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We provide a general review of the properties of the non uniform superconducting Fulde Ferrell

Larkin Ovchinnikov (FFLO) phase. Special emphasis is made on the orbital and crystal structure effects

which may result in the quantum transitions between the higher Landau level states and should be

responsible for the strong modification of the anisotropy of the critical field. The FFLO type instability

may be also expected in ultracold Fermi gases. In these systems it is caused not by the Zeeman

interaction but by the tuning of the population imbalance between two lowest hyperfine states of the

atoms. We also briefly discuss their properties.
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1. Introduction

The non uniform superconducting state has been predicted
independently by Fulde Ferrell [1] and Larkin Ovchinnikov [2] in
1964. This phase is called now the Fulde Ferrell Larkin Ovchin
nikov (FFLO) phase and in their original works Fulde Ferrell and
Larkin Ovchinnikov considered superconductors in the magnetic
field acting on the electron spins only (the case of the paramag
netic effect). Usually it is an orbital effect which is most important
and this made difficult the experimental observation of the FFLO
phase. Moreover the superconductor must be in the clean limit
because electron scattering is detrimental for the FFLO phase [3].
The orbital effect may be weakened in heavy fermion super
conductors or in quasi 2D superconductors when magnetic field
is applied parallel to the superconducting planes. That is why the
evidences of the FFLO phase has been revealed in the heavy
fermion superconductor CeCoIn5 (see Ref. [4] and references cited
therein), and in organic quasi 2D superconductors l ðBETSÞ2 FeCl4
fr

rance.
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[5] and k ðBEDT TTFSÞ2 Cu(NCS)2 [6] as well as in some other
organic superconductors.

The physical reason of the FFLO state formation is that due to
the Zeeman splitting the Fermi momenta of the electrons with
opposite spin orientation are different. The singlet Copper pair
consists of two electrons ðkm, kkÞ and the total momentum of
the pair is zero. In the presence of Zeeman splitting the electrons
on the Fermi surface forming the Cooper pair should have
different momenta ðkm, kþqkÞ, where q� 2mBH=ð‘vF Þ (mB is
the Bohr magneton), and the resulting momentum of the Cooper
pair q is non zero. This results in the formation of the super
conducting condensate with a wave function modulated in space.
While it is rather difficult to observe the FFLO phase in super
conductors, the same physics is at the origin of the oscillatory like
proximity effect between a superconductor and a ferromagnet
and leads to many interesting phenomena observed in experi
ment [7]. We may illustrate the physics of the FFLO state also on
the basis of Ginzburg Landau (GL) approach. All the coefficients
of the GL functional could be calculated from the microscopical
theory and it occurs that starting from some limiting value of the
ratio mBH=T41:89 the gradient term in the GL functional changes
its sign. The FFLO state can be described in the framework of the
modified Ginzburg Landau (MGL) functional [8] with negative
gradient terms and additional higher derivative terms if the FFLO
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where aðH,TÞ ¼ a0ðT TcuðHÞÞ and Tcu(H) is transition temperature
of the uniform state, Pi ¼ i‘@=@xi ð2e=cÞAi are momentum
operators and Ai are the components of the vector potential.
Looking for the solution of the form C� expðiqrÞ, we immediately
see that the condition of the superconducting transition is
a0ðT TcuðHÞÞ gq2þgq4 ¼ 0, and the highest transition tempera
ture Tci ¼ TcuðHÞþðg2=4a0Þg corresponds to the transition to the
modulated state with the wave vector q0 ¼ g=2g

p
. The transition

into FFLO state occurs at ToTn
¼ 0:56Tc and mBH4Hn

¼ 1:06Tc .
2. FFLO state in the pure Pauli limit

The exact solution for the FFLO state is known only for the 1D
or quasi 1D superconductors [9 11]. The superconducting order
parameter is described by the Jacobi elliptic functions
DðzÞ � snðz,kÞ. This type of the soliton lattice solution has been
proposed previously for the doped polyacetylene [12]. Near the
transition from the normal to the superconducting state the
snðz,kÞ function is transformed into the usual sin(z) function,
while at the transition from FFLO (soliton lattice) state to the
uniform state the snðz,kÞ function corresponds to the large
domains of the uniform phase separated by the domain walls.
At low temperature the critical field of the FFLO transition
diverges and the paramagnetic limit is lifted.

In 2D superconductors near the tricritical point ðHn,Tn
Þ the

FFLO phase is the modulated structure with a single wave vector
[13,15,14]. With a decrease of the temperature this 1D pattern
transforms into a square modulation of the order parameter, and
then the 3 vectors, the 4 vectors, etc. order parameter spatial
structures appear in sequence [15]. In the 2D case at T¼0 the
paramagnetic limit for the FFLO phase is mBH2D

p ¼ 2D0 [16], which
exceeds the standard Chandrasekhar Clogston limit mBHpð0Þ ¼

2
p

D0, where D0 is BCS gap at T¼0 [17].
In 3D superconductors near the tricritical point the FFLO phase

also appears as a 1D modulated structure, while at lower
temperature the modulated phase should be square and then
cubic [14,18]. In 3D case at T¼0 the paramagnetic limit for the
FFLO phase is mBH3D

p ¼ 1:51D0 and only slightly exceeds the
Chandrasekhar Clogston limit see Fig. 1.

All calculations of the FFLO structure in 2D and 3D have been
performed within the framework of the isotropic model. However
the isotropic model may be hardly applied for real superconduc
tors because the higher derivative terms in general functional will
create the anisotropy even for cubic crystal symmetry and will
leave the degeneracy over the directions of the FFLO modulation
Fig. 1. Schematic phase diagram of the FFLO state in the plane (H,T) for a 2D

superconducting film. Magnetic field is parallel to the film surface.
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vector [19,20].
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Note that in the case of the d wave superconducting pairing the
additional anisotropy should appear due to the pairing potential. It
is worth mentioning that the fluctuational regime describing super
conducting correlations near the tricritical point ðHn,Tn

Þ by Eq. (2) is
very different from the usual BCS one case [21].
3. FFLO and orbital effects

In the framework of the isotropic model with s wave pairing
the critical field for the FFLO phase in presence of the orbital
effect has been calculated by Gruenberg and Gunther [22]. They
demonstrated that the FFLO state may only exist if the ratio of
pure orbital effect Horb

c2 ð0Þ and pure paramagnetic limit Hpð0Þ is
larger than 1.28, i.e. the Maki parameter aM ¼ 2

p
Horb

c2 ð0Þ=Hpð0Þ is
larger than 1.8. In Ref. [22] the exact solution for the order
parameter represents the FFLO phase with the modulation vector
directed along the magnetic field and the zero Landau level
function for the coordinates in perpendicular plane. Further
analysis [23] revealed that the higher Landau level solutions
(LLS) became relevant for large values of Maki parameter aM 49
and the Hc2ðTÞ curve may represent the regions described by
different LLS. This results obtained for isotropic model are readily
generalized for the case when the electron spectrum anisotropy is
described by elliptic Fermi surface [24]. In such case the Maki
parameter becomes angular dependent and the transitions
between different LLS phases may occur with a change of the
magnetic field orientation. Therefore we may expect the transi
tion between the usual FFLO state with zero Landau levels [22] to
the state with higher Landau levels [23,28] in quasi 2D super
conductors when the magnetic field is tilted from the perpendi
cular orientation to the parallel one. Note that as has been shown
in Ref. [24] the scaling transformation of the coordinates com
pletely maps the FFLO problem with the elliptic Fermi surface
into that with the spherical one and therefore the direction of the
FFLO modulation vector is arbitrary in the absence of orbital
effect.

Higher LLS naturally appear in 2D superconductors
[16,23,25,26] and result in the oscillatory like angular depen
dence of the critical field in the FFLO state [25]. The vortex lattices
corresponding to the higher LLS are pretty special they may
carry several flux quanta per cell and include vortices with
different vorticity [29,27] see Fig. 2.

For the adequate description of the FFLO state in real com
pounds the form of the Fermi surface as well as the type of the
superconducting pairing play a very important role because it
determines the direction of the FFLO modulation vector. This
circumstance has been demonstrated in Ref. [20] within the
framework of the general phenomenological approach based on
the modified MGL functional [8]. It occurs that the higher LLS may
be realized for arbitrary values of Maki parameter in contrast with
the isotropic model. This is because of the special mechanism of
the higher Landau level phase formation in 3D systems. Moreover
depending on various types of deviation of the Fermi surface from
isotropic form three possible solutions for the FFLO state can be
realized: (a) maximum modulation occurs along the magnetic
field with zero Landau level state, (b) both modulation and higher
Landau level state, and (c) highest possible Landau level and no
modulation along the field (or modulation with very small wave
vector).



Fig. 3. Schematic phase (H,T) diagram for a superconducting disk of a finite radius

in parallel magnetic field [33]. The transitions between the different orbital states

(L) are related to the commensurability effects between the period of FFLO

modulation and the disk radius R.

Fig. 4. Typical phase diagrams for 2D disk in the plane (H,T) for disk radii k0R 2;

5, where k0 is a wave vector of FFLO modulation [33]. The magnetic field is

described by the flux through the disk fa pR2H=F0.

Fig. 2. Square asymmetric vortex lattice described by the LLS with n 2 formed in

the presence of orbital and spin effects. The profiles of the amplitude of the

superconducting order parameter are shown. The dashed line represents the unit

cell with five zeros [27].
4. FFLO and cold gases

During the last decade a lot of attention has been attracted to
the ultracold Fermi gases in magneto optical traps a new type of
superfluid systems, which are considered as promising play
ground for the study of this intriguing phenomenon [30]. The
FFLO type instability in these systems is caused not by the
Zeeman interaction but by the tuning of the population imbalance
between two lowest hyperfine states of 6Li atoms. Experimentally
this population imbalance is governed by the radiofrequency
signal inducing transitions between the hyperfine states. Thus,
changing the population imbalance we should get the inhomo
geneous FFLO state with a certain intrinsic length scale and this
phenomenon is not masked by any kind of the orbital effect. The
orbital effect in such neutral atomic condensates is associated not
with magnetic field but with system rotation which is known to
be an important part of the experimental procedure of detection
of superfluidity in the ultracold gases. The interesting predictions
regarding the properties of such cold gas FFLO state has been
�

made for the 1D like traps see Ref. [31] and references therein,
and for 2D traps [32,33]. We may consider a superconducting disk
as a rough model of a cold gas in 2D trap. In such a case we could
expect a realization of FFLO state with different winding numbers
(orbital states La0) Figs. 3 and 4 [33]. However at the moment
the experimental observations of the FFLO phase in imbalanced
cold gases are still laking.
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