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LARGE-TIME BEHAVIOR OF THE SOLUTIONS TO ROSENAU

TYPE APPROXIMATIONS TO THE HEAT EQUATION

THOMAS REY AND GIUSEPPE TOSCANI

Abstract. In this article we study the large-time behavior of the solution to a general Rosenau
type approximation to the heat equation [16], by showing that the solution to this approximation
approaches the fundamental solution of the heat equation at a sub-optimal rate. The result is valid
in particular for the central differences scheme approximation of the heat equation, a property which
to our knowledge has never been observed before.
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1. Introduction

1.1. Rosenau Regularization of the Chapman-Enskog Expansion. In his seminal work [16],
Rosenau has proposed a regularized version of the Chapman-Enskog expansion of hydrodynamics.
This regularized expansion resembles the usual Navier-Stokes viscosity terms at low wave-numbers,
but unlike the latter, it has the advantage of being a bounded macroscopic approximation to the
linearized collision operator. The model is given by the scalar equation

(1.1)
∂f

∂t
+

∂Ψ(f)

∂v
=

[
−εξ2

1 + ε2m2ξ2
f̂(ξ)

]∨

,

where f̂(ξ) denotes the Fourier transform of f(v), while f(ξ)∨ denotes the inverse Fourier transform.
The operator on the right hand side looks like the usual viscosity term εfvv at low wave-numbers

ξ, while for higher wave numbers it is intended to model a bounded approximation of a linearized
collision operator, thereby avoiding the artificial instabilities that occur when the Chapman-Enskog
expansion for such an operator is truncated after a finite number of terms.
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approximation, non-local model.
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One of the advantages of this regularization is that it is equivalent in small frequencies to the heat
equation (and then regularizes initial data), whereas high frequencies behave as an absorption term.
In particular, information will travel at finite speed, and tools from hyperbolic equations can be used.
Note that the right side of (1.1) can be written as

(1.2)

[
−εξ2

1 + ε2m2ξ2
f̂(ξ)

]∨

=
ε

(εm)2

[
1

1 + ε2m2ξ2
f̂(ξ) − f̂(ξ)

]∨

=
1

mε̄
[Mε̄ ∗ f − f ] ,

where ε̄ = mε, ∗ denotes convolution and

(1.3) Mγ(v) =
1

2γ
e−|v|/γ

is a non-negative function satisfying ‖Mγ‖L1 = 1. In other words, the Rosenau approximation
consists in substituting the linear diffusion equation

(1.4)
∂g

∂t
(v, t) = σ2 ∂2g

∂v2
(v, t)

with the linear kinetic equation

(1.5)
∂g

∂t
(v, t) =

σ2

ε2
[Mε ∗ g(v, t) − g(v, t)]

in which the “Maxwellian” Mε [7] is given by (1.3).
Equation (1.1) has then been studied by S. Schochet and E. Tadmor in [17] in the context of

vanishing viscosity solutions of scalar conservation laws. H. Liu and E. Tadmor then studied in
[13] the Burgers equation with a Rosenau-like nonlocal viscosity term and proved the existence of
a so-called critical threshold, namely the existence of a critical value of the total variation of the
initial condition triggering or not a finite-time blow-up of the solutions. This nonlocal term was also
used by C. Rohde to model capillarity effects close to fluid-vapour phase transitions in Navier-Stokes
equations [15]. Interestingly, this non-local approach seems more physically relevant than the original
Korteweg’s idea to use the heat operator for describing such phenomenons.

More recently, it has been replaced in a general context of system of hyperbolic balance laws with
non-local source term by R. Colombo and G. Guerra in the two companion papers [8, 9]. They showed
in particular the well posedness in L1 (globally in time) of the Cauchy problem for (1.1) together
with uniform stability estimates, in the framework of viscosity solutions. Finally, C. Besse and T.
Goudon obtained recently in [3] a system of macroscopic equations with a nonlocal Rosenau term by
computing the diffusion limit of a linear space inhomogeneous kinetic equation. A similar approach
was also used by T. Goudon and M. Parisot in [12] on a kinetic equation describing the behavior of
a multi-species gas of charged particles to obtain a macroscopic model with a Rosenau-like nonlocal
term.

Despite the previous studies, it is not completely clear and well established from a mathematical
point of view if the correction proposed by Rosenau is a good approximation to the linear heat
equation. In particular, it is not clear whether or not the large-time behavior of the solution to the
Rosenau approximation agrees with the large-time behavior of the linear diffusion equation.

The aim of this article is to give an answer to the previous question, and to underline that the
Rosenau approximation can be viewed as a particular case of a general approximation to the heat
equation by means of a linear kinetic equation of type (1.5), provided the background density Mε is
a probability density function of zero mean and variance proportional to ε2. In particular, it will
be shown that, in a certain metric equivalent to the weak*-convergence of measures, the distance
between the solution to the heat equation and the solution to the kinetic equation can be bounded
uniformly in terms of ε and t, provided the background density has a sufficiently high number of
moments (typically more than two).

The plan on the article is as follows. In Section 2, using tools of the kinetic theory of rarefied gases,
we will introduce a possible derivation and the main features of the Rosenau approximation with a
general kernel. This allows to describe well known models such as the central differences schemes
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for the heat equation. In Section 3, this kinetic formulation will be used to obtain explicit solutions
to the Rosenau equation (1.5), using both Fourier transform and Wild sums. Last, in Section 4,
we will investigate the large time behavior of the solutions to (1.5), showing that the convergence
towards the fundamental solution occurs, in a suitable Fourier-based metric (see next subsection), at
a suboptimal rate (compared to the heat equation). Finally, we will combine these results to show
that strong convergence in L1 towards the fundamental solution to the heat equation is obtained
after a suitable regularization of the Rosenau equation, obtained by discarding its singular part.

1.2. Functional Framework. Before entering into the main topic of this paper, we list below the
various functional spaces used in the following. For p ∈ [1, +∞) and q ∈ [1, +∞), we denote by Lp

q

the weighted Lebesgue spaces

Lp
q :=

{
f : R → R measurable; ‖f‖p

Lp
q

:=

∫

R

|f(v)|p (1 + v2)q/2 dv < ∞
}

.

In particular, the usual Lebesgue spaces are given by

Lp := Lp
0.

Moreover, for f ∈ L1
q, we can define for any k ≤ q the kth order moment of f as the quantity

mk(f) :=

∫

R

f(v) |v|kdv < ∞.

For s ∈ N, we denote by W s,p the Sobolev spaces

W s,p :=



f ∈ Ls; ‖f‖p

W s,p :=
∑

|k|≤s

∫

R

∣∣∣f (k)(v)
∣∣∣
p

dv < ∞



 .

If p = 2 we set Hs := W s,2.
Given a probability density f , we define its Fourier transform Fv(f) by

Fv(f)(ξ) = f̂(ξ) :=

∫

R

e−i ξ vf(v) dv, ∀ξ ∈ R.

The Sobolev space Hs can equivalently be defined for any s ≥ 0 by the norm

‖f‖Hs := ‖Fv (f )‖L2

2s
.

The homogeneous Sobolev space Ḣs is then defined by the homogeneous norm

‖f‖2
Ḣs :=

∫

R

|ξ|2s
∣∣∣f̂(ξ)

∣∣∣
2

dξ.

Finally, we introduce a family of Fourier based metrics in the following way: given s > 0 and two
probability distributions f1 and f2, their Fourier based distance ds(f1, f2) is the quantity

ds(f1, f2) := sup
ξ∈R\0

∣∣∣f̂1(ξ) − f̂2(ξ)
∣∣∣

|ξ|s .

This distance is finite, provided that f1 and f2 have the same moments up to order [s], where, if
s /∈ N, [s] denotes the entire part of s, or up to order s − 1 if s ∈ N. Moreover ds is an ideal metric
[6]. Its main properties are the following

(1) For all probability distributions f1, f2, f3,

ds(f1 ∗ f3, f2 ∗ f3) ≤ ds(f1, f2);

(2) Define for a given nonnegative constant a the dilatation

fa(v) =
1

a
f

(
v

a

)
.

Then for all probability distributions f1, f2, and any nonnegative constant a

ds(f1,a, f2,a) = as ds(f1, f2).
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The ds-metric is related to other more known metrics of large use in probability theory [10].

2. A Kinetic Description of the Rosenau Approximation

Let v ∈ R denote velocity, and let us assume to have at time τ > 0 a system of particles immersed
in a background. Let us suppose that the number of particles in the system is sufficiently large to be
studied by means of statistical mechanics, namely by giving the velocity distribution f(v, τ) at time
τ > 0. Moreover, let us assume that the main phenomenon which can modify particle’s velocity is
the interaction of particles with the background. Let M(w) denote the fixed in time (probability)
distribution of the particles of the background, which we will assume of finite variance γ2. Assume
that the collision process of a particle with velocity v with a background particle with a velocity w
generates a post-collision velocity v∗ given by

(2.1) v∗ = v + w.

Then, in a suitable scaling [7], the effect of interactions (2.1) on the time-variation of the density
f(v, τ) can be quantitatively described by a linear Boltzmann-type equation, in which the variation
of the density is due to a balance between a gain and loss terms.

More precisely, for a given number v, we take into account all the interactions of type (2.1) which
end up with the number v∗ (gain term) as well as all the interactions which, starting from the number
v, lose this value after interaction (loss term). The balance equation for the density of particles can
be fruitfully written in weak form. It corresponds to say that the aforementioned interaction process
on particles modifies the solution f(v, τ) according to

(2.2)
d

dτ

∫

R

ϕ(v)f(v, τ) dv = λ

∫

R2

(
ϕ(v∗) − ϕ(v)

)
f(v, τ)M(w) dv dw,

where the constant λ > 0 denotes the intensity of the variation process, and ϕ(v) is a smooth
function. Note that choosing ϕ(v) = 1 shows that, independently of the background distribution,
f(v, τ) remains a probability density if it so initially

∫

R

f(v, τ) dv =

∫

R

f0(v) dv = 1.

This is in general the unique conservation law associated to equation (2.2).
From now on, let us assume in addition that the probability distribution of the background is

centered, and its variance depends on a small parameter ε > 0. To emphasize this dependence, we
will denote this distribution by Mε(w) = ε−1M(ε−1w). Then Mε(w) satisfies

(2.3)

∫

R

Mε(w) dw = 1,

∫

R

w Mε(w) dw = 0,

∫

R

w2Mε(w) dw = ε2 γ2.

The weak formulation (2.2) yields immediately the time evolution of the moments of f . Taking
ϕ(v) = v one obtains

d

dτ

∫

R

vf(v, τ) dv = λ

∫

R

w Mε(w) dw

∫

R

f(v, τ) dv = 0.

Moreover, if ϕ(v) = v2

(2.4)
d

dτ

∫

R

v2f(v, τ) dv = λ

∫

R2

[
(v∗)2 − v2

]
f(v, τ) Mε(w) dv dw = λ ε2 γ2.

Thus, the second moment of f grows linearly with respect to time and depends on ε. One way to
avoid this dependency is to scale the time properly. Setting t = ε2τ and introducing a new particles
distribution function gε such that gε(v, t) = f(v, τ) gives according to (2.4),

d

dt

∫

R

v2gε(v, t) dv =
1

ε2

d

dτ

∫

R

v2f(v, τ) dv = λ γ2,

and the second moment of gε does not depend on ε.
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The distribution gε is a weak solution to

(2.5)
d

dt

∫

R

gε(v, t)ϕ(v) dv =
λ

ε2

∫

R2

[ϕ(v + w) − ϕ(v)] gε(v, t )Mε(w) dv dw,

with gε(v, t = 0) = g0(v) = f0(v). Note that, since
∫

R2

ϕ(v + w)gε(v, t) Mε(w) dv dw =

∫

R2

ϕ(z) gε(v, t) Mε(z − v) dv dz

=

∫

R

ϕ(z)Mε ∗ gε(z) dz,

equation (2.5) can be rewritten as

(2.6)
d

dt

∫

R

gε(v, t) ϕ(v) dv =
λ

ε2

∫

R

ϕ(v) (Mε ∗ gε(v) − gε(v)) dv,

which is the weak form of (1.2). Hence, if the background distribution is given by (1.3), equation
(2.5) coincides with Rosenau’s approximation (1.5), where σ2 = λ. Of course, other choices of the
background are possible, and, provided conditions (2.3) are satisfied, the evolution of the moments
of the solution to (2.5) up to the second order do not depend on the background distribution.

It is then easy to see that, in the case in which Mε coincides with the “Maxwellian” (1.3), gε is an
approximate (at the leading order in ε) weak solution of the heat equation (1.4). Indeed, given that
ε is small enough, one can Taylor expand ϕ(v∗), where v∗ = v + w, to obtain

ϕ(v∗) = ϕ(v) + w ϕ′(v) +
w2

2
ϕ′′(v) +

1

3!
ϕ(3)(ṽ)w3

for ṽ ∈ (v, v + w). Using this relation in (2.5), one obtains

(2.7)
d

dt

∫

R

gε(v, t)ϕ(v) dv =
λγ2

2

∫

R

gε(v, t)ϕ′′(v) dv + R(ε)

where the remainder R(ε) satisfies

(2.8) |R(ε)| ≤ λ

3!
‖ϕ(3)‖L∞

1

ε2

∫

R

w3Mε(w) dw = ε
λ

3!
‖ϕ(3)‖L∞

∫

R

w3M(w) dw.

Remark 1 . One can easily notice thanks to (2.7) that equation (2.5) is an approximation to the
heat equation (1.4) (with diffusion coefficient σ2 = λ γ2/2), provided that the remainder converges to
zero as ε → 0. In order to have this convergence, it is enough that the distribution of the background
is such that some moment of order greater than two remains bounded. We will use this in the
following to obtain various approximations of the heat equation, just changing the distribution of the
background.

Remark 2 . The Rosenau type kinetic equation (2.5) is such that mass, momentum and energy of its
solution have the same evolution of the corresponding moments of the solution to the heat equation
(1.4). A further interesting analogy with the heat equation is given by studying the evolution of
convex functionals along the solution. Let Φ(r), r ≥ 0 be a (regular) convex function of r. Then,
using equation (2.6) we obtain

d

dt

∫

R

Φ(gε(v, t)) dv =

∫

R

Φ′(gε(v, t))
∂gε(v, t)

∂t
dv

=
λ

ε2

∫

R

Φ′(gε(v, t)) (Mε ∗ gε(v) − gε(v)) dv.

Thanks to the convexity of Φ(·), for r, s ≥ 0

Φ′(s)(r − s) ≤ Φ(r) − Φ(s),

and one obtains
d

dt

∫

R

Φ(gε(v, t)) dv ≤ λ

ε2

∫

R

(Φ(Mε ∗ gε(v)) − Φ(gε(v))) dv.
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Now, use the fact that Mε is a probability distribution, so that by Jensen’s inequality
∫

R

Φ(Mε ∗ gε(v)) dv =

∫

R

Φ

(∫

R

gε(v − w))Mε(w) dw

)
dv

≤
∫

R2

Φ(gε(v − w))Mε(w) dv dw =

∫

R

Φ(gε(v)) dv,

and one concludes with
d

dt

∫

R

Φ(gε(v, t)) dv ≤ 0.

Thus any convex functional is non-increasing along the solution to the Rosenau type kinetic equation
(1.5), in agreement with the analogous property of the heat equation.

Remark 3 . A leading example of Rosenau type approximation is obtained by assuming that the
background distribution Mε is a balanced Bernoulli distribution

(2.9) Mε(v) =
1

2
[ δ0(v + εγ) + δ0(v − εγ)] ,

where as usual δ0 denotes a Dirac mass concentrated at v = 0. Note that the “Maxwellian” (2.9)
satisfies (2.3). Then, according to (2.6), the distribution gε solves

(2.10)
∂gε

∂t
(v, t) =

λ

2ε2
[ gε(v − εγ, t) − 2gε(v, t) + gε(v + εγ, t)] .

Now, let us fix λ = 2 and γ = σ. Then, given a parameter ∆v > 0 and a uniform grid vi =
i∆v, i ∈ Z on R, by setting gi(t) := gε(vi, t) and ε = ∆v/σ, equation (2.10) reads

g′
i(t) = σ2 gi+1(t) − 2gi(t) + gi−1(t)

∆v2
.

This is exactly the classical semi-explicit second order central differences scheme for the heat equation
(1.4). It follows that this scheme furnishes an approximation to the heat equation which satisfies
all the properties outlined in Remarks 1 and 2 , as well as the weak convergence towards the exact
solution, which follows easily by applying the estimate (2.8).

Remark 4 . The previous example introduces into the matter a background with a non regular
distribution (presence of point masses). This situation clearly differs from the standard Rosenau
approximation, characterized by the regular density (1.3). Due to its wide applications in numerical
simulations, the study of the properties of the Rosenau approximation given by this type of back-
ground turns out to be important. For this reason, in addition to the study of the classical Rosenau
model, in what follows we will deal also with the Bernoulli type background, outlining when possible
the principal differences.

3. Representations of the Solutions to the Rosenau Equation

The Rosenau approximation (1.5) of the heat equation is a linear kinetic equation of Boltzmann
type. Therefore, we can resort both to linear kinetic theory and to the theory of linear diffusion
equations to obtain explicit representations of the solution. We shall present here two equivalent
ways to construct these solutions, each one giving a different insight on the behavior of gε. In the
rest of this Section, to avoid inessential difficulties, we will assume that the initial value g0(v) is a
probability density with finite moments up to a given order (in general more than two).

3.1. Wild Sums. The first method we introduce to obtain an explicit representation of the solution
gε is closely related to the so-called theory of Wild sum expansions of the Boltzmann equation. Wild
indeed proved in [19] that one may represent solutions to the nonlinear Boltzmann equation for
Maxwell molecules by using convergent power series. This method is particularly simple when one
deals with linear convolution equations such as (1.5). To start with, let us set

hε(v, t) := exp

(
λ t

ε2

)
gε(v, t).
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Then the Cauchy problem for (1.5) can be rewritten as a fixed point problem (which is nothing but
a Duhamel formula). Let h → Φε(h) define the map

(3.1) Φε(h) = g0 +
λ

ε2

∫ t

0
Mε ∗ h(s) ds.

Then gε(v, t) solves (1.5) exactly when Φε(hε) = hε.

To find the fixed point, it is then sufficient to make a Picard iteration. Starting from h
(0)
ε := g0

one defines, for n ∈ N

(3.2) h(n+1)
ε = Φε

(
h(n)

ε

)
.

By recurrence, for n ≥ 1 it yields

(3.3) h(n)
ε (v, t) = h(n−1)

ε (v, t) +

(
λ t

ε2

)n 1

n!
M∗n

ε ∗ g0(v),

where we use the shorthand M∗n := M ∗ · · · ∗ M (n times). Clearly, for n ≥ 0

h(n+1)
ε (v, t) − h(n)

ε (v, t) ≥ 0.

Hence the sequence
(
h

(n)
ε (v, t)

)
n≥0

, being bounded in L1, converges towards hε(v, t) ≥ 0 when

n → ∞, where according to (3.3)

hε(v, t) = g0(v) +
∑

n≥1

(
λ t

ε2

)n 1

n!
M∗n

ε ∗ g0(v).

By passing to the limit n → ∞ in (3.2), one obtains that hε is a (nonnegative) fixed point for (3.1).
This procedure allows to write the (nonnegative) solution gε to the Cauchy problem for (1.5) as

(3.4) gε(v, t) = e−λ t/ε2

g0(v) + e−λ t/ε2
∑

n≥1

(
λ t

ε2

)n 1

n!
M∗n

ε ∗ g0(v).

3.2. Fourier Transform. The standard approach to solve the heat equation on the whole space is
to use Fourier transform. This is even more obvious for equation (1.5). Indeed, passing to Fourier
variables in this equation shows that the Fourier transform of gε is given by

(3.5) ĝε(ξ, t) = ĝ0(ξ) exp (−Aε(ξ) t) , ∀(ξ, t) ∈ R × R+,

where ĝ0 is the Fourier transform of the initial density and

(3.6) Aε(ξ) := λ
1 − M̂ε(ξ)

ε2
.

Since Mε is a probability density, |M̂ε(ξ)| ≤ 1 for all ξ ∈ R, which implies that the real part of Aε is
nonnegative. Moreover, thanks to condition (2.3), if Mε possesses more than two moments bounded,
one can write

Aε(ξ) :=
λγ2

2
ξ2 + o(ξ2),

where the o(ξ2) term is considered for ξ → 0 (which will be the case until the end of the article).
Finally, it is possible to invert the Fourier transform (3.5) and obtain in a distributional sense

(3.7) gε(v, t) = g0 ∗ Pε(·, t)(v),

where we set

Pε(v, t) = exp {−Aε(ξ)t}∨ (v).
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Figure 3.1. Schematic representation of the convolution steps of the central differ-
ence kernel. Each node is a Dirac mass, weighted by binomial coefficients.

Clearly, representations (3.4) and (3.7) have to coincide. Indeed, applying a Fourier transform to
(3.4) yields

ĝε(ξ, t) = e−λ t/ε2

ĝ0(ξ) + e−λ t/ε2
∑

n≥1

(
λ t

ε2

)n 1

n!
M̂ε

n
(ξ) ĝ0(ξ)

= e−λ t/ε2

[(
eM̂ε(ξ)λ t/ε2 − 1

)
+ 1

]
ĝ0(ξ)(3.8)

= exp (−Aε(ξ) t) ĝ0(ξ),

where Aε is given by (3.6).

Remark 5 . According to relation (3.8), any Rosenau-type approximation to the heat equation is
such that the smoothness of the solution is lost, independently of the regularity of the kernel Mε.
Indeed, the fundamental solution to equation (1.5) (namely the solution to the Cauchy problem
obtained from the initial value g0 = δ0) can be represented in Fourier variable by

Ĝε(ξ, t) = e−λ t/ε2

(
eM̂ε(ξ)λ t/ε2 − 1

)
+ e−λ t/ε2

=: G1(ξ, t) + G2(t).(3.9)

If Mε ∈ L1, then according to Riemann-Lebesgue Lemma,
∣∣∣M̂ε(ξ)

∣∣∣ → 0 when |ξ| → ∞ and then

|G1(ξ, t)| → 0. The loss of smoothness comes from G2(t) which is the Fourier transform of a Dirac
mass (of weight depending on time). According to (3.9), the singularity disappears exponentially
when ε → 0 or time goes to infinity.

If one considers the Rosenau kernel (1.3) with λ = σ2,

M̂ε(ξ) =
1

1 + (εσ)2ξ2
,

and for all t, ε > 0,

G1(ξ, t) = e−σ2 t/ε2

(
exp

(
σ2 t

ε2

1

1 + (εσ)2ξ2

)
− 1

)
.

Thus G1(, ξ, t) decreases exponentially fast towards zero when |ξ| → ∞, and the loss of smoothness
comes only from G2.

On the contrary, if one considers the central differences kernel (2.9) with λ = 2 and σ > 0, then

M̂ε(ξ) = cos(εσξ) and for all t, ε > 0,

G1(ξ, t) = e−2t/ε2

(
exp

(
2t

ε2
cos(εσξ)

)
− 1

)
,
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which does not converge at infinity. Then, if the kernel has some singularities, the solution to the
Rosenau equation has at most the regularity of the initial condition. This enlightens a substantial
difference of the Rosenau approximation with respect to the heat equation, in which the diffusion
operator is such that the solution is instantaneously smoothed out. The representation (3.4) can be
used to understand the behavior in time of the solution obtained from the central differences kernel.
Indeed, each convolution by Mε consists in creating a weighted sum of each point (i.e. Dirac masses)
of the grid (see Figure 3.1):

Mε ∗ δ0(v) =
1

2
(δ0(v − εσ) + δ0(v + εσ)) ,

M∗2

ε ∗ δ0(v) =
1

4
δ0(v − 2 εσ) +

1

2
δ0(v) +

1

4
δ0(v − 2 εσ),

M∗3

ε ∗ δ0(v) =
1

8
δ0(v − 3 εσ) +

3

8
δ0(v − εσ) +

3

8
δ0(v + εσ) +

1

8
δ0(v + 3 εσ)

and so on. Thus, the fundamental solution of the central difference scheme is given by

gε(v, t) = e−2t/ε2

δ0(v) + e−2t/ε2
∑

n≥1

(
2t

ε2

)n 1

n!
g(n)

ε (v),

where, for n ∈ N we defined

g(2n)
ε (v) =

(
1

2

)n n∑

k=0

(
2n
2k

)
[δ0(v + 2 kεσ) + δ0(v − 2 kεσ)] ,

g(2n+1)
ε (v) =

(
1

2

)n+1 n∑

k=0

(
2n + 1
2k + 1

)
[δ0(v + (2k + 1)εσ) + δ0(v − (2k + 1)εσ)] .

4. Asymptotic Behavior of Solutions to the Rosenau Equation

In Section 2 the similarities between the Rosenau-type kinetic equation and the linear diffusion
equation have been enlightened. In particular, as well known from the classical literature on numerical
approximation of partial differential equations, equation (1.5) provides a consistent approximation
of the heat equation in a fixed time interval. It is not known, however, if equation (1.5) still realizes
a good approximation for large times, and, in case of a positive answer, in which way the difference
between the solutions of the Rosenau and diffusion equations can be estimated with respect both to
time and the parameter ε.

In this Section, we will furnish a partial answer to this question. To clarify our intent, we will
briefly resume various well-known facts about the large-time behavior of the solution to the heat
equation posed in the whole space. Let g = g(v, t) be a solution to the heat equation (1.4) and define
the heat kernel Ωσ by

(4.1) Ωσ(v, t) :=
1√

4πσ2t
exp

(
− v2

4σ2t

)
, ∀(v, t) ∈ R × R+.

This fundamental solution of (1.4) represents an intermediate asymptotics of a large class of solutions
to the heat equation. The recent review article [2] gives a precise state of the art on this topic. To
make this concept more precise, we define the Boltzmann entropy of f as

H(f) :=

∫

R

f(v) log f(v) dv.

Then it can be shown (see e.g. [18]) that g(v, t) behaves as the heat kernel when t → ∞, provided
that the initial condition g0 is of finite kinetic energy and entropy:

g0 ∈ L1
2 and H(g0) < ∞.

Moreover, the rate of convergence towards the fundamental solution can be computed in L1 norm

(4.2) ‖g(t) − Ωσ(t)‖L1 ≤ C√
1 + 2t

,
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where C is an explicit constant. The bound (4.2) is sharp. A marked improvement of the constant
in (4.2) has been recently obtained in [1], by selecting well parametrized Gaussian functions, char-
acterized either by mass centering or by fixing the second moments or the covariance matrix of the
solution.

Most of these results follow by considering the equivalence between the heat equation and the
linear Fokker-Planck equation

(4.3)
∂u

∂t
=

∂

∂v

(
vu + σ2 ∂u

∂v

)
.

which has a stationary solution given by the Gaussian

(4.4) ωσ(v) := Ωσ(v, t = 1).

Setting T (t) := e2t−1/2, we can in fact consider the change of variables

(4.5) u(v, t) := etg
(
etv, T (t)

)
.

Then u(v, t) is solution to the Fokker-Planck equation (4.3) as soon as g is a solution to the heat
equation (1.4). The converse also holds true. It has been shown in [5] that the solution to the linear
Fokker-Planck equation converges for large times to the stationary solution ωσ and the following
asymptotic behavior holds

‖u(t) − ωσ‖L1 ≤ Ce−t, ∀t ≥ 0.

Using the self-similar scaling (4.5), it is clear that this result is equivalent to the rate (4.2), and
once more, the bound is sharp. We shall use a similar rescaling in our study of the intermediate
asymptotics of equation (1.5).

Our goal in the following is to prove that the same kind of result holds for the Rosenau-type
approximation to the heat equation. Due to the generality of this approximation, which depends
of the background distribution M , we will obtain a weaker convergence (with respect to the L1

distance) to the fundamental solution, as discussed in Section 3, Remark 5 . The L1 distance will be
here substituted by the suitable weaker Fourier based metrics ds described in Section 1.2, which are
particularly adapted to the convolution structure of the kinetic equation (2.5). This family of metrics
has been introduced in the article [10] to study the trend to equilibrium of solutions to the space
homogeneous Boltzmann equation for Maxwell molecules, and subsequently applied to a variety of
problems related to kinetic models of Maxwell type. For a more detailed description, we address the
interested reader to the recent lecture notes [6].

These metrics can be easily and fruitfully applied to the study of the large-time behavior of the
heat equation. Indeed, we have seen that in Fourier variables, the solution to the heat equation (1.4)
with initial condition g0 is

ĝ(ξ, t) = ĝ0(ξ) exp
(
−σ2ξ2 t

)
.

Thus, if g0 is of finite mass, the solution will converge pointwise towards 0 when t → ∞. A way to
consider a nontrivial limit distribution is to make the change of variable ξ → V (t) ξ with V (t) :=

(1 + t)−1/2. Then, the scaled distribution will converge towards the Gaussian distribution

ĝ0(0) exp
(
−σ2ξ2

)
,

and one can improve the rate (4.2) in Fourier distance, as soon as the initial datum possesses finite
moments of certain order equal to those of the Gaussian [11]. From now on, let us set

(4.6) ω̂σ(ξ) = exp
(
−σ2ξ2

)
,

the Fourier transform of the Gaussian distribution (4.4). We have the following result.

Proposition 4.1. Let V (t) := (1 + t)−1/2. For a given s > 1, let 0 ≤ g0 ∈ L1
s a distribution of unit

mass. Then, if g(v, t) is the unique solution to the Cauchy problem (1.4) with initial condition g0,
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the scaled distribution h(v, t) := V (t)−1 g
(
V (t)−1 v, t

)
is such that, for all t ≥ 0

(4.7) ds (h(t), ωσ) ≤ 1

(1 + t)s/2
ds(g0, ωσ).

Proof. Thanks to the scaling properties of the Fourier transform one has

ds (h(t), ωσ) = sup
ξ∈R\0

| ĝ(V (t)ξ, t) − ω̂σ(ξ)|
|ξ|s

= sup
ξ∈R\0

1

|ξ|s
∣∣∣ĝ0(V (t)ξ) − exp

(
−σ2ξ2V 2(t)

)∣∣∣
∣∣∣∣exp

(
−σ2ξ2 t

1 + t

)∣∣∣∣

≤ V (t)s sup
ξ∈R\0

1

|ξ|s
∣∣∣ĝ0(ξ) − exp

(
−σ2ξ2

)∣∣∣ .

�

Remark 6 . Taking a Dirac mass as the initial condition in the Cauchy problem for equation 1.4
shows that these rates are optimal.

4.1. Approximate Solutions with Finite Energy. To recover the asymptotic behavior of the
solution to the Rosenau-type approximation (2.6), we are going to apply a technique similar to that
used in Proposition 4.1. Let us consider again the scaling ξ → V (t)ξ with V (t) := (1 + t)−1/2, and
define

h(v, t) := V (t)−1 g
(
V (t)−1 v, t

)
and hε(v, t) := V (t)−1 gε

(
V (t)−1 v, t

)
.

We choose in this section an initial datum 0 ≤ g0 ∈ L1
2 such that

(4.8)

∫

R

g0(v) dv = 1,

∫

R

v g0(v) dv = 0,

∫

R

v2g0(v) dv = E < ∞,

and λ γ2/2 = σ2. Then the quantity d2 (g0, ωσ) is bounded, and, according to (4.7) one obtains

(4.9) d2 (hε(t), ωσ) ≤ 1

1 + t
d2 (g0, ωσ) + d2 (hε(t), h(t)), ∀t ≥ 0.

Hence, we have to estimate the Fourier distance between the exact scaled solution h and its approxi-
mate counterpart hε. We shall use for this the representation (3.5) of gε in Fourier variables. Let us
introduce a positive parameter R. Since the mass of the initial datum g0 is equal to 1, one has

d2 (hε(t), h(t)) ≤ sup
ξ∈R\0

1

ξ2

∣∣∣∣exp

{
−Aε

(
ξ√

1 + t

)
t

}
− exp

{
−σ2ξ2 t

1 + t

}∣∣∣∣

≤ 2

R2
+ sup

|ξ|≤R

1

ξ2

∣∣∣∣exp

{
−Aε

(
ξ√

1 + t

)
t

}
− exp

{
−σ2ξ2 t

1 + t

}∣∣∣∣

≤ 2

R2
+ sup

|ξ|≤R

1

ξ2

∣∣∣∣exp

{
−σ2ξ2 t

1 + t

[
1 + t

σ2ξ2
Aε

(
ξ√

1 + t

)
− 1

]}
− 1

∣∣∣∣ .

Using the elementary inequality |1 − e−x| ≤ |x|, one finally has

(4.10) d2(hε(t), h(t)) ≤ 2

R2
+ sup

|ξ|≤R
Dε(ξ, t),

where

Dε(ξ, t) :=
t

(εξ)2

∣∣∣∣∣λ
(

1 − M̂ε

(
ξ√

1 + t

))
− (εσξ)2

1 + t

∣∣∣∣∣ .

In order to compute this last quantity and to obtain the rate of convergence, let us specify both
the background distribution and the constants γ and λ.
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Central Differences. As in Remark 3 , let us set λ = 2 and

Mε(v) =
1

2
[δ0(v + εσ) + δ0(v − εσ)].

Then M̂ε(ξ) = cos(εσξ), and thanks to Taylor’s theorem, there exists θ ∈ (0, 1) such that

(4.11) Dε(ξ, t) =
t

3

εσξ

(1 + t)3/2

∣∣∣∣sin
(

θ
εσξ√
1 + t

)∣∣∣∣ ≤ t

(1 + t)2

(εσξ)2

3
.

Gathering inequalities (4.10) and (4.11) yields for R > 0 the inequality

d2(hε(t), h(t)) ≤ 2

R2
+

t

(1 + t)2

(εσR)2

3
.

It just remains to optimize on R to obtain

(4.12) d2(hε(t), h(t)) ≤
√

3σ2

2
ε

√
t

1 + t
.

Inequality (4.12) shows that the second term in (4.9) has a slower rate of decay with respect to the
first one. In contrast to the exact solution h, which is known to converge in d2 towards the self-similar
one at rate (1 + t)−1 [11], we found that the approximate solution converges towards the exact one

at rate (1 + t)−1/2. We just stated the following

Proposition 4.2. Let 0 ≤ g0 ∈ L1
2 satisfy (4.8). If gε is solution to the associated Cauchy problem

for the Rosenau-type approximation (2.6) with the central difference kernel (2.9), then the scaled
distribution

hε(t, v) := V (t)−1 gε

(
V (t)−1v, t

)

for V (t) := (1 + t)−1/2 verifies for all t ≥ 0

d2 (hε(t), ωσ) ≤ 1

1 + t
d2(g0, ωσ) +

√
3σ2

2
ε

√
t

1 + t
.

Rosenau Regularization. In this case the Fourier transformed “Maxwellian” reads

M̂ε(ξ) =
1

1 + (εσ)2ξ2
,

and λ = σ2. We obtain

Dε(ξ, t) =
(εσ)2t

1 + t

∣∣∣∣∣
ξ2

1 + t + (εσ)2ξ2

∣∣∣∣∣ .

Inserting this expression in inequality (4.10) gives for R > 0

d2(hε(t), h(t)) ≤ 2

R2
+

t

(1 + t)2

(εσR)2

3
.

It just remains to optimize on R to obtain the rate of convergence in d2 norm of hε towards h:

(4.13) d2(hε(t), h(t)) ≤
√

σ2

2
ε

√
t

1 + t
.

Hence, this approximation has exactly the same order of convergence than the one given by the
central differences kernel. We proved

Proposition 4.3. Let 0 ≤ g0 ∈ L1
2 satisfy (4.8). If gε is solution to the associated Cauchy problem

for the Rosenau-type approximation (2.6) with the Rosenau kernel (1.3), then the scaled distribution

hε(t, v) := V (t)−1 gε

(
V (t)−1v, t

)
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for V (t) := (1 + t)−1/2 verifies, for all t ≥ 0

d2 (hε(t), ωσ) ≤ 1

1 + t
d2(g0, ωσ) +

√
σ2

2
ε

√
t

1 + t
.

Remark 7 . Note that as a by-product of our analysis of the large-time behavior of the solution to
the Rosenau-type approximation of the diffusion equation we proved that the d2-distance between the
solution of the diffusion equation and its numerical approximation by the central difference scheme
is uniformly bounded in time with respect to the parameter ε, as given by (4.12).

4.2. Approximate Solution with Finite Fourth Order Moment. In Subsection 4.1, the con-
vergence results required the boundedness of the d2-distance between the initial value of the Rosenau
equation and the Gaussian density. This boundedness has been achieved by assuming that the initial
datum is of finite energy. Indeed, moments play an important role with respect to convergence. We
will improve here the results of Subsection 4.1, provided that the initial condition has finite moments
up to order four. We will see that this allows to compute the rate of convergence (in time) towards
self-similarity with very few assumptions on the kernel Mε.

Without loss of generality (thanks to scaling and translational invariance), we can choose the
initial distribution 0 ≤ g0 ∈ L1

4 to satisfy

(4.14)

∫

R

g0(v) ϕ(v) dv = (1, 0, 1, 0, µ),

where ϕ(v) = (1, v, v2/2, v3, v4), and µ is a positive constant. If g is solution to the Cauchy problem
for equation (1.4) with initial condition g0, then on the one hand

(4.15)

∫

R

g(v, t) ϕ(v) dv = (1, 0, 1 + tσ2, 0, µ + 24t + 12σ2t2).

On the other hand, a solution gε to equation (2.6) with same initial datum verifies

(4.16)

∫

R

gε(v, t) ϕ(v) dv = (1, 0, 1 + tσ2, 0, µ + (24 + Bε)t + 12σ2t2)),

provided that Mε follows assumption (2.3) and where

Bε :=
2

ε2

∫

R

Mε(v)v4 dv.

We can see that the fourth order moment of the exact and approximate solutions differ at time t > 0
of a quantity equal to Bεt. Keeping the same notations of Subsection 4.1, we will use this fact to
compute the d3 distance between the scaled approximate solution hε and the rescaled exact one h.
Indeed, it is well know that if k ∈ N, the kth moment of a distribution correspond to the kth derivative
of its Fourier transform. Then ĝ(·, t) and ĝε(·, t) are at least four times differentiable and according
to Taylor’s theorem (4.15)–(4.16) imply

ĝ(ξ, t) = 1 +
1 + tσ2

2
ξ2 +

1 + 24t + 12σ2t2

24
ξ4 + O

(
|ξ|5

)
,

ĝε(ξ, t) = 1 +
1 + tσ2

2
ξ2 +

1 + (24 + Bε)t + 12σ2t2

24
ξ4 + O

(
|ξ|5

)
.

Thus, one has for R > 0

d3 (hε(t), h(t)) = sup
ξ∈R\0

1

|ξ|3
∣∣∣∣ĝε

(
ξ√

1 + t
, t

)
− ĝ

(
ξ√

1 + t
, t

)∣∣∣∣

≤ 2

R3
+

Bεt

24(1 + t)2
R.(4.17)

Optimizing (4.17) over R and gathering the result with inequality (4.7) (with s = 3) gives
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Theorem 4.1. Let 0 ≤ g0 ∈ L1
4 satisfy (4.14). If gε is solution to the associated Cauchy problem

for Rosenau approximation (2.6) with a kernel Mε verifying (2.3), then the scaled distribution

hε(t, v) := V (t)−1 gε

(
V (t)−1v, t

)

for V (t) := (1 + t)−1/2 is such that, for all t ≥ 0

d3 (hε(t), ωσ) ≤ 1

(1 + t)3/2
d3(g0, ωσ) +

13
√

2

24
(Bε)3/4

( √
t

1 + t

)3/2

,

where ωσ is the Gaussian distribution (4.6) and

Bε :=
2

ε2

∫

R

Mε(v)v4 dv.

Remark 8 . The result of Theorem 4.1 indicates in a clear way that the rate of convergence towards
the fundamental solution improves as soon as the initial value has a a higher number of moments
equal to those of the Gaussian. In the present case, with four moments the difference in Fourier norm
between solutions converges to zero at rate (1 + t)−3/4. This suggests that the rate of convergence
approaches the optimal rate when the number of finite moments of the initial value approaches
infinity. This aspect of the problem is deeply connected to the analogous one studied in the central
limit theorem, which is referred to as Berry-Esseen estimates. We remark that Berry-Esseen-like
estimates for Fourier metric based metrics have been studied in [11].

Let us now specify the kernel Mε, to check if there are essential differences among the rate of
convergence in ε.

The choice of the central differences kernel

Mε(v) =
1

2
[δ0(v + εσ) + δ0(v − εσ)]

gives Bε = 2ε2σ4. Then

d3 (hε(t), ωσ) ≤ 1

(1 + t)3/2
d3(g0, ωσ) + C1 ε3/2

( √
t

1 + t

)3/2

,

where C1 is a positive constant depending on σ. Compared to (4.12), the rate in ε is improved by a
power 1/2.

If we consider now the Rosenau kernel

M̂ε(ξ) =
1

1 + (εσ)2ξ2
,

Bε = Kε3 for a nonnegative constant K. Then

d3 (hε(t), ωσ) ≤ 1

(1 + t)3/2
d3(g0, ωσ) + C2 ε9/4

( √
t

1 + t

)3/2

,

where C2 is a positive constant depending on σ.

Remark 9 . We can see here that the Rosenau kernel gives a better convergence rate in ε towards
the exact solution, compared to the central differences kernel. This improvement also depends of the
number of finite moments. This shows that the number of finite moments plays an essential role also
in connection with the order of convergence in ε. Indeed in formulas (4.12) and (4.13), which refer to
the situation in which only moments up to order two have been considered, this difference between
the approximations due to the two kernels was not evident.
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4.3. Strong Convergence of a “Regularized” Approximate Solution. Let us assume that the
kernel Mε belongs to L1(R). The analysis of Section 4 shows that, in a suitable scaling which allows
to maintain the energy of the solution bounded, there is convergence in Fourier distance towards a
Gaussian function. This result, however, cannot be directly used to conclude that the solution to
the Rosenau kinetic equation converges towards the fundamental solution to the heat equation, as
time goes to infinity. In fact, since the ds-metric is not scaling invariant, and the decay in time of
the distance found in Theorem 4.1 is of order t−3/4, by reverting to the original variables, the decay
in time disappears. Nevertheless, these weak convergence estimates can be fruitfully employed to
prove that the solution to Rosenau equation can be split into two parts, one of which is exponentially
decaying to zero with respect to both time t and the parameter ε, while the other converges strongly
in time towards the fundamental solution to the heat equation at a lower rate. This result clarifies
the nature of the Rosenau-type approximation to the heat equation. This approximation produces
a solution which essentially consists of two parts, which differs for their regularity. The part with
lower regularity (essentially the first term in (3.4) with the same regularity of the initial datum) is
rapidly decaying to zero. The regular part is shown to behave like the classical solution to the heat
equation, and decays towards the self-similar Gaussian solution for large times. The result will be
achieved by making a heavy use of the representations given in Section 3. In particular, we will write
the fundamental solution (3.9) by splitting it in two parts

Ĝε(ξ, t) = e−λ t/ε2

(
eM̂ε(ξ)λ t/ε2 −

(
1 − M̂ε(ξ)

))
+
(
1 − M̂ε(ξ)

)
e−λ t/ε2

=: P̂ε,reg(ξ, t) +
(
1 − M̂ε(ξ)

)
e−λ t/ε2

.(4.18)

As we shall see, this splitting separates in a natural way the singular part of the kernel from its
regularized part Pε,reg.

Let g (respectively gε,reg) a solution to the heat equation (1.4) (resp. a solution to the Rosenau
equation (1.5) obtained by convolution with the regularized kernel). In other words

g(v, t) = g0(v) ∗ Ωσ(·, t),

gε,reg(v, t) = g0(v) ∗ Pε,reg(·, t).(4.19)

We remark that, resorting to formula (3.4), one recovers that gε,reg(v, t) coincides with the Wild
sum expansion in which the zero-order term is substituted by the regular term Mε ∗ g0(v). Hence,
gε,reg(v, t) is nothing but a regularized version of the Wild sum expansion (3.4). Since the initial
datum g0(v) is of unit mass,

‖g(t) − gε,reg(t)‖L1 =

∫

R

∣∣∣∣
∫

R

(Ωσ(v − w, t) − Pε,reg(v − w, t)) g0(w) dw

∣∣∣∣ dv

≤ ‖Ωσ(t) − Pε,reg(t)‖L1 .

On the other hand, if λ = σ2

∣∣∣P̂ε,reg(ξ, t) − Ω̂σ(ξ, t)
∣∣∣ =

∣∣∣∣e−σ2 t/ε2

(
eM̂ε(ξ) σ2 t/ε2 −

(
1 − M̂ε(ξ)

))
− e−σ2|ξ|2t

∣∣∣∣

≤
∣∣∣∣e

−σ2 t/ε2

eM̂ε(ξ) σ2 t/ε2 − e−σ2|ξ|2t

∣∣∣∣+
∣∣∣1 − M̂ε(ξ)

∣∣∣ e−σ2 t/ε2

,

and this implies

(4.20) d2 (Pε,reg(t), Ωσ(t)) ≤ d2 (Gε(t), Ωσ(t)) + d2 (Mε, δ0) e−σ2 t/ε2

.

By means of the scaling property of the Fourier metric ds, formula (4.20) ensures that, after the scaling
ξ → ξ/

√
1 + t, the convergence results (in scaled variables) of Section 4 guarantee the convergence

of the regularized kernel towards the Gaussian fundamental solution.
Now, thanks to the regularity of Pε,reg(t), we can consider also convergence of the (regularized)

approximate fundamental solution Pε,reg towards the heat kernel Ωσ in stronger norms, typically L1,
which are invariant with respect to dilatation. Actually, it is enough to deal with L2 norms. Indeed,
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it is well known [4, 6] that if f ∈ L2(R) is of finite kinetic energy, there exists an explicit, nonnegative
constant C1 such that

(4.21) ‖f‖L1 ≤ C1 ‖f‖4/5
L2

(∫

R

|v|2 |f(v)| dv

)1/5

.

Note that the second moment of the quantities involved is uniformly bounded only in the scaled
variables used in Section 4. In original variables, in fact, the second moment of the solution, both of
the heat equation and its Rosenau approximation, is increasing linearly with respect to time. Then,
it is possible to interpolate the L2 norm by some appropriate Fourier and homogeneous Sobolev
norms. More precisely, it was shown in [4] that for all r ∈ (0, 1) there exists an explicit, nonnegative
constant C2 = C2(r) such that

(4.22) ‖f − g‖L2 ≤ C2 d2 (f, g)2(1−r) ‖f − g‖2r
ḢN ,

where N = 3 (1 − r)/r. Then, according to inequalities (4.21)–(4.22)–(4.20) and to the results of
Subsection 4.2, we will obtain the strong convergence of Pε,reg(t, ·) towards Ωσ(t, ·) when t → ∞ if

this function belongs to the homogeneous Sobolev space ḢN (R) for arbitrarily small N , and at the
same time its Sobolev norm increases in time at a rate such that the right-hand side of inequality
(4.22) decays to zero as time goes to infinity.

We will deal with the Rosenau kernel with λ = σ2

M̂ε(ξ) =
1

1 + (εσ)2ξ2

which belongs to Ḣs(R) for all s < 1. Hence, in scaled variables, for all s < 1

e−σ2 t/ε2

∥∥∥∥M̂ε

(
ξ√

1 + t

)∥∥∥∥
2

Ḣs

= e−σ2 t/ε2

(√
1 + t

εσ

)1+s ∥∥∥M̂ε(ξ)
∥∥∥

2

Ḣs

≤ C(ε)‖M̂ε(ξ)‖2
Ḣs .

According to (4.18), it remains to check the smoothness of

Ĝε(ξ, t) := eM̂ε(ξ) σ2 t/ε2 − 1, ∀t ≥ 0.

Let us set s < 1. We have thanks to de l’Hospital rule

lim
|ξ|→∞

ξs+1Ĝε(ξ, t) = lim
|ξ|→∞

− σ2 t

(s + 1) ε2
ξs+2 M̂ε

′
(ξ) eM̂ε(ξ) σ2 t/ε2

= lim
|ξ|→∞

2 σ4 t

s + 1

ξs+3

(1 + (εσ)2ξ2)2
exp

(
σ2 t

ε2 (1 + (εσ)2ξ2)

)
= 0.

Then we have proved that ξs Ĝε(ξ, t) = o(ξ−1) which means according to Riemann criterion that
Gε(·, t) ∈ Ḣs(R) for any t ≥ 0. Detailed computations, reported in Appendix, allow to conclude that,
for s < 1,

(4.23) e−σ2 t/ε2

∥∥∥∥Ĝε

(
ξ√

1 + t

)∥∥∥∥
Ḣs

≤ C(ε, s) (1 + t)δ

where the explicitly computable constant C(ε, s) depends on ε, s and M̂ε, and δ > 0 can be taken
as small as we want. Thanks to inequalities (4.20)–(4.21)–(4.22)–(4.23) and Theorem 4.1 we obtain
the following

Theorem 4.2. Under the assumptions of Theorem 4.1, if g is a solution to the heat equation (1.4)
and gε,reg is given by (4.19) for the Rosenau kernel (1.3), then one has

lim
t→∞

‖g(t) − gε,reg(t)‖L1 = 0.
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Remark 10 . Theorem 4.2 has various consequences. Coupling the decay of the d2 metric obtained
in (4.12) with inequalities (4.21) and (4.22), the regularity of Pε,reg implies a rate of decay of the L1-

norm smaller or equal to (1+t)1/15. On the other hand, the singular part of the fundamental solution

Ĝε(ξ, t) converges to zero exponentially both in time and with respect to ε. Hence, after a transitory
time, there is prevalence of the regular part of the fundamental solution, which decays to zero in
L1 at a suboptimal rate. Hence, the main difference between the large-time behavior of the heat
equation and its Rosenau approximation consists in a slower rate of convergence of the latter towards
the Gaussian fundamental solution. The method of proof also indicates that the rate of convergence
in L1 is strictly linked to the regularity of the distribution of the background. For this reason, the
argument leading to Theorem 4.2 can not be applied to the central difference approximation. Maybe
a different approach will help to clarify if, in some weaker norm, a result similar to that of Theorem
4.2 holds also for the central difference type approximation.

5. Conclusions

We studied in this article the validity of the approximation to the linear diffusion equation proposed
by Rosenau [16] as a regularized version of the Chapman-Enskog expansion of hydrodynamics. This
approximation essentially is realized by substituting the heat equation with a linear kinetic equation
of Boltzmann type, describing collisions of particles with a fixed background. This remark allows to
consider the Rosenau approximation as a particular realization of a model Boltzmann equation, in
which the background distribution is a general probability density with bounded variance. In addition
to the Rosenau distribution, we considered in this article also a point masses background, which
furnishes the central difference scheme to solve the linear diffusion equation. The main differences
between the action of the two different backgrounds have been studied in some details. In particular,
our analysis put into evidence that the approximation with a regular kernel is a good approximation,
in that it possesses most of the typical properties of the heat equation, including the same large-time
behavior, apart from a slower rate of decay towards the fundamental solution and a finite speed
of propagation at high Fourier frequencies. We were not able to prove an analogous property for
the non regular approximation, for which the rate of decay towards the equilibrium distribution has
been only proven in scaled variables. The results of the present paper shall lead to new numerical
approximations of the whole Rosenau approximation (1.1). For instance, Wild sums have been
successfully used in connection with the approximation of the bilinear Boltzmann equation (see e.g.
[14]) to develop a new family of Monte Carlo methods, which possess high order accuracy in time,
and are asymptotic preserving (with respect to ε). Following the same strategy, our next goal is to
develop an efficient Monte Carlo method to compute the Rosenau approximation using our analysis
on the linear Wild sums.

Appendix A. Growth in Time of the Sobolev Norm of the Regularized Kernel

For any given s < 1, we investigate the growth in time of the quantity

Bs(t) = e−σ2 t/ε2

∥∥∥∥Ĝε

(
ξ√

1 + t

)∥∥∥∥
Ḣs

.

To avoid inessential heavy notations, in what follows we fix ε = σ = 1. In this case

Bs(t) = e−t

[∫

R

|ξ|2s
{

exp

(
t

1 + (1 + t)−1ξ2

)
− 1

]2

dξ

}1/2

.

By a simple change of variable into the integral, we can rewrite Bs(t) in the equivalent form

(A.1) Bs(t) = (1 + t)s+1/2 Is(t)1/2 = (1 + t)s+1/2





∫

R

|ξ|2s

[
exp

(
−t

ξ2

1 + ξ2

)
− exp(−t)

]2

dξ





1/2

.
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The function Is(t) defined in (A.1) satisfies the differential equation

(A.2)
d

dt
Is(t) = −2Is(t) + 2

∫

R

As(ξ, t) dξ,

where

As(ξ, t) =
|ξ|2s

1 + ξ2
exp

(
−t

ξ2

1 + ξ2

)[
exp

(
−t

ξ2

1 + ξ2

)
− exp(−t)

]
.

For a given positive constant δ < 2p + 1, let us set

α = 1 − δ

2p + 1

Then we find

(A.3)

∫ (1+t)−α

0
As(ξ, t) dξ ≤

∫ (1+t)−α

0
|ξ|2s dξ =

1

2s + 1

(1 + t)δ

(1 + t)2s+1
.

If now |ξ| > (1 + t)−α we have

ξ2

1 + ξ2
≥ (1 + t)−2α

1 + (1 + t)−2α
=

1

1 + (1 + t)2α
≥ 1

2
(1 + t)−2α,

and

exp

(
−t

ξ2

1 + ξ2

)
− exp(−t) =

exp
(
−t ξ2

1+ξ2

)
− exp(−t)

−t ξ2

1+ξ2 + t

t

1 + ξ2
≤ t

1 + ξ2
.

The previous inequalities imply
∫ +∞

(1+t)−α
As(ξ, t) dξ ≤ t exp

(
−t (1 + t)−2α/2

) ∫ +∞

(1+t)−α

|ξ|2s

(1 + ξ2)2
dξ

≤ cs t exp
(
−t (1 + t)−2α/2

)
,(A.4)

where we denoted by cs the bounded constant

cs =

∫

R

|ξ|2s

(1 + ξ2)2
dξ.

Putting together inequalities (A.3) and (A.4) we conclude with the upper bound

(A.5) Ās(t) :=

∫

ξ∈R

As(ξ, t) dξ ≤ 1

2s + 1

(1 + t)δ

(1 + t)2s+1
+ cs t exp

(
−t (1 + t)−2α/2

)
.

Hence, considering that the second term in (A.5) decay faster at infinity than the first one, for any
given constant a > 0 there exists a bounded constant Ca such that if t > a

(A.6) Ās(t) ≤ Cat−(2s+1−δ).

Substituting inequality (A.6) into (A.2), we obtain, for a given a > 0, and t > a

Is(t) ≤ Is(a) e−2t + e−2t
∫ t

a
Ās(τ) e2τ dτ

≤ Is(a) e−2t + Ca e−2t
∫ t

a
τ−(2s+1−δ)e2τ dτ.

On the other hand, integration by parts shows that
∫ t

a
τ−(2s+1−δ)e2τ dτ ≤ e2t

2
t−(2s+1−δ) +

2s + 1 − δ

2a

∫ t

a
τ−(2s+1−δ)e2τ dτ.

Choosing a in such a way that
2s + 1 − δ

2a
≤ 1

2
,
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we conclude that, for t > a

e−2t
∫ t

a
τ−(2s+1−δ)e2τ dτ ≤ t−(2s+1−δ),

which implies

(A.7) Is(t) ≤ Is(a)e−2t + Cat−(2s+1−δ).

Using (A.7) into (A.1) gives

(A.8) Bs(t) = (1 + t)s+1/2Is(t)
1/2 ≤

√
Is(a)(1 + t)s+1/2e−t + (1 + t)δ/2

√
Ca.

Since δ is arbitrarily small, inequality (4.23) follows.
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