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Magalhães,1, 3 J. G. Peixoto de Faria,1, 3 and M. C. Nemes4

1Programa de Pós-Graduação em Modelagem Matemática e Computacional,
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Abstract

We illustrate the equivalence between the non-unitary evolution of an open quantum system governed

by a Markovian master equation and a process of continuous measurements involving this system. We

investigate a system of two coupled modes, only one of them interacting with external degrees of freedom,

represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence

of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear,

one of them corresponding to a Zeno-like behavior in the limit of large dissipation.

1



The decoherence program is one of the most successfull theroretical proposals devised to give

suitable responses to the problem of quantum-to-classical transition (see [1] and references therein)

within the scope of the quantum theory itself. According to this program, isolated systems must

be considered as mere idealization and the emergence of classicality from quantum mechanics

is a consequence of the unavoidable interaction between a physical system and its environment.

The net effect of this interaction is the disappearance of the local quantum correlations between

preferred states1. The early formulations of this program assign the mechanism of decoherence

to the continuous monitoring of the system of interest by the surrounding particles [2–5]. These

formulations were devised to explain the quasilocalization of macroscopic bodies or symmetry

breaking in microscopic systems, like the observation of a well defined chirality in optical isomers.

One of the widespread ways to obtain the effective dynamics of an open quantum system con-

siders the microscopic model describing the coupling between the system of interest and the de-

grees of freedom of its environment. In general, the number of these environmental degrees of

freedom considered is very large, such that the irreversibility of the effective dynamics could be

guaranteed. In the limit of infinite external degrees of freedom, the environment is suitably mod-

eled by a thermal reservoir and the effective dynamics of the system of interest is governed by a

master equation obtained by tracing these external degrees of freedom out [6].

Another well known effect related to continuous measurements is the Quantum Zeno Effect

(QZE). In 1977 B. Misra and E. C. G. Sudarshan reported an intriguing result related to mea-

surements in Quantum Mechanics [7]. They showed that a sequence of projective measurements

on a system inhibits its time evolution. In the limit of continuous measurements the evolution is

completely frozen. Similarities with one of the paradoxes proposed by Zeno of Elea, who intend

to show that movement is theoretically impossible, motivated the authors to name the quantum

effect after the Greek philosopher. Originally the Quantum Zeno Effect was called the Quantum

Zeno Paradox, because it was supposed to show the theoretical impossibility of a “movement” (the

quantum evolution) of a decaying particle in a bubble chamber.

The Quantum Zeno Effect (QZE) plays an important role in Quantum Mechanics and enormous

literature about this topic has been produced over the last thirty years [8]. After the realization of

the pioneer experiment [9] on the effect, which showed the inhibition of transitions between quan-

tum states by means of frequent observations, the QZE became the center of fervorous debates

1 To be exact, the quantum correlations does not disappear. In fact, they are carried from the system to the environ-

ment and turned out inaccessible.
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[10, 11] about the necessity of the projection postulate on the measurement description. New

approaches have been proposed [10, 12] and the initial association between the QZE and the pro-

jection postulate was no longer a necessary ingredient. Nowadays the literature on this subject

is extensive and includes relation between QZE and quantum jumps [13, 14], quantum Zeno dy-

namics [15, 16], its implementation in the system of microwave cavities [17], and semiclassical

evolution for coupled systems obtained by frequent Zeno-like measurements [18]. With the in-

creasing interest in quantum computation, QZE has become also a tool for the development of

protocols on quantum state protection [19–21], that are important for the implementation of quan-

tum computation.

Although originally the QZE was considered as a result of a sequence of measurements on the

system of interest, the effect has also been predicted in different contexts, as an example we quote:

In Ref.[22] the authors suggested that a manifestation of the QZE appears in the relaxation of

optical activity in a medium. In Ref.[23] a relation between the QZE and the coherence properties

of a two-state system subjected to random influences in a medium is presented. In Ref.[24, 25] the

authors also show that the QZE can be induced by other physical interactions.

In the present work we study two completely distinct approaches to the dynamics of quantum

open systems. We consider the system composed by two coupled modes interacting unitarily,

where only one of them is coupled to external degrees of freedom. We show that the Zeno like

effect similar to the one shown in [25] is present in both dynamics. Firstly we couple to the system

of interest a dynamical environment over which we have control (interactions, number of com-

ponents, etc.). Secondly we simulate an experimental situation where the system is continuously

monitored by a probe system, again controlling interaction time, and other parameters.

We show that not only the conjecture is correct in the situations presented, but also a Zeno

like effect can be obtained for both cases, when the influence of the external system is sufficiently

strong. Precisely the same effect has been observed by modeling the tunneling of a photon between

two cavities, one of them whose dissipation is governed by a master equation [25].

I. COUPLING WITH A FINITE NUMBER OF HARMONIC OSCILLATORS

In this section we consider the system of two linearly coupled harmonic oscillators, one of them

coupled to an environment composed by a finite number of harmonic oscillators according to the
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Hamiltonian

Ĥ = ĤS + ĤR + Ĥint, ĤS = ω1â
†
1â1 + ω†

2â
†
2â2 +G

(

â†1â2 + â†2â1

)

, (1)

ĤR =

N
∑

k=3

ω†
kâ

†
kâk, Ĥint =

N
∑

k=3

γk

(

â†1âk + â†kâ1

)

,

where â†1 and â†2 (â1 and â2) are creation (annihilation) bosonic operators for the modes of interest

M1 and M2, and â†k and âk refer to the environment for k ranging from k = 3 to N . Defining

A =





















â1

â2

â3
...

âN





















, AD =





















â†1

â†2

â†3
...

â†N





















, H =





















ω1 G γ3 · · · γN

G ω2 0 · · · 0

γ3 0 ω3 · · · 0
...

...
...

. . .
...

γN 0 0 · · · ωN





















, (2)

we can write the Hamiltonian Ĥ in a matrix form:

Ĥ = A
T
D
HA. (3)

In order to preserve the hermiticity of the operator Ĥ , the matrix H must be hermitian. Without

loss of generality, we can consider it real and symmetric. Thus, there is an orthogonal matrix P

such that

P
T
HP =

















λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

















= D, (4)

where the λk are real numbers, which may be used to write the Hamiltonian in a diagonal form:

Ĥ = B
T
D
DB =

M
∑

k=1

λkb̂
†
k b̂k, (5)

where

B = P
T
A =

















b̂1

b̂2
...

b̂N

















, BD = P
T
AD =

















b̂†1

b̂†2
...

b̂†N

















. (6)
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Using the orthogonality of P, it is easy to show that canonical commutation relations hold for b̂k

and b̂†k:
[

b̂k, b̂
†
j

]

= δkj ,
[

b̂k, b̂j

]

=
[

b̂†k, b̂
†
j

]

= 0. (7)

The modes related to the operators âk shall be called the original modes; the ones concerning to

b̂k will be referred to as the normal modes.

In what follows, we assume that the main modes M1 and M2 are resonant and we consider that

the matrix H is a function of five positive parameters N , Ω, G, ∆ and Γ:

H =













































Ω G Γ√
N−2

Γ√
N−2

Γ√
N−2

Γ√
N−2

· · · Γ√
N−2

Γ√
N−2

G Ω 0 0 0 0 · · · 0 0

Γ√
N−2

0 Ω + ∆
N−2

0 0 0 · · · 0 0

Γ√
N−2

0 0 Ω− ∆
N−2

0 0 · · · 0 0

Γ√
N−2

0 0 0 Ω + 2 ∆
N−2

0 · · · 0 0

Γ√
N−2

0 0 0 0 Ω− 2 ∆
N−2

· · · 0 0
...

...
...

...
...

...
. . .

...
...

Γ√
N−2

0 0 0 0 0 · · · Ω + ∆
2

0

Γ√
N−2

0 0 0 0 0 · · · 0 Ω− ∆
2













































. (8)

The parameter Ω gives the frequency of the oscillators of interest, which are coupled accord-

ing to the constant G. The total number of environmental oscillators is (N − 2). Their fre-

quencies are distributed in a finite interval around Ω defined with the help of the parameter ∆:

[Ω−∆/2,Ω+∆/2]. If ∆ is large enough, the environmental modes out of this interval have

negligible effects over the oscillators of interest [26]. The environmental frequencies are equally

spaced distributed above and below the central frequency Ω. This choice is not essential for the

dynamics induced and for derivation of master equations: in fact, randomly distributed frequen-

cies lead, when N is large, to equivalent results. In derivations of master equations, it is usually

assumed reservoirs with infinite frequency range and dense spectrum. Infinite frequency range is

approximated by increasing ∆, and dense spectrum by decreasing ∆/ (N − 2); in order to achieve

both conditions simultaneously, we must have large values of ∆ and N . In this limit, a master

equation may derived from the Hamiltonian specified by Eq. (8). The parameter Γ is related to the

strength of the coupling with the environment. The choice of γk being proportional to 1/
√
N − 2

is consistent with assumptions usually performed in derivation of master equations that guarantee

finite decay rates in the thermodynamic limit N −→ ∞. Of course, all γk do not have to be equal
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for such derivations.

Since the b̂k are linear combinations of the âk, they share the same vacuum state |0〉. In order

to investigate the dynamics of the system plus environment in the space of one excitation, let us

define the states

|θk〉 = â†k |0〉 , |φk〉 = b̂†k |0〉 , k = 1 to N . (9)

Using Eqs. (6), we see that they are connected by

|θk〉 =
N
∑

j=1

Pk,j |φj〉 , |φk〉 =
N
∑

j=1

Pj,k |θj〉 , (10)

where Pi,j is the element of the matrix P in the i-th line and j-th column. Using these relations and

observing that Ĥ |φk〉 = λk |φk〉, we can calculate the evolution of the states with one excitation

in the original modes as

e−iĤt |θk〉 =
N
∑

j=1

Pk,je
−iĤt |φj〉 =

N
∑

l=1

(

N
∑

j=1

Pk,jPl,je
−iλjt

)

|θl〉 . (11)

The probability of finding one excitation in mode M2 if it is initially in this mode is

p (t) =

∣

∣

∣

∣

∣

N
∑

j=1

P 2
2,je

−iλjt

∣

∣

∣

∣

∣

2

. (12)

In Ref. [25], two regimes were found for the dynamics of such a probability calculated by using

the master equation corresponding to Hamiltonian (1) with resonant modes M1 and M2:

d

dt
ρ̂ = κ

(

2â1ρ̂â
†
1 − ρ̂â†1â1 − â†1â1ρ̂

)

(13)

− i
(

Ω
[

â†1â1 + â†2â2, ρ̂
]

+G
[

â†2â1 + â†1â2, ρ̂
])

.

Here, the density operator ρ̂ stands for the state of the composed system M1 + M2. In one of

the regimes, the increasing of the dissipation constant κ of mode M1 leads to the decreasing of

the permanence of the excitation in mode M2. This is expected, since mode M2 is connected to

the environment only through mode M1. The other regime was called Zeno regime: there, the

increasing of the interaction of M1 with the environment inhibits the transition of the excitation

from M2 to M1, leading to the enhancement of the probability of finding the excitation in M2.

The turning point between these regimes occurs for κ = 2G, where G is the unitary coupling

constant between the modes of interest. In the Appendix, we show that such a turning point

corresponds to Γ =
√

2∆G/π, what is corroborated by Figs. (1a) and (2a). The occurrence of
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two regimes may be understood with the help of the following analytically calculable cases: for

Γ = 0, p (t) = (1 + cos (2Gt)) /2; for G = 0, p (t) = 1. Depending on the relation between

Γ and G, the dynamics can be approached to one of these limiting cases. By comparing Figs.

(1a) and (2a) with Figs. (1b) and (2b), respectively, we see that the Hamiltonian and the master

equation approaches exhibit good agreement. In order to achieve such an agreement, we have

to pay attention to two aspects concerning the parameter ∆: it must be large enough so that

environmental modes with frequencies out of the interval [Ω−∆/2,Ω+∆/2] have negligible

action on the system (as pointed out in Ref. [26], the relevant environmental modes are the ones

with frequencies around the frequencies of the normal modes of the system Ω ± G); the ratio

∆/ (N − 2) must be small, allowing the use of the limit of dense spectrum.

II. SEQUENCE OF MEASUREMENTS

In this section we study the dynamics of two resonant coupled modes (M1, M2) and N atoms

interacting, one at the time, with mode M1. The sequence of interacting atoms represents, in the

limit of instantaneous interactions, a continuous measurement of the M1 excitation number. The

investigation shows that the two regimes reported in Ref. [25] and in the previous section are also

present if a sequence of atomic interactions is performed on mode M1. These results illustrate the

relation between continuous measurement of a quantum system and the dynamics governed by a

master equation.

The results are obtained by numerical simulations, where we consider, as in Ref. [25], the

system of modes M1 and M2 in the initial state |01, 12〉. A sequence of two level atoms interacts

with mode M1. The atoms are prepared in the ground state |g〉 and interact with mode M1 one at

the time. The Hamiltonian of the global system for the interaction of the k-th atom is given by

Ĥ(k) = Ω(â†1â1 + â†2â2) +G(â†1â2 + â†2â1) +
Ω

2
σ̂(k)
z + g(â†1σ̂

(k)
− + â1σ̂

(k)
+ ), (14)

where â†1 (â1) and â†2 (â2) are creation (annihilation) operators for modes M1 and M2, Ω their

frequency, G the modes coupling constant, σ̂
(k)
z = |e(k)〉〈e(k)| − |g(k)〉〈g(k)|, σ̂(k)

− = |g(k)〉〈e(k)|,
σ̂
(k)
+ = |e(k)〉〈g(k)| and g the coupling constant for the interaction between k-th atom and mode M1.

Here,
∣

∣g(k)
〉

and
∣

∣e(k)
〉

stand for the ground and the excited states of the k-th atom, respectively.

After each interaction we perform the trace over the corresponding atomic system, i.e., we do

not consider the final state of the atoms. We also assume that the coupling constant g scales as
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1/
√
tint, where tint is the interaction time of each atom [27]. The overall effect of these atomic

interactions with a cavity mode is a dissipative evolution of the mode. The effective dissipative

constant related to this process is κ = g2tint.

In Figs. (1c) and (2c) we shown two regimes for the probability of finding the excitation in

mode M2 (P(t)). In the dissipative regime (κ < 2G), the increasing of the dissipative constant κ

leads to the decreasing of P(t). In the second regime (κ > 2G), the increasing of the dissipative

constant κ leads to the increasing of P(t), preserving then the excitation in mode M2. It is worth

to note that the agreement with the master equation results is reached in the limit of vanishing

interaction time, tint. The increasing of interaction time leads the curves away from the ones

obtained by the master equation.

III. CONCLUSION

In the present work we investigate the two regimes of the system of two coupled modes, in-

duced by two completely different dynamics. In the first one we consider the mode M1 linearly

coupled to a finite number of harmonic oscillators, and in the second one we consider such mode

interacting with N atoms, one at the time. Both dynamics, in appropriate limits, can describe the

regimes obtained in [25] using a master equation. In the first model, when the number of harmonic

oscillators goes to infinity the coupling between them and the system of interest can simulate the

interaction with the environment. In the second model, the interaction with N atoms, when the

interaction time goes to zero, simulates continuous measurements. Therefore, the present results

illustrate the idea that the interaction between system of interest and environment can be inter-

preted as continuous measurement on the system of interest. The results for both dynamics were

obtained using numerical simulations. As no approximations were used in the calculations, the

analysis of intermediate scenarios, out of the master equations limits, is possible.
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Appendix A: Establishing the relation between the effective dissipation constant and the parame-

ters used in the Hamiltonian approach

The master equation employed in Ref. [25] is given by Eq. (13). It describes the dynamics

of two linearly coupled resonant modes, one of them interacting with an environment at zero

absolute temperature. Such a master equation may be derived as an approximation of the dynamics

emerging from the Hamiltonian Ĥ, leading, under the specifications in Eq. (8), to

κ =
Γ2

2 (N − 2)

τc
∫

−τc

dτ







N−2

2
∑

j=1

[

ei(νj−G)τ + ei(νj+G)τ
]







, (A1)

where νj = j∆/ (N − 2) and τc is a value of |τ | beyond which the summations above are negligi-

ble [26]. For N sufficiently large, we can take the limit of dense spectrum, resulting in

κ =
Γ2

2∆

∆

2
∫

∆

N−2

dω

τc
∫

−τc

dτ
[

ei(ω−G)τ + ei(ω+G)τ
]

. (A2)

Since the integrand is assumed to be negligible for |τ | > τc, we change ±τc for ±∞, which leads

to

κ =
πΓ2

∆

∆

2
∫

∆

N−2

dω [δ (ω −G) + δ (ω +G)] . (A3)

Observing that the term related to δ (ω +G) vanishes, we find, for ∆/ (N − 2) < G < ∆/2,

κ =
πΓ2

∆
.

The transition to the Zeno regime were found in Ref. [25] for κ = 2G. This corresponds to

Γ =

√

2∆G

π
. (A4)
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FIG. 1: (a) Evolution of the occupation of mode M2 according to the Hamiltonian approach for

N = 500, Ω = 100G, ∆ = 20G and Γ =
√

η∆G

π
with η = 2 (solid line), η = 8 (dashed line) and

η = 32 (dotted line). (b) Evolution of the occupation of mode M2 according to the master

equation approach for κ/G = 2 (solid line), κ/G = 8 (dashed line) and κ/G = 32 (dotted line).

Figure from Ref. [25]. (c) Evolution of the occupation of mode M2 during a sequence of

measurements probing the presence of the excitation in mode M1 for g =
√

2ηG
tint

with η = 2

(solid line), η = 8 (dashed line) and η = 32 (dotted line). For sake of comparison, in the plots (a)

and (c), a curve concerning a given value of η corresponds to the curve related to the same value

of κ/G in plot (b).
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FIG. 2: (a) Evolution of the occupation of mode M2 according to the Hamiltonian approach for

N = 500, Ω = 100G, ∆ = 20G and Γ =
√

η∆G

π
with η = 2 (solid line), η = 1/2 (dashed line)

and η = 1/8 (dotted line). (b) Evolution of the occupation of mode M2 according to the master

equation approach for κ/G = 2 (solid line), κ/G = 1/2 (dashed line) and κ/G = 1/8 (dotted

line). Figure from Ref. [25]. (c) Evolution of the occupation of mode M2 during a sequence of

measurements probing the presence of the excitation in mode M1 for g =
√

2ηG
tint

with η = 2

(solid line), η = 1/2 (dashed line) and η = 1/8 (dotted line). For sake of comparison, in the plots

(a) and (c), a curve concerning a given value of η corresponds to the curve related to the same

value of κ/G in plot (b).
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