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Data Representativeness Based on Fuzzy Set

Theory

Frédéric Blanchard∗†, Philippe Vautrot, Herman Akdag and Michel Herbin

Abstract

This paper presents an original definition of data representativeness.

The representativeness of each datum in a dataset is a meaningful notion

quantified by a degree computed by aggregating fuzzy subsets. These

fuzzy subsets are obtained by fuzzifying data in a robust way. We illus-

trate the usefulness of the representativeness by presenting applications

for statistical location estimation,and for cluster analysis.

Keywords : Data Representativeness, Fuzzy Set Theory, Robustness,

Data Analysis, Clustering, Multidimensional data, Multivariate Analysis,

Ordinal Analysis, Rank Transformation.

1 Introduction

In the past few years the growing computing capabilities and the improvement
of data acquisition have led to the need for managing new kinds of data. The
extraction of information from datasets is a crucial task. Data-mining and data
analysis theories offer methods and techniques that allow exploration, descrip-
tion and explanation of these datasets.

In the context of statistical theory data sets are generally considered as rep-
resentative cross-sections of theoretical populations. More precisely, most of the
involved tools consist in estimating the parameters of a hypothetical underlying
distribution of the sample. Classical instances of location estimators are the
median and the mean. The standard deviation is a common dispersion estima-
tor. These tools predominantly study the probability distributions and are most
often based on assumptions about them. We assume that classical statistics are
often not representative of datasets.

The lack of data is another critical point. Data usually contain intrinsic
uncertainty or imprecision induced by the acquisition, the nature of the data
etc. In addition, real datasets often contain outliers and noisy data. Finally, it

∗CReSTIC, Rue des Crayères, BP 1035, 51687 REIMS Cedex 2, FRANCE
†Contact : frederic.blanchard@univ-reims.fr

1



is usually impossible to make the assumptions on the data distributions needed
by classical statistical and probability tools [17],[5].
To deal with these problems, some efficient concepts can be used. The theory
of fuzzy sets and the possibilistic approach, are common ways to deal with im-
precision and uncertainty. As said before, the sensivity to outliers is an element
that often leads the most common statistical methods to fail. The concept of
robustness, inherent to the non-parametric methods, offers ”resistance” to out-
liers. More generally, non-parametric concepts like ranks and order statistics
[19],[35],[38] permit both to beat the curse of outliers and noisy data, and need
no assumption on the data distributions.

Our goal is to propose a method that extracts information from data rela-
tively to the given dataset. The proposed tool has to be as insensitive as possible
to outliers and to deal with lack of data. As an important constraint, we wanted
to develop a non-parametric method needing no assumption on the distribution
of data [10],[17].
To address this question we have defined a new theoretical notion expressing the
representativeness of data, relative to a given dataset. This new notion affects
to each datum a quantitative information that expresses how this datum is rep-
resentative in the dataset. In other words, it can be viewed as a way to answer
the question: ”How reprentative is one datum in his sample ?”. By adapting
the semantics, we introduce different applications of this notion. By searching
the ”best representant” in a sample we define a new location estimator of the
underlying distribution. By finding some best representant of subgroup, and
linking data with these ”centers”, we propose an algorithm for cluster analysis.
How the representativeness is constructed ? Our concept of representativeness
is defined by using different efficient and eprouved concepts. The goal of our
methodology is to compute a degree of representativeness for each datum of a
dataset. This degree is computed as the aggregation of fuzzy subsets [41] asso-
ciated to data. The first step of our method consists in fuzzifying data [42],[7].
This fuzzification is not classical. We choose a robust technique that uses first
a rank transformation (see [36],[30],[23]) of the dissimilarity between data. This
technique makes our method free of assumption about the distribution [17],[10].
This way is really different from a classical fuzzy ranking or fuzzy ordering ap-
proach [16],[1]. The aggregation is then realized using an OWA operator defined
by Yager in [41]. This aggregation operator brings flexibility and permits to at-
tenuate the effect of outliers. Finally, we obtain for each element of the initial
dataset a value that quantifies how this element is representative in his set. In
this approach, the computation of representativeness is made exclusively on the
finite input dataset and not in an hypothetic underlying space. Although we
are not concerned by the problems of sampling, estimation or interpolation.

To illustrate the interest of our contribution we present its use in different
theoretical contexts. First we can use the representativeness as a location es-
timator. The simulations and the experimentations proove that our induced
statistic is efficient and gives better results than the median and other classical
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statistics. Its efficiency with different kind of distributions and in particular
with assymetric distributions is presented. Secondly we illustrate the use of the
representativeness for data clustering [22],[27],[32]. Our concept permits to link
data and to define clusters. One advantage of our approach is that the separa-
bility between clusters is not assumed to be linear.

The next section of this paper presents the theoretical basis and definitions
of our contribution. In section 3, we illustrate the use of the notion in two major
applications: statistical description of a sample, and data clustering. Finally we
discuss the different choices we made and propose a conclusion for this paper.

2 Theory

We decribe in this section the theoretic basis of our concept which is based on
the fuzzy set theory.

The concept of fuzziness was introduced in 1965 [42] to deal with impreci-
sion and vagueness. It allows for instance to represent and process imprecise
statements like “Bob is young”, “Alice is tall”, or rules like “if an obstacle is
close, then brake is immediately”.

In a data analysis problem, the nature of data depends on the domain of
application. We can have to analyze financial data, spatial data, or image data
for instance. In most of cases there is an intrinsic imprecision induced by the
acquisition technique. For example, in the case of image data, there is an im-
precision caused by the limitations of the captors. According to the resolution
of a captor, each pixel of a photography matches to different area’s size of the
captured scene. Therefore, the information contained in each pixel could be
disturbed and photos are sometimes blured or noisy. For each kind of data, it’s
necessary to consider and to manage imprecision and uncertainty. Fuzzy sets
and possibiliy theory are a common and efficient way to deal with this problem.

We introduce in this paper a notion of fuzziness of data relatively to its
dataset. This notion allows us to define a kind of fuzziness for data, depending
on the attributes of the dataset. This fuzzification step leads then to the defi-
nition of data representativeness in a dataset.

2.1 Data as fuzzy sets : a robust representation

As said before, real data are usually imprecise and the observations in datasets
can be subsequently represented as fuzzy sets.

Let Ω be a dataset formed by n observations. Ω = {x1, x2, . . . , xn}. We
decide to represent each xi (for each i ∈ I = {1..n}) as a Fuzzy subset. We note
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x̃i the corresponding fuzzy set.
The membership function associated to each fuzzy set x̃i is not defined as
usual[7],[4]. We chose to define these membership function with the intention
of dealing with outliers and with datasets where data are distributed according
to various and heterogenous underlying probability distributions.
In clustering problems [11],[20],[27],[28], real datasets contain often outliers and
noise. The data clusters are generally not well separated [15] and the corre-
sponding probability density functions could be very dissimilar (effectives could
be very different and density very dissemblable).
Non paramatric tools are classical to construct more robust methods. Rank
transformation of data is one these ways [10],[12],[17].
We decided to use this transformation when fuzzifying data. You will note too
that our fuzzification is deeply different from the concept of fuzzy rank statistic
[13] despite the fact that the theoretical tools involved are quite the same. The
rank transformation is introduced at the beginning of our method and is used
in the computation of the membership function of each fuzzy subset x̃i.

We suppose that we dispose of a dissimilarty measure on the set on Ω. Let δ

denote this dissimilarity measure. Therefore, we can consider the induced weak
orders family (-i)i=1..n such that ∀i ∈ [1..n],-i is defined by :

∀j, k ∈ [1..n], xj -i xk ⇔ δ(xi, xj) ≤ δ(xi, xk)

Note : a relation on a set is called weak order if it is reflexive and transitive.

We can then obtain from this weak orders family the rank table (R(i, j))i,j=1..n

defined by :
R(i, j) = σ−1

j (i)

where (σi)i=1..n is the permutation family on Ω such as :

∀i ∈ [1, n], xσi(1) -i xσi(2) -i . . . -i xσi(n)

In other words, the ith column of R contains the ranks of the elements of Ω
when sorting them by ascending value of dissimilarity measure with xi.

This operation could be seen as a rank transformation that is a common way
to make data analysis procedures more robust. The rank transformation con-
sists in replacing each quantitative value of a variable in a multivariate dataset
by the rank of this value. This transformation is frequently used and classical
techniques like PCA have corresponding induced “nonparametric” methods.
In our case, we consider that the dataset is the given dissimilarity table. Each
element is a datum and each datum is considerd as a descriptor too.
Let we describe this point. Let D = (di,j)i=1..n,j=1..n denote this dissimilarity
table of the dataset (xi)i=1..n. The element of the ith row and the jth column,
di,j , is the dissimilarity measure between xi and xj . Each datum xj induces a
set of n real values corresponding to the jth column of D and is viewed as a
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variable.
The rank transformation replaces each of these real values by its rank when the
set (dk,j), k = 1..n is ordered.

The first advantage of rank transformation is that the resulting methods are
less sensitive to outliers. In fact one abnormal value generates high distances
that could disturb a procedure base on the least square for instance. The cor-
responding ranks contain however no extreme values.

The second interest is that we make no assumption (of normality for in-
stance). Ranks are uniformaly distributed. This point is attrative by notably
allowing to deal with initially non symetric distributions.

According to this rank transformation we choose to consider that each datum
of the dataset Ω is a fuzzy set where fuzzy membership function is a discrete
function of the ranks of the data. If we consider the fuzzy set associated to
xi ∈ Ω, the degrees of membership to x̃i are defined by :

µx̃i
(xj) = g(σi(j)) = g(Rj,i) (1)

where g is a discrete monotonically decreasing function defined on [1, n] and
such that 0 ≤ g ≤ 1.

The subsequently particularity of the obtained function is that its evaluation
depends on the ranks of data. Each fuzzy datum x̃i is defined by using the same
function on the ranks. We call this function the shadow of the generated fuzzy
subset. If we consider the classical representation of membership function, we
can observe that the shapes of the fuzzy data are however different. The choice
of the shadow and his characteristics are presented in the following.

The shadow of the membership functions has to be choiced at the beginning
of the processus. The role of this function could be compared to the kernel
function in functional estimation problems.

In our context, it can be viewed as a scoring function. For instance, the
value of g(Rji) can be considered as a score assigned by x̃i to xj . This score,
assigned by xi to xk, is also a transformation of the rank assigned by xi to xj .
The value of this score is the degree of membership of xj to x̃i.
The constraints on the shadow function g are easy to explain and interpret.
For a given fuzzy data x̃i we want that the higher the rank of an element xj

the smaller its score. In other words, if the rank of xj is small its degree of
membership to x̃i has to be small. It justifies why g is forced to be decreasing.
Therefore, since the result of g applied to a rank values is a degree of member-
ship, g has to take values in [0, 1]

Let g be the Gaussian function: g(r) = e−
(r−1)2

s2 (where s ∈ R is the standard
deviation of the Gaussian function g). Experimentally, we can affirm that this
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Gaussian shadow is a satisfying choice by default. Other choices are proposed
in the discussion part.

In this section we have presented our particular data fuzzification procedure
where each element of the dataset is represented as one fuzzy set. We will now
introduce a new notion by representing the whole data set as a fuzzy set itself.

2.2 The dataset as a particular fuzzy set

In this section we define the whole data set as a fuzzy set computed using the
precedent step. This data set can be viewed as the aggregation of the n fuzzy
sets associated to data. After presenting the theoretical definition we propose
an application, and the interpretability of the notions will be exposed.

We define now a membership function of the fuzzy dataset Ω̃ (the so called
fuzzified Ω). This function is evaluated on each datum xi. Let us describe this
function evaluated on the datum xi ∈ Ω. Let (µx̃1

(xi), µx̃2
(xi), . . . , µx̃n

(xi)) and
w = (w1, . . . , wn) with each wi ∈ [0, 1] and

∑

wi = 1. We consider an ordered
weighted averaging operator (OWA) [41] of dimension n, Fw :

Fw : R
n → R : (y1, y2, . . . , yn) 7→

n
∑

j=1

wj .yj

and we define : ∀i ∈ [1..n],

µΩ̃(xi) = Fw ((µx̃1
(xi), µx̃2

(xi), . . . , µx̃n
(xi))) (2)

µΩ̃(xi) is the degree of membership of xi in the fuzzy set Ω̃.

2.3 Degree of representativeness

We have defined a particular way of representing data. It consists in represent-
ing each datum as a fuzzy set, and the whole dataset as another fuzzy set. It
allows to represents data individualy and globally using the relevantness of fuzzy
set theory.

We can see the degree of membership to Ω̃ as a notion of representativeness
resulting from the given dissimilarity measure. We can say that the high the
degree of membership of one datum to the fuzzy dataset, the more representa-
tive the considered datum. This notion of representativeness is relative to the
dataset.

It leads us to define the degree of representativeness.

Definition 1 The degree of representativeness DR of one datum in Ω is defined
by :

DR(xi) = µΩ̃(xi)
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We have exposed bellow a new framework for fuzzifying data. This approach
can be relevant in the context of data analysis and we present in this section an
example of application for the problem of unsupervised data clustering. The use
and the interest of the degree of representativeness will be exposed in section 3.

3 Illustrations

After exposing the theoretical concept of our contribution, we present different
kind of use in the field of data analysis. The first illustration introduce a purpose
of representativeness in the problem of location estimation of a distribution. The
second one illustrate the interest of representativeness in clustering problem.

3.1 The Best Representative : A robust location estima-

tor

Let us consider the problem of location estimation [26],[3]. The goal of location
estimation is to extract one datum or one value from the data sample or data
space, that reflects the ”location” of the data sample. In other terms, location
estimation consists in finding one observation that is as representative of the
sample as possible. A classical method consists in computing one statistic from
the sample [26],[3],[39]. This statistic can be viewed as the estimation of one
parameter of the underlying probability distribution [26]. The well known mean
and median are the probably the most used statistics to achieve it. The median
statistic is a robust location estimator contrary to the mean. It means that in
presence of outliers, the mean becomes often non significative contrary to me-
dian that remains efficient. The robustness [39] is an important characteristics
that makes the mean statistic obsolete when working on real data.

3.1.1 The best representative of a sample

We propose to use our representativeness notion as an objective function to be
optimized in order to determine the best representantive of a sample. Trivially,
the best representative of a data sample is the element of the set that is owning
the maximum degree of representativeness.

Thus we define the statistic we called best representative as follow :

Definition 2 The best representative of a data sample Ω = {x1, . . . , xn} is the
element of Ω whose degree of representativeness RD(xi) is the highest :

xBR = arg max
xi∈Ω

DR(xi)

Let us illustrate the interest and the characteristics of our statistic in some
simulations.
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3.1.2 Examples

The first point we want to highlight is the robustness [33] our the best represen-
tative of a sample. To exhibit it, we simulate a one dimensional data sample
composed by one population distributed according to a non-centred χ2 law (with
4 freedom degrees) , and an uniform noise. The noise represent 75% of the total
sample. The figure 1 shows the distribution of the sample and the values of
the best representative statistic versus the mean and the median statistics. We
observe that the best representative lies in the ”real” population contrary to the
mean statistic which value shifts to the noise. As it’s well known, the median
is sufficiently robust to ”resists” to this kind of noise.

Figure 1: Best representative Vs Median Vs Mean - Data with 75% noise

The second characteristic of our statistics is the meaning it keeps when the
sample is formed by several mixed subsamples. In fact, contrary to the mean
and the median which only shows the central location of a sample, our statistic
brings additional information. The best representative of a sample enhances the
location information with information of representativeness. The figures 2 and
3 illustrate this point.

The figure 2 represents the distribution of a simulated random sample com-
posed of two chi-square distributed subsamples (χ2(4) and χ2(24)). It shows
that the median and the mean of the sample give the central location of the
whole data sample. They do not consider the two different subsamples contrary
to the best representative that is located in the ”middle” of one of the two sub-
distributions. The best representative corresponds to one element of the initial
data sample that is as more representative as possible.
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This result is illustrated in a second example (figure 3). In this third ex-
ample, the sample is constitued of three subsamples that represent respectively
400, 200, and 100 elements of the sample. The median and the mean represent
two elements of the minority subpopulation contrary to the best representative
that is chosed in the majoritary sub-population.
This specificity is a real advantage in many cases. In fact, it permits to take ac-
count of the structure of the data sample. Classical statistics -that only traduce
a central tendency of the sample- extract elements or compute values that are
not representative in this given sample. If we consider for example a problem
of consumer behavior, our statistic offers to determine the person which is the
most representative in the sample of studied consumers. The median-people or
the average-people are not necesseraly representative (median) or can be ab-
stract (mean) (note that in the case of the mean, the results could be a ”virtual
average behavior” that corresponds to nobody in the sample).

Figure 2: Best representative Vs Median Vs Mean - 2 subsamples

The numerical values of the statistics in these three examples are contained
in the table 1.

3.2 A data clustering procedure based on representative-

ness

We will now describe another application of the representativeness degree in a
sample. This application offers a clustering procedure based on the degree of
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Figure 3: Best representative Vs Median Vs Mean - 3 subsamples

Statistic Example of fig. 1 Example of fig. 2 Example of fig. 3
Mean −16, 76 10, 19 16, 85

Median −11, 66 4, 99 7, 10
Best representative 0, 44 3, 89 4, 67

Table 1: Numerical values of the statistics in the three simulated examples
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representativeness seen as an objective function to be optimized.

3.2.1 Principle

The principle lies on a classical approach in data clustering [22],[27]. In the clus-
ter analysis field, we can find many algorithms based on the probability density
function. The idea is to condider the underlying probability density function of
the sample. Most of methods consists in estimating this density function and to
associate each datum to one mode of the estimated function. This association
induces a partition of the sample in clusters. More details about density based
clustering algorithms can be find in [34],[9],[25],[11].

The idea of our application is to use the degree of representativeness of the
data instead of the values of the estimated probability density function at these
data.

This choice permits to keep the major advantage of these techniques which
make no assumption on the shape of the clusters. That means for instance
that it does not suppose that the clusters are spherical (it ’s the case with the
k-means algorithm for example).

The second advantage of our technique is its effectiveness with clusters which
are distributed according to various densities and with clusters with different
effectives, contrary to the classical techniques cited above.

The procedure we use is described as follow :

Algorithm 1 Representativeness Based Clustering Procedure

Require: The data sample {x1, x2, . . . , xn}, ε the radius of a sphere Sε(c) cen-
tered in c.

Ensure: The associated mode (AM) of each point of the data sample
for all point xi of the data sample do

AM(xi)← xi

repeat

AM(xi)← arg max
xk∈Sε(AM(xi))

DR(xk)

until stabilization
return AM(xi) the mode associated to the point xi

end for

We will present our proposition in action in the following example.

3.2.2 Exemple

Let Ω be the two dimensional data sample whose graphical representation is pre-
sented in the figure 4 (Top left). After computing the representativeness of each
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datum (represented in the figure 4(Top right)), we use the process described
in the algorithm 1 to affect each datum to one mode of the representativeness
function. At each iteration of the process, we shifts from the current point to
the best representative of the neighborhood. So we obtain for each datum a
path to the mode in the data sample. The figure 4(Bottom Left) represents the
graph obtained by drawing these pathes on the representation of the represen-
tativeness. The so called graph is composed by two trees which define the data
clusters.
In fact, by grouping data which have the same associated mode, we obtain the
data clusters. Each final representative is the best representative of his induced
cluster. The figure 4(Bottom right) represents the labelized data according to
the obtaineed clusters.

Figure 4: Illustration of using representtivity in a clustering process. Top Left
: the two dimensional data sample. Top Right : 3D representation of the
representativeness of each datum of the data sample (representativeness as el-
evation). Bottom Left : pathes obtained by iterative association to local best
representative. Bottom Right : clusters obtained after labelization.

Despite the simplicity of the procedure, we constate immediately that our
method permits to deal with the non linearity of the separation between clus-
ters.
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4 Discussion

We have presented below the theoretical aspects of our contribution, we discuss
in this section some critical points and some choices we made.

4.1 Input data

The first point we have to discuss is the nature of the input data. Our method
to represent data starts with using dissimilarity between data. The only es-
sential precondition on the dataset is to have a way to compare data. This
not-restrictive background allows our technique to be used with many kind of
data and especially with multivariate data or non numerical data.
Therefore, as said in introduction of this paper, our method works on -and only
on- the given data. The working set is the input dataspace. The computa-
tion of the representativeness is not depending on any visionary or unsupported
assumptions about an underlying space of the data. Consequently, the use of
this technique presents some practical interest. In our clustering application for
instance, the representatives (the centers) of the clusters are extracted from the
dataset. So they could be considered as “real” epitomes or “real” prototypes
of the clusters, contrary to classical method that provides an imaginary mean
representative (e.g. k-means).

The second point concerns the choice of the function that computes the
degrees of membership to data as fuzzy sets from the ranks. We have called this
function the shadow of the membership functions.

4.2 Shadow of membership function

The choice of the function is large but can be inspired or leaded from classical
kernel functions or classical fuzzy membership functions (see for instance [8]) :

Let r be a rank value Ri,j ,

• Gaussian shadow :

g(r) = e−
(r−1)2

s2 s ∈ R

• flate shadow :

f(r) =

{

1 if r ≤ k

0 if r > k
k ∈ N

∗

• Epanechnikov shadow :

k(x) =

{

k − r2 if r2 ≤ k

0 if r2 > k
k ∈ N

∗

Graphic illustrations of each of these shapes are presented in the table
2. The choice of the shadows is not so critical. It permits to give more
flexibility to procedure for a better adaptability to the nature of data.
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Gaussian shape flate shape Epanechnikov shape triangular shape

Table 2: Shapes examples

In our applications, we obtains good results with different shapes. The clas-
sical Gaussian function is usually a good choice and could thus be considered
as an interessant choice by default. A different choice could be made according
to the nature of the considered data of for particular applications.

4.3 Weights vector in OWA

The choice of the weights is very subsequent and could be guided by the input
sample. We propose to design the weighting vector according to the trapezoid
profil represented on the figure 5. Let us explain the way we choose. We con-
sider that the first weights have to be null (I1 on the figure 5). This constraint
allows to ignore isolated data or very small group of data, when calculating the
degree of membership of this data in the sample. In other words, it offers to
treat the case of outliers. The second parameter permits to define the threshold
of maximal contribution of one datum. So in this interval, the weights are max-
imum (I2 on the Figure 5). Finally we consider that after a choosed threshold,
the weights are null, i.e. the contribution of the datum is insignificant. Between
these ranges, the weights are lineary calculated (I3 on the Figure 5).

After discussing the different possible choices of the methodology, we present
a different way of seeing our theoretical contribution. The idea is to expose
another point of view on the defined notions by presenting these notions as
objects in a different framework or context. In fact, our ”fuzzy approach”
can be expressed in a social choice theoretic context or in the framework of
”preferences”.

4.4 A different point of view

The degrees of membership to the sample fuzzy set can be interpreted as global
scoring values affected to each datum by the set of all the others. This global
score of one element is the result of the aggregation of the scores affected by
each others. This point of view permits to make a link with the field of the
social choice theory. In fact we can see the degrees of membership to each fuzzy
data as the expression of individual preferences. On the other hand, the degrees
of membership to the fuzzy data sample is close to the notions of collective
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Figure 5: Construction of weight vectors for OWA procedure

preference.

5 Conclusion

We have presented in this paper the notion of representativeness in a data sam-
ple. The framework and the theoretical basis of this concept are the fuzzy set
theory and data analysis. Our mathematical definition of the representativeness
of data permits to address to the question ”How one datum is representative in
its data sample ?”. The most immediate application of this approach is to con-
struct a satistical location estimator which is robust and which keeps meaning
and significance according to the underlying distribution. The use of represen-
tativeness in clustering problem is natural. By associating each datum to one
”good representant”, we create naturally a partition of the data set. Thus the
representativeness notion provides a usefull tool for cluster analysis.
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A Notations

Data
Ω the dataset
xi data (Ω = {x1, .., xn})
n number of data (n = Card(Ω))

Rank transformation
-i weak order induced by the dissimilarity with xi

Ri,j Rank of xj according to -i

Fuzzy data
x̃i fuzzyfied data (each x̃i is a fuzzy set)
µx̃i

(xj) membership degree of xi to x̃i

Agregation
w = (w1, . . . , wn) weights vector used in OWA
Fw OWA operator

Fuzzy dataset

Ω̃ fuzzyfied dataset

µΩ̃(xj) membership degree of xj to Ω̃

Table 3: Notations
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