kordyuk, V. Zabolotnyy, J. Geck, D. Inosov, A. Koitzsch, J. Fink, M.
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