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Abstract

FreeFem++ is an open source platform to solve partial differential equations numerically,
based on finite element methods. It was developed at the Laboratoire Jacques-Louis Lions,
Université Pierre et Marie Curie, Paris by Frédéric Hecht in collaboration with Olivier
Pironneau, Jacques Morice, Antoine Le Hyaric and Kohji Ohtsuka.

The FreeFem++ platform has been developed to facilitate teaching and basic research
through prototyping. FreeFem++ has an advanced automatic mesh generator, capable
of a posteriori mesh adaptation; it has a general purpose elliptic solver interfaced with
fast algorithms such as the multi-frontal method UMFPACK, SuperLLU . Hyperbolic and
parabolic problems are solved by iterative algorithms prescribed by the user with the
high level language of FreeFem++. It has several triangular finite elements, including
discontinuous elements. For the moment this platform is restricted to the numerical
simulations of problems which admit a variational formulation.

We will give in the sequel an introduction to FreeFem++ which include the basic of this
software. You may find more information throw this link http://www.freefem.org/ff++.
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1 Introduction

FreeFem++ is a Free software to solve PDE using the Finite element method and it run on
Mac, Unix and Window architecture.

In FreeFem++, it’s used a user language to set and control the problem. This language allows
for a quick specification of linear PDE’s, with the variational formulation of a linear steady
state problem and the user can write they own script to solve non linear problem and time
depend problem.

It’s a interesting tool for the problem of average size. It’s also a help for the modeling in
the sense where it allows to obtain quickly numerical results which is useful for modifying a
physical model, to clear the avenues of Mathematical analysis investigation, etc ...

A documentation of FreeFem++ is accessible on www.freefem.org/ff++, on the following
link www.freefem.org/ff++/ftp/FreeFem++doc.pdf, you may also have a documentation in
spanish on the following link http://www.freefem.org/ff++/ftp/freefem++Spanish.pdf

You can also download an integrated environment called FreeFem++-cs, written by Antoine
Le Hyaric on the following link www.ann. jussieu.fr/~lehyaric/ffcs/install.php

2 Characteristics of FreeFem-++

Many of FreeFem++ characteristics are cited in the full documentation of FreeFem++, we

cite here some of them :

— Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time
dependent, linear or nonlinear coupled systems; however the user is required to describe
the iterative procedures which reduce the problem to a set of linear problems.

— Easy geometric input by analytic description of boundaries by pieces, with specification
by the user of the intersection of boundaries.

— Automatic mesh generator, based on the Delaunay-Voronoi algorithm [LucPir98].

— load and save Mesh, solution.

— Problem description (real or complex valued) by their variational formulations, the write
of the variational formulation is too close for that written on a paper.

— Metric-based anisotropic mesh adaptation.

— A large variety of triangular finite elements : linear, quadratic Lagrangian elements and
more, discontinuous P1 and Raviart-Thomas elements, ...

— Automatic Building of Mass/Rigid Matrices and second member.

— Automatic interpolation of data from a mesh to an other one, so a finite element function
is view as a function of (x; y) or as an array.

— LU, Cholesky, Crout, CG, GMRES, UMFPack sparse linear solver.

— Tools to define discontinuous Galerkin finite element formulations PO, P1dc, P2dc and
keywords: jump, mean, intalledges.

— Wide range of examples : Navier-Stokes, elasticity, fluid structure, eigenvalue problem,
Schwarz’ domain decomposition algorithm, residual error indicator, ...

— Link with other software : modulef, emc2, medit, gnuplot, ...


www.freefem.org/ff++
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— Generates Graphic/Text/File outputs.
— A parallel version using mpi.

3 How to start?

All this information here are detailed in the FreeFem++ documentation.

3.1 Install

First open the following web page
http://www.freefem.org/ff++/

Choose your platform: Linux, Windows, MacOS X, or go to the end of the page to get the
full list of downloads and then install by double click on the appropriate file.

3.2 Text editor

1. For Windows :
Install notepad+-+ which is available at http://notepad-plus.sourceforge.net/uk/
site.htm
— Open Notepad++ and Enter F5
— In the new window enter the command FreeFem++ "$(FULL_CURRENT_PATH)"
— Click on Save, and enter FreeFem++ in the box ”Name”, now choose the short cut key
to launch directly FreeFem++ (for example alt+shift+R)
— To add Color Syntax Compatible with FreeFem++ In Notepad++,
— In Menu "Parameters"->"Configuration of the Color Syntax" proceed as fol-
lows:
— In the list "Language" select C++
— Add 7edp” in the field "add ext"
— Select "INSTRUCTION WORD" in the list "Description" and in the field "supple
mentary key word", cut and past the following list:
PO P1 P2 P3 P4 Pldc P2dc P3dc P4dec RTO RT1 RT2 RT3 RT4 macro plot intld
int2d solve movemesh adaptmesh trunc checkmovemesh on func buildmesh square
Eigenvalue min max imag exec LinearCG NLCG Newton BFGS LinearGMRES catch
try intalledges jump average mean load savemesh convect abs sin cos tan atan asin
acos cotan sinh cosh tanh cotanh atanh asinh acosh pow exp log logl0 sqrt dx dy
endl cout
— Select "TYPE WORD?” in the list ”"Description” and ... ” ”supplementary key word”,
cut and past the following list
mesh real fespace varf matrix problem string border complex ifstream ofstream
— Click on Save & Close. Now nodepad++ is configured.

2. For MacOS :
Install Smultron which is available at http://smultron.sourceforge.net. It comes
ready with color syntax for .edp file. To teach it to launch FreeFem++ files, do a ”command
B” (i.e. the menu Tools/Handle Command/new command) and create a command which
does


http://www.freefem.org/ff++/
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http://notepad-plus.sourceforge.net/uk/site.htm
http://smultron.sourceforge.net

/usr/local/bin/FreeFem++-CoCoa %%p

3. For Linux :
Install Kate which is available at ftp://ftp.kde.org/pub/kde/stable/3.5.10/src/
kdebase-3.5.10.tar.bz2

To personalize with color syntax for .edp file, it suffices to take those given by Kate for
¢++ and to add the keywords of FreeFem++. Then, download edp.xml and save it in the
directory ”.kde/share/apps/katepart /syntax”.

We may find other description for other text editor in the full documentation of FreeFem++.

3.3 Save and run

All FreeFem++ code must be saved with file extension .edp and to run them you may double
click on the file on MacOS or Windows otherwise we note that this can also be done in terminal
mode by : FreeFem++ mycode.edp

4 Syntax and some operators

4.1 Data types

In essence FreeFem++ is a compiler: its language is typed, polymorphic, with exception and
reentrant. Every variable must be declared of a certain type, in a declarative statement; each
statement are separated from the next by a semicolon “;”.

Another trick is to comment in and out by using the “//” as in C+4. We note that, we can
also comment a paragraph by using “/* paragraph */” and in order to make a break during
the computation, we can use “exit(0);”.

The variable verbosity changes the level of internal printing (0, nothing (unless there are
syntax errors), 1 few, 10 lots, etc. ...), the default value is 2 and the variable clock() gives the
computer clock.

The language allows the manipulation of basic types :

— current coordinates : x, y and z;

current differentials operators : d 0 d 4 d 4 d 0 d 9
o : X= — = — Z= — XV= ——— XZ= —
p 81', y ay? 827 y 9 8.:(:,2”
d 9 d 0 d g and d
z= —, dxx= —— = — and dzz= —;
v oyz’ dzz VY Ayy 0z2’

— integers, example : int a=1;

— reals, example : real b=1.; (don’t forget to put a point after the integer number)
— complex, example : complex c=1.+31i;

— strings, example : string test="toto";

— arrays with real component, example: real[int] V(n); where n is the size of V,
— arrays with complex component, example: complex[int] V(n);

— matrix with real component, example: real [int,int] A(m,n);

— matrix with complex component, example: complex[int,int] C(m,n);

>


ftp://ftp.kde.org/pub/kde/stable/3.5.10/src/kdebase-3.5.10.tar.bz2
ftp://ftp.kde.org/pub/kde/stable/3.5.10/src/kdebase-3.5.10.tar.bz2

— bidimensional (2D) finite element meshes, example : mesh Th;

— 2D finite element spaces, example : fespace Vh(Th,P1); // where Vh is the Id space
— threedimensional (3D) finite element meshes, example : mesh3 Th3;

— 3D finite element spaces, example : fespace Vh3(Th3,P13d);

— int1d(Th,I") C uxv ) :/u-vdx where I' C R;

r
— int2d(Th) ( uxv ) = / u - v dzdy where ) C R?;
9)
— int3d(Th) ( wxv ) = / w - v drdydz where Q C R3.
)

4.2 Some operators

We cite here some of the operator that are defined in FreeFem++:

+, _’ *’ /’ A,

<, >, <=, >=,

&, |, // where a & b = a and b, a | b = a or b
=, +=, —=, /=, *=, !=’ ==

4.3 Manipulation of functions

We can define a function as :

— an analytical function, example : func uO=exp(-x"2-y"2),ul=1.*(x>=-2 & x<=2);

— a finite element function or array, example : Vh u0=exp (-x"2-y"2) ;.
We note that, in this case u0 is a finite element, thus uO[] return the values of u0 at each
degree of freedom and to have access to the it element of w0 [] we may use u0[] [i].
We can also have an access to the value of u0 at the point (a,b) by using u0(a,b);

— a complex value of finite element function or array, example : Vh<complex> uO=x+11ix*y;

— aformal line function, example : func real g(int a, real b) { ..... ; return a+b;}
and to call this function for example we can use g(1,2).
We can also put an array inside this function as :

func real f(int a, reall[int] U){
Vh NU;
NU[]1=U;
return ax*xNU;

+

Vh U=x,FNU=f(5,U[]);

— macro function, example : macro F(t,u,v) [t*dx(u),t*dy(v)]//, notice that every
macro must end by “//”, it simply replaces the name F(t,u,v) by [t*dx(u),t*dy(v)]
and to have access only to the first element of F, we can use F(t,u,v) [0].

In fact, we note that the best way to define a function is to use macro function since in
this example t,u and v could be integer, real, complex, array or finite element, ...
For example, here is the most used function defined by a macro :

macro Grad(u) [dx(u),dy(u)]// in 2D




macro Grad(u) [dx(u),dy(u),dz(u)]// in 3D
macro div(u,v) [dx(u)+dy(v)]1// in 2D
macro div(u,v,w) [dx(u)+dy(v)+dz(w)]// in 3D

4.4 Manipulation of arrays and matrices

Like in matlab, we can define an array such as : real[int] U=1:2:10; which is an array of
5 values U[1]=2*i+1; i=0 to 4 and to have access to the i'® element of U we may use U(i).

Also we can define a matrix such as real[int,int] A=[ [1,2,3] , [2,3,4] 1; which is
a matrix of size 2 x 3 and to have access to the (i,j)th element of A we may use A(i,j).

We will give here some of manipulation of array and matrix that we can do with FreeFem++:

real [int] uw1=[1,2,3],u2=2:4; // defining ul and u2

real ulpu2=ul’*u2; // give the scalar product of ul and u2, here
wul’ is the transpose of ul;

real [int] uldu2=ul./u2; // divided term by term

real [int] ulmu2=ul.*u2; // multiplied term by term

matrix A=ul#*u2’; // product of ul and the transpose of u2

matrix<complex> C=[ [1,1i],[1+2i,.5%1i] 1];

real trA=trace([1,2,3]1%[2,3,4]’); // trace of the matrix

real detA=det ([ [1,2],[-2,1]1 1); // just for matrix 1x1 and 2x2

4.5 Loops and conditions

The for and while loops are implemented in FreeFem++ together with break and continue
keywords.
In for-loop, there are three parameters; the INITTALIZATION of a control variable, the
CONDITION to continue, the CHANGE of the control variable. While CONDITION is true,

for-loop continue.

for (INITIALIZATION; CONDITION; CHANGE)
{ BLOCK of calculations }

An example below shows a sum from 1 to 10 with result is in sum,

int sum=0;
for (int i=1; i<=10; i++)
sum += 1i;

The while-loop

while (CONDITION) {
BLOCK of calculations or change of control variables




is executed repeatedly until CONDITION become false. The sum from 1 to 5 can also be
computed by while, in this example, we want to show how we can exit from a loop in midstream
by break and how the continue statement will pass the part from continue to the end of the
loop :

int i=1, sum=0;

while (i<=10) {
sum += 1i; 1i++;
if (sum>0) continue;
if (i==5) break;

4.6 Input and output data

The syntax of input/output statements is similar to C++ syntax. It uses cout, cin, endl,
<< and >> :

int 1i;

cout << " std-out" << endl;
cout << " enter i= 7 ";

cin >> i ;

Vh uh=x+y;

ofstream f("toto.txt"); f << uh[]; // to save the solution
ifstream f("toto.txt"); £ >> uhl[]; // to read the solution

We will present in the sequel, some useful script to use the FreeFem++ data with other
software such as ffglut, Gnuplot !, Medit ?, Matlab 3, Mathematica*, Visit® when we save
data with extension as .eps, .gnu, .gp, .mesh, .sol, .bb, .txt and .vtu.

For ffglut which is the visualization tools through a pipe of FreeFem++, we can plot the solution
and save it with a .eps format such as :

plot (uh, cmm="t="+t+" sl lul |l _L~2="+NORML2 [kk], fill=true,value=
witrue ,dim=2) ;

For Gnuplot, we can save the data with extension .gnu or .gp such as :

{ ofstream gnu("plot.gnu"); // or plot.gp
//ofstream gnu("plot."+1000+k".gnu"); // to save the data
for (int i=0;i<=n;i++)
gnu<<xx [i]<<" "<<yy[il<<endl; // to plot yyl[il]l vs xx[i]
+
exec("echo ’plot \"plot.gnu\" w 1lp \
pause 5 \
quit’ | gnuplot");

http://www.gnuplot.info/

http://www.ann. jussieu.fr/~frey/software.html
http://www.mathworks.fr/products/matlab/
http://www.wolfram.com/mathematica/
https://wci.llnl.gov/codes/visit/
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Figure 1: Visualising of the solution using ffglut

For Medit, we can save the data with extension .mesh and .sol such as :

load "medit"

int k=0;

savemesh(Th,"solution."+(1000+k)+" .mesh") ;

savesol ("solution."+(1000+k)+".s0l",Th,uh);

medit ("solution",Th,uh); // to plot the solution here
k+=1;

And then throw a terminal, in order to visualize the movie of the first 11 saved data, we can
type this line :

ffmedit -a 1000 1010 solution.1000.sol

Don’t forget in the window of Medit, to click on “m” to visualize the solution!
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Figure 2: Visualising of the solution using Medit

For Matlab, we can save the data with extension .bb such as :

{ ofstream file("solution.bb");
file << "2 1 1 "<< Vh.ndof << " 2 \n";
for (int j=0;j<Vh.ndof ; j++)
file << uh[][j] << endl;

3

And in order to visualize with Matlab, you can see the script made by Julien Dambrine at
http://www.downloadplex.com/Publishers/Julien-Dambrine/Page-1-0-0-0-0.html.
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Figure 3: Visualising of the solution and the mesh using matlab
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For Mathematica, we can save the data with extension .txt such as :

int k=0;
{ ofstream ff("uhsol."+(1000+k)+".txt");
for (int i=0;i<Th.nt;i++){
for (int j=0; j <3; j++)
ff<<Th[i][j].x<<" "<< Th[i][j].y<<" "<<uh[][Vh(i,j)I<<endl;
ff<<Th[i] [0] .x<<" "<< Th[i][0].y<<" "<<uh[][Vh(i,0)]<<"\n";

22/07/2011

Author : Georges SADAKA — LAMFA — Amiens
BBM-BBM Soliton on a HARBOR at t = 0.0 [sec]

Figure 4: Visualising of the solution using Mathematica

For Visit, we can save the data with extension .vtu such as :

load "diovtk"

int k=0;

int [int] fforder2=[1,1,1];

savevtk ("solution."+(1000+k)+" .vtu",Th,uhl,uh2,order=fforder?2,
wdataname="UH1 UH2", bin=true);

k+=1;

11



DB: Propagation_tsunami_JAVA_Dynamic.10000000.vtu
Cyecl 10000000

Author: Georges Sadaka - LAMFA - Amiens.

18/03/2012

Figure 5: Visualising of the solution using visit

5 Construction of the domain ¢?

We note that in FreeFem++ the domain is assumed to described by its boundary that is on
the left side of the boundary which is implicitly oriented by the parametrization.
Let © be the rectangle defined by its frontier 092 = [—5,5] x [—1,1] where his vertices are
A(=b5,-1),B(5,—1),C(5,1) and D(—5,1), so we must define the border AB, BC,CD and DA
of 02 by using the keyword border then the triangulation 7, of €2 is automatically generated
by using the keyword buildmesh.

real Dx=.2; // discretization space parameter

int aa=-5,bb=5,cc=-1,dd=1;

border AB (t = aa, bb){x =t ;y = cc;label = 1

border BC (t = cc, dd){x = bb;y t ;label = 2

border CD (t = bb, aa){x =t ;y dd;label = 3;

border DA (t = dd, cc){x = aa;y = t ;label = 4

mesh Th = buildmesh( AB(floor (abs(bb-aa)/Dx)) + BC(floor (abs(dd-
wcc)/Dx)) + CD(floor (abs(bb-aa)/Dx)) + DA(floor (abs(dd-cc)/Dx)
-) )

plot ( AB(floor (abs(bb-aa)/Dx)) + BC(floor (abs(dd-cc)/Dx)) + CD(
wfloor (abs(bb-aa)/Dx)) + DA(floor (abs(dd-cc)/Dx)) ); // to see
= the border

plot ( Th, ps="mesh.eps"); // to see and save the mesh

The keyword label can be added to define a group of boundaries for later use (Boundary
Conditions for instance). Boundaries can be referred to either by name ( AB for example) or
by label ( 1 here).

12



label = 3

label label

label = 1
A B

Figure 6: Plot of the border (left) and the mesh (right)

Another way to construct a rectangle domain with isotropic triangle is to use :

mesh Th=square(m,n,[x,y]); // build a square with m point on x
wdirection and n point on y direction

mesh Thl=movemesh(Th, [x+1,y*2]); // translate the square
w]0,1[*]0,1[ to a rectangle ]1,2[*]0,2([

savemesh (Thl,"Name.msh"); // to save the mesh

mesh Th2("mesh.msh"); // to load the mesh

label=3

/

label label

label=1

Figure 7: Boundary labels of the mesh by square(10,10)

We can also construct our domain defined by a parametric coordinate as:

border C(t=0,2*pi){ x=cos(t);y=sin(t);label=1}
mesh Mesh_Name=buildmesh (C(50)) ;

13



Figure 8: mesh Th by build(C(50))

To create a domain with a hole we can proceed as:

border a(t=0,2*pi){ x=cos(t); y=sin(t);label=1;}

border b(t=0,2*pi){ x=0.3+0.3*cos(t); y=0.3*%xsin(t);label=2;}
mesh Thwithouthole= buildmesh (a(50)+b(+30));

mesh Thwithhole = buildmesh (a(50)+b(-30));

plot (Thwithouthole ,wait=1,ps="Thwithouthole.eps");

plot (Thwithhole ,wait=1,ps="Thwithhole.eps");
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Figure 9: mesh without hole Figure 10: mesh with hole

6 Finite Element Space

A finite element space (F.E.S) is, usually, a space of polynomial functions on elements of 7y,
triangles here, with certain matching properties at edges, vertices, ... ; it’s defined as :

fespace Vh( Th, P1 );

14



As of today, the known types of F.E.S. are: PO, P03d, P1, P13d, P1dc, P1b, P1b3d, P2,
P23d, P2b, P2dc, P3, P3dc, P4, P4dc, Morley, P2BR, RT0, RT03d, RT0Ortho,
Edge03d, P1nc, RT1, RT10rtho, BDM1, BDM1Ortho, TDNNS1; where for example:

P0,P03d piecewise constant discontinuous finite element (2d, 3d), the degrees of freedom are
the barycenter element value.

PO, = {ve L*(Q) | for all K € T, thereis ax € R: vx =ag} (1)

P1,P13d piecewise linear continuous finite element (2d, 3d), the degrees of freedom are the
vertices values.

Pl,={ve H(Q)|VK € Tp; vk € P} (2)

We can see the description of the rest of the F.E.S. in the full documentation of FreeFem++.

7 Boundary Condition

We will see in this section how it’s easy to define the boundary condition (B.C.) with
FreeFem++, for more information about these B.C., we refer to the full documentation.

7.1 Dirichlet B.C.

To define Dirichlet B.C. on a border I'y C R like u|p, = f, we can proceed as on(gammad,u=f),
where u is the unknown function in the problem.
The meaning is for all degree of freedom i of the boundary referred by the label “gammad”,
the diagonal term of the matrix a; = tgv with the terrible giant value tgv (=103 by default)
and the right hand side b[i] = " (I1,9)[i]” X tgv, where the ”(II,g)g[i]” is the boundary node
value given by the interpolation of g. (We are solving here the linear system AX = B, where
A = (a;)) and B = (b;)

i=1..n;5=1..m i=1..n )

If u is a vector like u = (ul,u2)” and we have ul|r, = f1 and u2|r, = f2, we can proceed
as on(gammad,ul=£f1,u2=£2).

7.2 Neumann B.C.

0
The Neumann B.C. on a border I';, C R, like 8—u|[‘n = g, appear in the Weak formulation
n

0
of the problem after integrating by parts, for example <8—u7 <I>> =(g;P)p = / g-®dr =
n T ! Ty

int1d(Th, gamman) (g*phi).

7.3 Robin B.C.

0
The Robin B.C. on a border I, C R; like au + /ia—u = b on I', where a = a(z,y) > 0,
n
k = k(z,y) > 0 and b = b(x,y); also appear in the Weak formulation of the problem after

0
integrating by parts, for example — </{a—u; <I>> = (au — b; Q) = / au- P dr — / b-®dr =
n r, ' , ,
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int1d(Th, gammar) (a*u*xphi)-int1d (Th, gammar) (b*phi).

Important: it is not possible to write in the same integral the linear part and the bilinear
part such as in int1d(Th,gammar) (a*u*phi-b*phi).

7.4 Periodic B.C.

In the case of Bi-Periodic B.C., they are achieved in the definition of the periodic F.E.S.
such as :

fespace Vh( Th, P1,periodic=[[1,x],[3,x],[2,y],[4,y]1] );

8 Solve the problem

We present here different way to solve the Poisson equation :
Find u : Q =|0,1[x]0, 1[— R such that, for a given f € L*(Q):

—Au = finQ
{ v = 0 on 0f) (3)

Then the basic variational formulation of (3) is :
Find u € H}(Q), such that for all v € H} (),

a(u,v) = Il(v) (4)

where

a(u,v) = /QVu -Vudzdy and l(v) = /Qf v dxdy

To discretize (4), let 7, denote a regular, quasi uniform triangulation of €2 with triangles of
maximum size h < 1, let Vi, = {vy, € C%(Q);vn|r € Py(T),VT € Tp; v, = 0 on 0} denote a
finite-dimensional subspace of HJ () where Py is the set of polynomials of R of degrees < 1.
Thus the discretize weak formulation of (4) is :

Find u;, € V}, :/

Vuy, - Vo, dedy — / fropdrdy =0 Yoy € Vj,. (5)
Q Q

8.1 solve

The first method to solve (5) is to declare and solve the problem at the same time by using
the keyword solve such as :

solve poisson(uh,vh,init=i,solver=LU) = // Solve Poisson Equation
int2d (Th) ( Grad (uh) ’>*Grad(vh) ) // bilinear form
-int2d (Th) (f*vh) // linear form
+on(1,2,3,4,uh=0); // Dirichlet B.C.
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The solver used here is Gauss’ LU factorization and when init # 0 the LU decomposition is
reused so it is much faster after the first iteration. Note that if the mesh changes the matrix is
reconstructed too.

The default solver is sparsesolver ( it is equal to UMFPACK if not other sparce solver is
defined) or is set to LU if no direct sparse solver is available. The storage mode of the matrix
of the underlying linear system depends on the type of solver chosen; for LU the matrix is
sky-line non symmetric, for Crout the matrix is sky-line symmetric, for Cholesky the matrix

is sky-line symmetric positive definite, for CG the matrix is sparse symmetric positive, and for
GMRES, sparsesolver or UMFPACK the matrix is just sparse.

8.2 problem

The second method to solve (5) is to declare the problem by using the keyword problem,
and then solve it later by just call his name, such as :

problem poisson(uh,vh,init=i,solver=LU)=// Definition of the

= problem
int2d (Th) ( Grad(uh) ’*Grad (vh) ) // bilinear form
-int2d (Th) (f*vh) // linear form
+on(1,2,3,4,uh=0); // Dirichlet B.C.
Poisson; // Solve Poisson Equation

Note that, this technique is used when we have a time depend problem.

8.3 wvarf

In FreeFem++, it is possible to define variational forms, and use them to build matrices and
vectors and store them to speed-up the script.

The system (5) is equivalent to :

Find up € Vh : a(uh,vh) = l(Uh) Vvh € Vh. (6)
Here,
M-1
uh(x7 y) = Z Uhi<25i(5’77 y) (7)
1=0

where ¢; = vp,;,7 =0, ..., M — 1 are the basis functions of V},, M = Vh.ndof is the number of
degree of freedom (i.e. the dimension of the space V) and uy; is the value of uj, on each degree
of freedom (i.e. up; =uh[][i]1=U).

Thus, using (7), we can rewrite (6) such as :
M-1
ZAUU}L]_F@:O, ZZO”M_L (8)
=0

where

Q Q
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The matrix A = (A;;) is called stiffness matriz.
We deduce from the above notation that (8) is equivalent to

AU=F«U=A"F (9)

which can be solve in FreeFem++ as :

int m=10,n=10;

mesh Th= square (m,n ,[x,y]);
fespace Vh( Th , P1 );

Vh uh,vh;

macro Grad (u) [dx(u),dy(u)]l// in 2D

func f=1;

varf a(uh ,vh) = int2d (Th) ( Grad (uh) ’* Grad (vh) ) // bilinear
= form

+on (1 ,2 ,3 ,4 , uh =0); // Dirichlet B.C.

matrix A=a(Vh ,Vh); // build the matrix

varf 1( unused ,vh) = int2d (Th) (f*vh); // linear form

Vh F; F[] = 1(0, Vh); // build the right hand side vector

set (A, solver = sparsesolver );
uh [] = A" -1xF [];

plot (uh);

And in 3D :

load "msh3"

load "medit"

int m=10,n=10;

mesh Th2= square (m,n ,[x,y]);

mesh3 Th=buildlayers(Th2,10,zbound=[0,1]);
fespace Vh( Th , P13d );

Vh uh,vh;

macro Grad (u) [dx(u),dy(u),dz(u)]// in 2D

func £f=1;

varf a(uh ,vh) = int3d (Th) ( Grad (uh) ’* Grad (vh) ) // bilinear
w form

+on (0, 1 ,2 ,3 ,4 ,5 , uh =0); // Dirichlet B.C.

matrix A=a(Vh ,Vh); // build the matrix

varf 1( unused ,vh) = int3d (Th) (f*vh); // linear form

Vh F; F[] = 1(0, Vh); // build the right hand side vector

set (A, solver = sparsesolver );

uh [] = A~ -1xF [];

medit ("sol",Th,uh) ;
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9 Learning by examples

9.1 Rate of convergence for the Poisson equation

At the beginning, we prove that the rate of convergence in space for the Poisson equation
code with P, finite element is of order 2.
In this example, we took zero Dirichlet homogenous B.C. on the whole boundary and we have
considered the following exact solution :

Uee = sin(mz) - sin(my)

Then, we compute the corresponding right hand side f(z,y) in order to obtain the L? norm of
the error between the exact solution and the numerical one (cf. Table 1)

E(u, hy,) = |up(hy) — tez(hy)| 2, Vi = 1,...,nref, h = dx = 1/N;
and then the rate of convergence in space

log (E(u, hn-1)/E(u, hy)) .
h,) = V=1, ..., f
7’(% ) log (hn—l/hn) /) nre

We give here a method to compute the right hand side using Maple®© :

[~ ui= unapply (sin(pi-x)-sin(pi-y),x, v);

u:=(x,p)—sin(mx) sin(ny) @
> f=-diff (u(xp), xx)-diff (u(x 1), 50); ,
JS=2sin(nx)n sin(my) Q?)
> with (CodeGeneration);
[ G, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate, A3)

VisualBasic)

(> Matlab (%%, resultname="1");
| f = 0.2el * sin(pi * x) * pi

A

2 * sin(pi * y);

We can copy and paste the result of f(z,y) in the FreeFem++ code.
We present here the script to compute the rate of convergence in space of the code solving the
Poisson equation :

int nref=4;
real [int] L2error(nref); // initialize the L2 error array
for (int n=0;n<nref;n++) {

int N=2"(n+4); // space discretization

mesh Th= square(N,N); // mesh generation of a square
fespace Vh(Th,P1); // space of Pl Finite Elements

Vh uh,vh; // uh and vh belongs to Vh

6. http://www.maplesoft.com/
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macro Grad(u) [dx(u) ,dy(u)]//
Vh uex=sin(pi*x)*sin(pi*y); // exact solution
Vh £=0.2el*sin(pi*x)*pi~2*sin(pi*y); // corresponding RHS
varf a(uh,vh) = int2d(Th) ( Grad(uh) ’*Grad(vh) ) // bilinear
= form
+on(1,2,3,4,uh=0); // Dirichlet B.C.
matrix A=a(Vh,Vh); // build the matrix
varf 1(unused ,vh) = int2d (Th) (f*vh) ; // linear form
Vh F; F[] = 1(0,Vh); // build the right hand side vector
set (A,solver=sparsesolver);
uh[] = A~-1xF[];
L2error[n]= sqrt(int2d (Th) ((uh-uex) ~2));

for(int n=0;n<nref ;n++)

cout << "L2error " << n << " = "<< L2error[n] <<endl;

for(int n=1;n<nref;n++)

cout <<"convergence rate = "<< log(L2error[n-1]/L2error[n])/
wlog(2.) <<endl;

N, E(u,hy) | r(u,hy)
16 0.0047854 -

32 | 0.00120952 | 1.9842
64 | 0.000303212 | 1.99604
128 | 7.58552e-05 | 1.99901

Table 1: L? norm of the error and the rate of convergence.

9.2 Poisson equation over the Fila’s face

We present here a method to build a mesh from a photo using Photoshop® and a script in
FreeFem++ made by Frédéric Hecht.
We choose here to apply this method on the Fila’s face. To this end, we start by the photo in
Figure 11, and using Photoshop®), we can remove the region that we wanted out of the domain
such as in Figure 12, then fill in one color your domain and use some filter in Photoshop®) in
order to smooth the boundary as in Figure 13. Then convert your jpg photo to a pgm photo
which can be read by FreeFem++ by using in a terminal window :

convert fila.jpg fila.pgm
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Figure 12: Using Photoshop.
Figure 11: Initial photo. Figure 13: Last photo.

Finally, using the following script :

load "ppm2rnm"

load "isoline"

string fila="fila.pgm";

real [int ,int] Curves (3,1);

int[int] be(1);

int nc;

{ // build the curve file xy.txt

real [int ,int] ff1(fila); // read 1image and set to an rect. array

// remark (0,0) is the upper, left corner.

int nx = ffl.n, ny=£ffl.m;

// build a cartesain mesh such that the origne is qt the right
wplace.

mesh Th=square(nx-1,ny-1,[(nx-1)*(x),(ny-1)*(1-y)]1);

// warning the numbering is of the vertices (x,y) is

// given by $§ i = x/nx + nx*x y/ny $

fespace Vh(Th,P1);

Vh £f1;

f1[]=ff1; // transforme array in finite element function.

real vmax = f1[].max ;

real vmin = f1[].min ;
real vm = (vmin+vmax)/2;
verbosity=3;

/ *

Usage of isoline

the named parameter

iso=0.25 // value of iso

close=1, // to force to have closing curve

beginend=be, // begin and end of curve

smoothing=.01, // nb of smoothing process = size“ratio * 0.01
where size is the size of the curve
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ratio=0.5
file="filename"

ouptut:
XX, yy the array of point of the iso value

a closed curve number n 1is

in fortran notation the point of the curve are:
(xx[i],yy[il, i = i0, il)
with : 1i0=be[2*n], dil=be[2*n+1];

*/
nc=isoline(Th,f1,iso=vm,close=0,Curves,beginend=be,smoothing
w=_005,ratio=0.1);
verbosity=1;
+
int icO0=be(0), icl=be (1) -1;
plot ([Curves (0,ic0:icl1),Curves(1,ic0:icl1)], wait=1);
// end smoothing the curve
macro GG(i)
border G#i(t=0,1)
{
P=Curve (Curves ,be(i*2) ,be(i*2+1)-1,t);
label=i+1;
+
real lg#i=Curves(2,be(i*2+1)-1); //
GG (0) GG (1) GG (2) GG (3) GG(4) // number of closing curve
real hh= -10;

cout << " .. "<<endl;
func bord = GO(lg0/hh)+G1(1lgl/hh)+G2(1g2/hh)+G3(1g3/hh)+G4(1lg4/hh
-);

plot (bord,wait =1);

mesh Th=buildmesh (bord) ;

cout << " ... "<<endl;

plot (Th,wait=1);
Th=adaptmesh(Th,5.,IsMetric=1,nbvx=1e6);
plot (Th,wait=1);
savemesh(Th,"fila.msh");

we can create the mesh of our domain (cf. Figure 14), and then read this mesh in order to solve
the Poisson equation on this domain (cf. Figure 15)

mesh Th("fila.msh");
plot (Th);

fespace Vh(Th,P1);
Vh uh,vh;
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func £ = 1.;

macro Grad(u) [dx(u),dy(u)]//

solve Poisson(uh,vh) = int2d(Th) (Grad (uh) ’*Grad(vh)) - int2d (Th) (
w fxvh) + on(1,2,3,4,5,uh=0) ;

plot (uh,dim=2,fill=true,value=true) ;

Figure 14: Mesh of the Fila’s face. Figure 15: Solution on the Fila’s face.

9.3 Rate of convergence for an Elliptic non linear equation
Let Q = B(O, R) C R?, it is proposed to solve numerically the problem which consist to find
u(z,y) such that

{ —Au(z,y)+u® = f forall (z,y) € Q CR? (10)

u(z,y) = 0 for all (x,y) on OS2
9.3.1 Space discretization
Let 75, be the triangulation of 2 and
Vi, = {v, € C*(Q); v4|7 € P1(T),YT € Ty, v, = 0 on 9N}

For simplicity, we denote by V(u) = u?, then the approximation of the variational formulation
will be :
Find w;, € V}, such that Vv, € V}, we have :

— (Aup;vp) + (V(up) - up;vn) = (f;0n)

thus
(Vup; Vor) + (V(up) - un; vn) = (f;on) (11)

In order to solve numerically the non linear term in (13), we will use a semi-implicit scheme
such as :

<VUZ+1; Vvh> + <V(UZ) . uzﬂ; Uh> = (f;vn),
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and then we solve our problem by the fixed point method in this way :

Set u) =up=0
Set V(up) = V(uo)
Set err = 1.

while (err > le — 10)
Solve <Vuz+1; Vun) = — (V(up) - up; on) + (f;vn)

Compute err = |[u} — ubt| L2
set V(u}) = V(ul™)

set uf = ult!

p=p+1

End while

In order to test the convergence of this method we will study the rate of convergence in space
(cf. Table 3) of the system (12) with R = 1 and the exact solution :

Uep = sin(z? +y* — 1).
Then, we compute the corresponding right hand side f(x,y) using Maple such as :

> u:::wquﬁ(sm(x2+Jg‘_l)wKY);
u;:(,r,y)—>sin(X2+y2—1) D

> = diff (w(xp), 2 x) -diff (u(xn ), ) Fuln)’s
S=4 sin()c2 —I—yz —1) X - 4cos()c2 —I-y2 —1) + 4sin(x2 +)/2 — 1))/2 + sin()c2 —I-y2 )
3
_1)
B simplify (% );
4sin(x2 +° - 1) X - 4COS(X2 o 1) +4 sin(x2 o 1))/2 + sin(Jf2 + 7 3)
2
—1) —sin(x2+y2— 1)cos(x2+y2—1)
> with (CodeGeneration);

[ G, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate, )
VisualBasic]

[ > Matlab ( 2%, resultname="1");

f =0.4el * sin((x " 2 +y "~ 2 -1)) * (x ~ 2) - 0.4el * cos((x

2+y " 2-1)) + 0.4el * sin((x " 2 +y ~ 2 -1)) * (y ~ 2) + sin

((x " 2+y " 2-1)) —=sin((x "2 +y " 2 -1)) *cos((x ~ 2 +y

"2 -1)) © 2;

We present here the corresponding script to compute the rate of convergence in space of the
code solving the Elliptic non linear equation (12):

verbosity=0.;
int nraff=7;
real [int] L2error(nraff); // initialize the L2 error array
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for (int n=0;n<nraff;n++) {

3

int N=2"(n+4) ; // space discretization

real R=1.; // radius

border C(t=0.,2.*xpi){x=R*cos(t);y=R*sin(t);label=1;};

mesh Th=buildmesh (C(N)) ;

fespace Vh(Th,P1);

Vh uh, uh0=0, V=uh0~2, vh;

Vh uex=sin((x =~ 2 + y =~ 2 - 1));

Vh f=0.4el * sin((x =~ 2 + y =~ 2 - 1)) *x (x =~ 2) - 0.4el * cos
-»((x ~2+y "2 -1)) + 0.4el * sin((x =~ 2 +y =~ 2 - 1))
wx (y ~ 2) + sin ((x = 2 +y ~ 2 - 1)) - sin((x ~ 2 + y ~
w2 - 1)) * cos((x =~ 2 +y =~ 2 - 1)) ° 2;

macro Grad(u) [dx(u),dy(u)]//

problem ELLNL (uh,vh) =

int2d (Th) (Grad (uh) ’*Grad(vh)) // bilinear term

+ int2d (Th) ( uh*V*vh ) // non linear term

- int2d (Th) ( f*xvh ) // right hand side

+ on(1,uh=0); // Dirichlet B.C.
real err=1.; // for the convergence

while (err >= 1e-10){

ELLNL;
err=sqrt (int2d (Th) ((uh-uh0) "2));
V=uh"2; // actualization
uhO=uh;
+
L2error [n]= sqrt(int2d (Th) ((uh-uex) "2));

for (int n=0;n<nraff;n++)

cout << "L2error " << n << " = "<< L2error[n] <<endl;

for(int n=1;n<nraff;n++)

cout <<"convergence rate = "<< log(L2error[n-1]/L2error[n])/
wlog(2.) <<endl;

N, E(u,hy) | r(u,hy)
16 0.015689 -

32 0.0042401 | 1.88758
64 | 0.00117866 | 1.84695
128 | 0.00032964 | 1.83819
256 | 8.48012e-05 | 1.95873
512 | 1.9631e-05 | 2.11095
1024 | 4.88914e-06 | 2.00548

Table 2: L2 norm of the error and the rate of convergence.
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9.4 Rate of convergence for an Elliptic non linear equation with big
Dirichlet B.C.

Let Q = B(O, R) C R?, it is proposed to solve numerically the problem which consist to find
u(z,y) such that

Au(z,y) = V(u)-u forall (z,y) € Q C R?, (12)
w(x,y) = DBC — +oo for all (z,y) on 0.
9.4.1 Space discretization
Let 75, be the triangulation of 2 and
Vi = {vn, € CY(Q);vp|r € PL(T),VT € Tp, v, = p on 00}, p — +o0.
Then the approximation of the variational formulation will be :
Find w;, € Vj, such that Vv, € V;, we have :
(Auh; Uh> = (V(uh) * Up, Uh>
thus
— (Vup; Vo) = (V(un) - un; vn) (13)

In order to solve numerically the non linear term in (13), we will use a semi-implicit scheme
such as :

= (Vi Von) = (V) - ™ on)

and then we solve our problem by the fixed point method in this way :

Set u) =ug=DBC,p=0
Set V(up) = V(ug)
Set err = 1.

while (err > le — 10)
Solve — (Vul™:Vuy) = (V(u}) - ul;vp)

Compute err = |[u}l —ul™"| L2
set V(u}) = V(ul™)
p=p+1L

End while

In order to test the convergence of this method we will study the rate of convergence in space
(cf. Table 3) for an application of (12), where R = 1,V(u) = u, DBC = 0 or DBC = 50.
The system to be solved is then

Au(z,y) —u* = f forall (z,y) € Q= B(0,1) C R? (14)
u(z,y) = DBC for all (z,y) on 0f. (15)

In this case, we will the following exact solution :
Uy = DBC +sin(2® +y* — 1).

Then, we compute the corresponding right hand side f(z,y) using Maple such as :

We present here the corresponding script to compute the rate of convergence in space of the
code solving the Elliptic non linear equation (14):
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> u:=:un@mﬂ?([ﬂﬂf+-ﬁn(x2—ky2——l)wny);
u:=(1;y)—+[bﬂf+—ﬁn(xz—ky2——1)
> = dif (), xx) + diff (u(p) ) = u(np) s
/¥=—4sm(x2—%y2——l)xz%—4cos(x2+1y2——l)——4sm(x2+gy2——1)y2——([M%T
+sin(2 42 —1))°

[ > with ( CodeGeneration ),
[ C, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate,

VisualBasic)

> Matlab ( %%, resultmame="1");

24+y "2 -1)) -0.4el * sin((x ~ 2 +y ~ 2 -1)) * (y ~ 2) -
| (DBC + sin((x "~ 2 +y ~ 2 -1))) ~ 2;

f =-0.4el * sin((x " 2 +y "~ 2 -1)) * (x © 2) + 0.4el * cos((x *

(0))

(0]

©))

int nref=7;
real [int] L2error(nref); // initialize the L2 error array
for (int n=0;n<nref;n++) {
int N=2"(n+4); // space discretization
real R=1.; // radius
border C(t=0.,2.*pi){x=R*cos(t);y=R*xsin(t);label=1;};
mesh Th=buildmesh (C(N)) ;
fespace Vh(Th,P1);
real DBC=0.;
Vh uh, uhO0O=DBC, V=uhO, vh;
Vh uex=DBC+sin((x ~ 2 + y =~ 2 - 1));

Vh f=-0.4el * sin((x ~ 2 +y =~ 2 - 1)) * (x =~ 2) + 0.4el x

wcos((x ~ 2 +y ~ 2 - 1)) - 0.4el % sin((x =~ 2 + y ~
wi1)) * (y ~ 2) - (DBC + sin((x =~ 2 +y ~ 2 - 1))) ~
macro Grad(u) [dx(u),dy(u)]//
problem ELLNL (uh,vh) =

- int2d (Th) (Grad (uh) >*Grad (vh)) // bilinear term

- int2d(Th) ( uh*Vxvh ) // non linear term
- int2d(Th) ( f*vh ) // right hand side
+ on(1,uh=DBC) ; // Dirichlet B.C.
real err=1.; // for the convergence
while (err >= 1e-10){
ELLNL;
err=sqrt (int2d (Th) ((uh-V) ~2));
V=uh; // actualization

}
L2error[n]= sqrt(int2d (Th) ((uh-uex) ~2));

3

for(int n=0;n<nref ;n++)
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cout << "L2error " << n << " = "<< L2error[n] <<endl;
for(int n=1;n<nref ;n++)
cout <<"convergence rate = "<< log(L2error[n-1]/L2error[n])/
wlog(2.) <<endl;
N, | E(u, hy,), DBC=0 | r(u, hy), DBC=0 | E(u, hy,), DBC=50 | r(u, hy), DBC=50
16 0.0159388 - 0.00610357 -
32 0.00455562 1.80683 0.00244016 1.32268
64 0.00118025 1.94855 0.000767999 1.6678
128 0.000335335 1.81542 0.000210938 1.86429
256 8.6533e-05 1.95428 5.67798e-05 1.89337
512 1.9715e-05 2.13395 1.40771e-05 2.01203
1024 4.90847e-06 2.00595 3.56437e-06 1.98163

Table 3: L2 norm of the error and the rate of convergence.

9.5 Rate of convergence for the Heat equation

Let Q =)0, 1[?, we want to solve the Heat equation :

gr A=

u(z,y,0) =
u =

9.5.1 Space discretization

f(x,y,1)

U()(.I',y)7
0 on 09.

Let 75, be the triangulation of 2 and

for all (z,y) € Q C R% t,u € R,

Vi = {un € CY(Q);vp|r € PL(T),VT € Tp,, v, = 0 on 0Q}.

Then the approximation of the variational formulation will be :
Find w;, € Vj, such that Vv, € V};, we have :

Thus

(

8uh.

W’Uh> — (- Aups on) = (f;0n)

<%;Uh> + - (Vup; Vou) = (f;vn)

9.5.2 Time discretization

(

We will use here a §-scheme to discretize the Heat equation (17) as :

n+1

Up,

n

At
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(16)

(17)

3”h>+M‘9<VUZ“;V%>+M‘(1—9> (Vup; Vo) = 0-(f" o) +(1=0) - (f*; vn) -



Therefore :

n+1 n
(om0 (0 V) = (S ) pe(1-0) (T T 10500+ (L0 n)

At
(18)
To resolve (18) with FreeFem++, we will write it as a linear system of the form :
M1
=0

where, M is the degree of freedom, the matrix A, ; and the arrays X; and B; are defining as :

tgv = 10%° ifi e 0 and j =1
X Usp s Aij / ¥i¥s +p-0-Vo,Vpdedy if j#i
o At
tgv = 103 if 1 € 00
B = / UZ_S? —pu-(1=0)-VupVe,+ (0 "'+ (1—=0) - f") pidady otherwise
Q
We note that the §-scheme is stable under the CFL condition (when 6 € [0,1/2]) :
At At 1

i = e -
Az +'UAy —2-(1-20)
In our test, we will consider that Az = Ay and that CF'L €]0, 1], then when 6 € [0,1/2][, the
f-scheme is stable under this condition :
' 2
At < CFL - (Ax) |

4-p-(1—20)
and for 0 € [1/2, 1], the #-scheme is always stable.
We note also that due to the consistency error :

el < cAt|20 — 1|+ O (Az®) + O (Ay?) + O (A?),

the #-scheme is consistent of order 1 in time and 2 in space when 6 = 0 (with the CFL condition)
and when 0 = 1 (with At = (Ax)?) and the #-scheme is consistent of order 2 in time and in

space when 6 = 1/2 (with At = Ax) (cf. Table 4).

Remark. When we use finite element, mass lumping is usual with explicit time-integration
schemes (as when 6 € [0,1/2[). It yields an easy-to-invert mass matrix at each time step,
while improving the CFL condition [Hug87]. In FreeFem++, mass lumping are defined as
int2d(Th,qft=qf1pTlump).

In order to test numerically the rate of convergence in space and in time of the #-scheme, we

will consider the following exact solution :
Uey = sin(mz) - sin(my)es™®.

Then, we compute the corresponding right hand side f(z,y) using Maple such as :
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(> = unapply (sin(pi-x)-sin(pi-y)-exp(sin(7) ), x,3; );
u:=(xy¢)—>sin(nx)sin(ny)e
> fi= diff (w(x 0), 1) — muediff (u(x ), 0) — musdiff (u( 0 1))
»ﬂzsm(nx)Sm(nf)Coﬂf)gmw)*‘2usm(nx)nzsm(ny)e“M”
B simplify (% );

sin(7)

. . i 2
sin(7 x) Mn(n)/)emml)(am(t)4-2pln )
[ > with ( CodeGeneration );
[ C, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate,

VisualBasic)

B Matlab ( %%, resultname="1");
f = sin(pi * X) * sin(pi * y) * exp(sin(t)) * (cos(t) + 0.2el * mu
|+ pi " 2);

we remind that the rate of convergence in time is

Y ny ''n log (dtnfl/dtn> Y VAR

(0))

@)

(©))

“)

macro Grad(u) [dx(u) ,dy(u)]//

macro uex(t) (sin(pi*x)*sin(pix*y)x*exp(sin(t)))//

macro f(t) ( sin(pi * x) * sin(pi * y) * exp(sin(t)) * (cos(t) +
w 0.2el * mu * pi ~ 2) ) //

real t, dt, h,T=.1, mu=1., CFL=1., theta=0.;

int nref=4;

real [int] L2error(nref); // initialize the L2 error array

real [int] Dx(nref); // initialize the Space discretization array
real [int] DT(nref); // initialize the Time discretization array

for (int n=0;n<nref;n++) {

int N=2"(n+4) ;

t=0;

h=1./N;

Dx[n]l=h;

if (theta<.5)
dt=CFL*h~2/4./(1.-2.*xtheta) /mu;

else if (theta==.5)
dt=h;

else
dt=h"2;

DT [n]=dt;

mesh Th=square(N,N);

fespace Vh(Th,P1);

Vh u,u0,B;
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varf a(u,v) = int2d(Th,qft=qflpTlump) (u*xv/dt + Grad(u) ’*Grad(
wy)xtheta*mu) + on(1,2,3,4,u=0);
matrix A = a(Vh,Vh);
varf b(u,v) = int2d(Th,qft=qflpTlump) (u0*v/dt - Grad(ul) ’x
wGrad(v)*(1.-theta)*mu ) + int2d(Th,qft=qfipTlump) ( (f(t+
wdt)*theta+f(t)*(1.-theta))*v ) + on(1,2,3,4,u=0);
u=uex (t) ;
for (£t=0;t<=T;t+=dt){
ul=u;
B[] = b(0,Vh);
set (A,solver=sparsesolver);
ul] = A~-1%B[];

}
L2error [n]l=sqrt (int2d (Th) (abs (u-uex(t)) ~2));
}
for(int n=0;n<nref ;n++)
cout << "L2error " << n << " = "<< L2error[n] <<endl;
for(int n=1;n<nref;n++){
cout <<"Space convergence rate = "<< log(L2error[n-1]/L2error
w[n])/log(Dx[n-1]/Dx[n]) <<endl;
cout <<"Time convergence rate = "<< log(L2error[n-1]/L2error([
wn])/log(DT[n-1]1/DT[n]) <<endl;
}
| N, | 16| 32 \ 64 S
E(u,hy,), 8 =0 0.00325837 | 0.000815303 | 0.000203872 | 5.09709e-05
r(u,hy), =0 - 1.99874 1.99967 1.99992
r(u, dtp, hy), 0 =0 - 0.99937 0.999834 0.99996
E(u,hy), 6 =1/2 | 0.00325537 | 0.000819141 | 0.000203817 | 5.08854e-05
r(u, hy), 0 =1/2 - 1.99064 2.00684 2.00195
r(u, dt,, hy), 0 =1/2 - 1.99064 2.00684 2.00195
E(u,hy), 0 =1 0.00323818 | 0.000807805 | 0.000201833 | 5.04512e-05
r(u,hy), 0 =1 - 2.0031 2.00084 2.0002
r(u, dtp, hy), 0 =1 - 1.00155 1.00042 1.0001

Table 4: L? norm of the error and the rate of convergence in space and in time for different 6.

10 Conclusion

We presented here a basic introduction to FreeFem++ for the beginner with FreeFem++. For
more information, go to the following link http://www.freefem.org/ff++.

31


http://www.freefem.org/ff++

Acknowledgements : This work was done during the CIMPA School - Caracas 16-27 of
April 2012. T would like to thank Frédéric Hecht (LJLL, Paris), Antoine Le Hyaric (LJLL, Paris)
and Olivier Pantz (CMAP, Paris) for fruitful discussions and remarks.

References
[Hug87] Tromas J. R. HUGHES. The finite element method. Prentice Hall Inc., Englewood

Cliffs, NJ, 1987. Linear static and dynamic finite element analysis, With the collaboration
of Robert M. Ferencz and Arthur M. Raefsky. 29

[LucPir98] BRIGITTE LUCQUIN AND OLIVIER PIRONNEAU. Introduction to Scientific
Computing. Wiley, 1998. PDF. 3

32


http://www.abebooks.com/9780471972662/Introduction-Scientific-Computing-Lucquin-Brigitte-0471972665/plp

	Introduction
	Characteristics of FreeFem++
	How to start?
	Install
	Text editor
	Save and run

	Syntax and some operators
	Data types
	Some operators
	Manipulation of functions
	Manipulation of arrays and matrices
	Loops and conditions
	Input and output data

	Construction of the domain 
	Finite Element Space
	Boundary Condition
	Dirichlet B.C.
	Neumann B.C.
	Robin B.C.
	Periodic B.C.

	Solve the problem
	solve
	problem
	varf

	Learning by examples
	Rate of convergence for the Poisson equation
	Poisson equation over the Fila's face
	Rate of convergence for an Elliptic non linear equation
	Space discretization

	Rate of convergence for an Elliptic non linear equation with big Dirichlet B.C.
	Space discretization

	Rate of convergence for the Heat equation
	Space discretization
	Time discretization


	Conclusion

