Georges Sadaka
email: georges.sadaka@u-picardie.fr

Olivier Pironneau

Jacques Morice

Antoine Le Hyaric

Kohji Ohtsuka

FreeFem ++ , a tool to solve PDEs numerically

published or not. The documents may come

FreeFem++, a tool to solve PDEs numerically

Introduction

FreeFem ++ is a Free software to solve PDE using the Finite element method and it run on Mac, Unix and Window architecture.

In FreeFem ++ , it's used a user language to set and control the problem. This language allows for a quick specification of linear PDE's, with the variational formulation of a linear steady state problem and the user can write they own script to solve non linear problem and time depend problem.

It's a interesting tool for the problem of average size. It's also a help for the modeling in the sense where it allows to obtain quickly numerical results which is useful for modifying a physical model, to clear the avenues of Mathematical analysis investigation, etc ... A documentation of FreeFem ++ is accessible on www.freefem.org/ff++, on the following link www.freefem.org/ff++/ftp/FreeFem++doc.pdf, you may also have a documentation in spanish on the following link http://www.freefem.org/ff++/ftp/freefem++Spanish.pdf You can also download an integrated environment called FreeFem ++ -cs, written by Antoine Le Hyaric on the following link www.ann.jussieu.fr/ ~lehyaric/ffcs/install.php 2 Characteristics of FreeFem++ Many of FreeFem ++ characteristics are cited in the full documentation of FreeFem ++ , we cite here some of them :

-Multi-variables, multi-equations, bi-dimensional and three-dimensional static or time dependent, linear or nonlinear coupled systems; however the user is required to describe the iterative procedures which reduce the problem to a set of linear problems. -Easy geometric input by analytic description of boundaries by pieces, with specification by the user of the intersection of boundaries. -Automatic mesh generator, based on the Delaunay-Voronoi algorithm [START_REF] Lucquin | Introduction to Scientific Computing[END_REF].

-load and save Mesh, solution.

-Problem description (real or complex valued) by their variational formulations, the write of the variational formulation is too close for that written on a paper. -Metric-based anisotropic mesh adaptation.

-A large variety of triangular finite elements : linear, quadratic Lagrangian elements and more, discontinuous P1 and Raviart-Thomas elements, ... -Automatic Building of Mass/Rigid Matrices and second member.

-Automatic interpolation of data from a mesh to an other one, so a finite element function is view as a function of (x; y) or as an array. -LU, Cholesky, Crout, CG, GMRES, UMFPack sparse linear solver.

-Tools to define discontinuous Galerkin finite element formulations P0, P1dc, P2dc and keywords: jump, mean, intalledges. -Wide range of examples : Navier-Stokes, elasticity, fluid structure, eigenvalue problem, Schwarz' domain decomposition algorithm, residual error indicator, ... -Link with other software : modulef, emc2, medit, gnuplot, ...

-Generates Graphic/Text/File outputs.

-A parallel version using mpi.

How to start?

All this information here are detailed in the FreeFem ++ documentation.

Install

First open the following web page http://www.freefem.org/ff++/ Choose your platform: Linux, Windows, MacOS X, or go to the end of the page to get the full list of downloads and then install by double click on the appropriate file.

Text editor

For Windows :

Install notepad++ which is available at http://notepad-plus.sourceforge.net/uk/ site.htm -Open Notepad++ and Enter F5 -In the new window enter the command FreeFem++ "$(FULL_CURRENT_PATH)" -Click on Save, and enter FreeFem++ in the box "Name", now choose the short cut key to launch directly FreeFem++ (for example alt+shift+R) -To add Color Syntax Compatible with FreeFem++ In Notepad++, -In Menu "Parameters"->"Configuration of the Color Syntax" proceed as follows: -In the list "Language" select C++ -Add "edp" in the field "add ext" -Select "INSTRUCTION WORD" in the list "Description" and in the field "supple mentary key word", cut and past the following list: P0 P1 P2 P3 P4 P1dc P2dc P3dc P4dc RT0 RT1 RT2 RT3 RT4 macro plot int1d int2d solve movemesh adaptmesh trunc checkmovemesh on func buildmesh square Eigenvalue min max imag exec LinearCG NLCG Newton BFGS LinearGMRES catch try intalledges jump average mean load savemesh convect abs sin cos tan atan asin acos cotan sinh cosh tanh cotanh atanh asinh acosh pow exp log log10 sqrt dx dy endl cout -Select "TYPE WORD" in the list "Description" and ... " "supplementary key word", cut and past the following list mesh real fespace varf matrix problem string border complex ifstream ofstream To personalize with color syntax for .edp file, it suffices to take those given by Kate for c++ and to add the keywords of FreeFem ++ . Then, download edp.xml and save it in the directory ".kde/share/apps/katepart/syntax".

We may find other description for other text editor in the full documentation of FreeFem ++ .

Save and run

All FreeFem ++ code must be saved with file extension .edp and to run them you may double click on the file on MacOS or Windows otherwise we note that this can also be done in terminal mode by : FreeFem++ mycode.edp 4 Syntax and some operators

Data types

In essence FreeFem ++ is a compiler: its language is typed, polymorphic, with exception and reentrant. Every variable must be declared of a certain type, in a declarative statement; each statement are separated from the next by a semicolon ";". Another trick is to comment in and out by using the "//" as in C++. We note that, we can also comment a paragraph by using "/* paragraph */" and in order to make a break during the computation, we can use "exit(0);". The variable verbosity changes the level of internal printing (0, nothing (unless there are syntax errors), 1 few, 10 lots, etc. ...), the default value is 2 and the variable clock() gives the computer clock. The language allows the manipulation of basic types :

-current coordinates : x, y and z;

-
-int1d(Th,Γ)(u*v) = Γ u • v dx where Γ ⊂ R; -int2d(Th)(u*v) = Ω u • v dxdy where Ω ⊂ R 2 ; -int3d(Th)(u*v) = Ω u • v dxdydz where Ω ⊂ R 3 .

Some operators

We cite here some of the operator that are defined in

Manipulation of functions

We can define a function as : -an analytical function, example : func u0=exp(-x ∧ 2-y ∧ 2),u1=1.*(x>=-2 & x<=2); -a finite element function or array, example : Vh u0=exp(-x ∧ 2-y ∧ 2);.

We note that, in this case u0 is a finite element, thus u0[] return the values of u0 at each degree of freedom and to have access to the i th element of u0[] we may use u0[][i].

We can also have an access to the value of u0 at the point (a,b) by using u0(a,b); -a complex value of finite element function or array, example : Vh<complex> u0=x+1i*y; -a formal line function, example : func real g(int a, real b) {; return a+b;} and to call this function for example we can use g(1,2). We can also put an array inside this function as : In fact, we note that the best way to define a function is to use macro function since in this example t,u and v could be integer, real, complex, array or finite element, ... For example, here is the most used function defined by a macro :

func real f (int a ,
macro Grad (u) [dx (u) , dy (u)] // in 2 D macro Grad (u) [dx (u) , dy (u) , dz (u)] // in 3 D macro div (u , v) [dx (u) + dy (v)] // in 2 D macro div (u ,v , w) [dx (u) + dy (v) + dz (w)] // in 3 D

Manipulation of arrays and matrices

Like in matlab, we can define an array such as : real[int] U=1:2:10; which is an array of 5 values U[i]=2*i+1; i=0 to 4 and to have access to the i th element of U we may use U(i).

Also we can define a matrix such as real[int,int] A=[[1,2,3] , [2,3,4]]; which is a matrix of size 2 × 3 and to have access to the (i, j) th element of A we may use A(i,j).

We will give here some of manipulation of array and matrix that we can do with FreeFem ++ : real [int] u1 =[1 ,2 ,3] , u2 =2:4; // defining u1 and u2 real u1pu2 = u1 '* u2 ; // give the scalar product of u1 and u2 , here ¯u1 ' is the transpose of u1 ; real [int] u1du2 = u1 ./ u2 ; // divided term by term real [int] u1mu2 = u1 .* u2 ; // multiplied term by term matrix A = u1 * u2 '; // product of u1 and the transpose of u2

matrix < complex > C =[[1 ,1 i] ,[1+2 i ,.5*1 i]]; real trA = trace ([1 ,2 ,3]*[2 ,3 ,4] ') ; // trace of the matrix real detA = det ([[1 ,2] ,[-2 ,1]
]) ; // just for matrix 1 x1 and 2 x2

Loops and conditions

The for and while loops are implemented in FreeFem ++ together with break and continue keywords. In for-loop, there are three parameters; the INITIALIZATION of a control variable, the CONDITION to continue, the CHANGE of the control variable. While CONDITION is true, for-loop continue.

for (INITIALIZATION ; CONDITION ; CHANGE) { BLOCK of calculations }

An example below shows a sum from 1 to 10 with result is in sum, int sum =0; for (int i =1; i <=10; i ++) sum += i ;

The while-loop while (CONDITION) { BLOCK of calculations or change of control variables } is executed repeatedly until CONDITION become false. The sum from 1 to 5 can also be computed by while, in this example, we want to show how we can exit from a loop in midstream by break and how the continue statement will pass the part from continue to the end of the loop :

int i =1 , sum =0; while (i <=10) { sum += i ; i ++; if (sum >0) continue ; if (i ==5) break ; }

Input and output data

The syntax of input/output statements is similar to C++ syntax. It uses cout, cin, endl, << and >> : int i ; cout << " std -out " << endl ; cout << " enter i = ? " ; cin >> i ; Vh uh = x + y ; ofstream f (" toto . txt ") ; f << uh []; // to save the solution ifstream f (" toto . txt ") ; f >> uh []; // to read the solution We will present in the sequel, some useful script to use the FreeFem ++ data with other software such as ffglut, Gnuplot 1 , Medit 2 , Matlab 3 , Mathematica 4 , Visit 5 when we save data with extension as .eps, .gnu, .gp, .mesh, .sol, .bb, .txt and .vtu. For ffglut which is the visualization tools through a pipe of FreeFem ++ , we can plot the solution and save it with a .eps format such as : plot (uh , cmm = " t = " + t + " ;|| u || _L ^2= " + NORML2 [kk] , fill = true , value = ¯true , dim =2) ;

For Gnuplot, we can save the data with extension .gnu or .gp such as : For Mathematica, we can save the data with extension .txt such as : int k =0; { ofstream ff (" uhsol . " +(1000+ k) + " . txt ") ; for (int i =0; i < Th . nt ; i ++) { for (int j =0; j <3; j ++) ff < < Th We note that in FreeFem ++ the domain is assumed to described by its boundary that is on the left side of the boundary which is implicitly oriented by the parametrization.

{ ofstream
[i][j]. x < < " " << Th [i][j]. y < < " " << uh [][Vh (i , j)] < < endl ; ff < < Th [i][0]. x < < " " << Th [i][0]. y < < " " << uh [][Vh (i ,0)] < < " \ n " ; } } k +=1;
Let Ω be the rectangle defined by its frontier ∂Ω = [-5, 5] × [-1, 1] where his vertices are A(-5, -1), B(5, -1), C(5, 1) and D(-5, 1), so we must define the border AB, BC, CD and DA of ∂Ω by using the keyword border then the triangulation T h of Ω is automatically generated by using the keyword buildmesh. real Dx =.2; // discretization space parameter int aa = -5 , bb =5 , cc = -1 , dd =1; border AB (t = aa , bb) { x = t ; y = cc ; label = 1;}; border BC (t = cc , dd) { x = bb ; y = t ; label = 2;}; border CD (t = bb , aa) { x = t ; y = dd ; label = 3;}; border DA (t = dd , cc) { x = aa ; y = t ; label = 4;}; mesh Th = buildmesh (AB (floor (abs (bb -aa) / Dx)) + BC (floor (abs (dd -¯cc) / Dx)) + CD (floor (abs (bb -aa) / Dx)) + DA (floor (abs (dd -cc) / Dx) ¯)) ; plot (AB (floor (abs (bb -aa) / Dx)) + BC (floor (abs (dd -cc) / Dx)) + CD (¯floor (abs (bb -aa) / Dx)) + DA (floor (abs (dd -cc) / Dx))) ; // to see ¯the border plot (Th , ps = " mesh . eps ") ; // to see and save the mesh

The keyword label can be added to define a group of boundaries for later use (Boundary Conditions for instance). Boundaries can be referred to either by name (AB for example) or by label (1 here). We can also construct our domain defined by a parametric coordinate as: border C (t =0 ,2* pi) { x = cos (t) ; y = sin (t) ; label =1} mesh Mesh_Name = buildmesh (C (50)) ; To create a domain with a hole we can proceed as: border a (t =0 ,2* pi) { x = cos (t) ; y = sin (t) ; label =1;} border b (t =0 ,2* pi) { x =0.3+0.3* cos (t) ; y =0.3* sin (t) ; label =2;} mesh Thwithouthole = buildmesh (a (50) + b (+30)) ; mesh Thwithhole = buildmesh (a (50) + b (-30)) ; plot (Thwithouthole , wait =1 , ps = " Thwithouthole . eps ") ; plot (Thwithhole , wait =1 , ps = " Thwithhole . eps ") ;

Finite Element Space

A finite element space (F.E.S) is, usually, a space of polynomial functions on elements of T h , triangles here, with certain matching properties at edges, vertices, ... ; it's defined as : fespace Vh (Th , P1) ; As of today, the known types of F.E.S. are: P0, P03d, P1, P13d, P1dc, P1b, P1b3d, P2, P23d, P2b, P2dc, P3, P3dc, P4, P4dc, Morley, P2BR, RT0, RT03d, RT0Ortho, Edge03d, P1nc, RT1, RT1Ortho, BDM1, BDM1Ortho, TDNNS1; where for example: P0,P03d piecewise constant discontinuous finite element (2d, 3d), the degrees of freedom are the barycenter element value.

P 0 h = v ∈ L 2 (Ω) for all K ∈ T h there is α K ∈ R : v |K = α K (1)
P1,P13d piecewise linear continuous finite element (2d, 3d), the degrees of freedom are the vertices values.

P 1 h = v ∈ H 1 (Ω) ∀K ∈ T h ; v |K ∈ P 1 (2)
We can see the description of the rest of the F.E.S. in the full documentation of FreeFem ++ .

Boundary Condition

We will see in this section how it's easy to define the boundary condition (B.C.) with FreeFem ++ , for more information about these B.C., we refer to the full documentation.

Dirichlet B.C.

To define Dirichlet B.C. on a border Γ d ⊂ R like u| Γ d = f , we can proceed as on(gammad,u=f), where u is the unknown function in the problem. The meaning is for all degree of freedom i of the boundary referred by the label "gammad", the diagonal term of the matrix a ii = tgv with the terrible giant value tgv (=10 30 by default) and the right hand side b[i] = "(Π h g)[i]" × tgv, where the "(Π h g)g[i]" is the boundary node value given by the interpolation of g. (We are solving here the linear system AX = B, where A = (a ij) i=1..n;j=1..m and B = (b i) i=1..n).

If u is a vector like u = (u1, u2) T and we have u1| Γ d = f 1 and u2| Γ d = f 2, we can proceed as on(gammad,u1=f1,u2=f2).

Solve the problem

We present here different way to solve the Poisson equation :

Find u : Ω =]0, 1[×]0, 1[-→ R such that, for a given f ∈ L 2 (Ω): -∆u = f in Ω u = 0 on ∂Ω (3)
Then the basic variational formulation of (3) is :

Find u ∈ H 1 0 (Ω), such that for all v ∈ H 1 0 (Ω), a(u, v) = l(v) (4)
where

a(u, v) = Ω ∇u • ∇v dxdy and l(v) = Ω f • v dxdy
To discretize (4), let T h denote a regular, quasi uniform triangulation of Ω with triangles of maximum size h < 1, let

V h = {v h ∈ C 0 (Ω); v h | T ∈ P 1 (T), ∀T ∈ T h ; v h = 0 on ∂Ω} denote a finite-dimensional subspace of H 1 0 (Ω)
where P 1 is the set of polynomials of R of degrees ≤ 1. Thus the discretize weak formulation of (4) is :

Find u h ∈ V h : Ω ∇u h • ∇v h dxdy - Ω f • v h dxdy = 0 ∀v h ∈ V h .
(5)

solve

The first method to solve (5) is to declare and solve the problem at the same time by using the keyword solve such as : The solver used here is Gauss' LU factorization and when init = 0 the LU decomposition is reused so it is much faster after the first iteration. Note that if the mesh changes the matrix is reconstructed too. The default solver is sparsesolver (it is equal to UMFPACK if not other sparce solver is defined) or is set to LU if no direct sparse solver is available. The storage mode of the matrix of the underlying linear system depends on the type of solver chosen; for LU the matrix is sky-line non symmetric, for Crout the matrix is sky-line symmetric, for Cholesky the matrix is sky-line symmetric positive definite, for CG the matrix is sparse symmetric positive, and for GMRES, sparsesolver or UMFPACK the matrix is just sparse.

problem

The second method to solve (5) is to declare the problem by using the keyword problem, and then solve it later by just call his name, such as :

problem poisson (uh , vh , init =i , solver = LU) = //

varf

In FreeFem ++ , it is possible to define variational forms, and use them to build matrices and vectors and store them to speed-up the script.

The system (5) is equivalent to :

Find u h ∈ V h : a(u h , v h) = l(v h) ∀v h ∈ V h . (6)
Here,

u h (x, y) = M -1 i=0 u hi φ i (x, y) (7)
where φ i = v hi , i = 0, ..., M -1 are the basis functions of V h , M = Vh.ndof is the number of degree of freedom (i.e. the dimension of the space V h) and u hi is the value of u h on each degree of freedom (i.e.

u hi =uh[][i]=U).
Thus, using (7), we can rewrite (6) such as :

M -1 j=0 A ij u hj -F i = 0, i = 0, • • • , M -1; (8
)
where

A ij = Ω ∇φ j ∇φ i dxdy and F i = Ω f φ i dxdy
The matrix A = (A ij) is called stiffness matrix.

We deduce from the above notation that (8) is equivalent to

A • U = F ⇐⇒ U = A -1 • F (9)
which can be solve in FreeFem At the beginning, we prove that the rate of convergence in space for the Poisson equation code with P 1 finite element is of order 2. In this example, we took zero Dirichlet homogenous B.C. on the whole boundary and we have considered the following exact solution :

u ex = sin(πx) • sin(πy)
Then, we compute the corresponding right hand side f (x, y) in order to obtain the L 2 norm of the error between the exact solution and the numerical one (cf. Table 1)

E(u, h n) = |u h (h n) -u ex (h n)| L 2 , ∀i = 1, ..., nref, h = δx = 1/N ;
and then the rate of convergence in space

r(u, h n) = log (E(u, h n-1)/E(u, h n)) log (h n-1 /h n) , ∀i = 1, ..., nref
We give here a method to compute the right hand side using Maple 6 : We can copy and paste the result of f (x, y) in the FreeFem ++ code. We present here the script to compute the rate of convergence in space of the code solving the Poisson equation : int nref =4; real [int] L2error (nref) ; // initialize the L2 error array for (int n =0; n < nref ; n ++) { int N =2^(n +4) ; // space discretization mesh Th = square (N , N) ; // mesh generation of a square fespace Vh (Th , P1) ; // space of P1 Finite Elements Vh uh , vh ; // uh and vh belongs to Vh

O O O O (1) (1) O O O O O O (2) (2) (3) (3)

Poisson equation over the Fila's face

We present here a method to build a mesh from a photo using Photoshop and a script in FreeFem ++ made by Frédéric Hecht. We choose here to apply this method on the Fila's face. To this end, we start by the photo in Figure 11, and using Photoshop , we can remove the region that we wanted out of the domain such as in Figure 12, then fill in one color your domain and use some filter in Photoshop in order to smooth the boundary as in Figure 13. Then convert your jpg photo to a pgm photo which can be read by FreeFem ++ by using in a terminal window : convert fila . jpg fila . pgm Figure 15: Solution on the Fila's face.

Rate of convergence for an Elliptic non linear equation

Let Ω = B(O, R) ⊂ R 2 , it is proposed to solve numerically the problem which consist to find u(x, y) such that -∆u(x, y) + u 3 = f for all (x, y) ∈ Ω ⊂ R 2 , u(x, y) = 0 for all (x, y) on ∂Ω.

(10)

Space discretization

Let T h be the triangulation of Ω and

V h = {v h ∈ C 0 (Ω); v h | T ∈ P 1 (T), ∀T ∈ T h , v h = 0 on ∂Ω}.
For simplicity, we denote by V(u) = u 2 , then the approximation of the variational formulation will be : Find u h ∈ V h such that ∀v h ∈ V h we have :

-∆u h ; v h + V(u h) • u h ; v h = f ; v h thus ∇u h ; ∇v h + V(u h) • u h ; v h = f ; v h (11)
In order to solve numerically the non linear term in (13), we will use a semi-implicit scheme such as :

∇u n+1 h ; ∇v h + V(u n h) • u n+1 h ; v h = f ; v h ,
and then we solve our problem by the fixed point method in this way :

Set u 0 h = u 0 = 0 Set V(u n h) = V(u 0) Set err = 1. while (err > 1e -10) Solve ∇u p+1 h ; ∇v h = -V(u n h) • u p h ; v h + f ; v h Compute err = u n h -u p+1 h L 2 set V(u n h) = V(u p+1 h) set u n h = u p+1 h p = p + 1; End while
In order to test the convergence of this method we will study the rate of convergence in space (cf. Table 3) of the system (12) with R = 1 and the exact solution :

u ex = sin(x 2 + y 2 -1).
Then, we compute the corresponding right hand side f (x, y) using Maple such as :

O O (2) (2) O O O O (1) (1) (4) (4) O O O O (3) (3) O O u d unapply sin x 2 C y 2 K 1 , x, y ; u := x, y /sin x 2 C y 2 K 1 f dK diff u x, y , x, x K diff u x, y , y, y C u x, y 3 ; f := 4 sin x 2 C y 2 K 1 x 2 K 4 cos x 2 C y 2 K 1 C 4 sin x 2 C y 2 K 1 y 2 C sin x 2 C y 2 K 1 3 simplify % ; 4 sin x 2 C y 2 K 1 x 2 K 4 cos x 2 C y 2 K 1 C 4 sin x 2 C y 2 K 1 y 2 C sin x 2 C y 2 K 1 K sin x 2 C y 2 K 1 cos x 2 C y 2 K 1 2 with CodeGeneration ; C, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate, VisualBasic Matlab %%, resultname = "f" ; f = 0.4e1 * sin((x ^ 2 + y ^ 2 -1)) * (x ^ 2) -0.4e1 * cos((x ^ 2 + y ^ 2 -1)) + 0.4e1 * sin((x ^ 2 + y ^ 2 -1)) * (y ^ 2) + sin ((x ^ 2 + y ^ 2 -1)) -sin((x ^ 2 + y ^ 2 -1)) * cos((x ^ 2 + y ^ 2 -1)) ^ 2;
We present here the corresponding script to compute the rate of convergence in space of the code solving the Elliptic non linear equation (12 Let Ω = B(O, R) ⊂ R 2 , it is proposed to solve numerically the problem which consist to find u(x, y) such that ∆u(x, y) = V(u) • u for all (x, y) ∈ Ω ⊂ R 2 , u(x, y) = DBC → +∞ for all (x, y) on ∂Ω.

(12)

Space discretization

Let T h be the triangulation of Ω and

V h = {v h ∈ C 0 (Ω); v h | T ∈ P 1 (T), ∀T ∈ T h , v h = p on ∂Ω}, p -→ +∞.
Then the approximation of the variational formulation will be : Find u h ∈ V h such that ∀v h ∈ V h we have :

∆u h ; v h = V(u h) • u h ; v h thus -∇u h ; ∇v h = V(u h) • u h ; v h (13)
In order to solve numerically the non linear term in (13), we will use a semi-implicit scheme such as : -∇u n+1 h ; ∇v h = V(u n h) • u n+1 h ; v h , and then we solve our problem by the fixed point method in this way :

Set

u 0 h = u 0 = DBC, p = 0 Set V(u n h) = V(u 0) Set err = 1. while (err > 1e -10)

Solve -∇u p+1 h ;

∇v h = V(u n h) • u p h ; v h Compute err = u n h -u p+1 h L 2 set V(u n h) = V(u p+1 h) p = p + 1;

End while

In order to test the convergence of this method we will study the rate of convergence in space (cf. Table 3) for an application of (12), where R = 1, V(u) = u, DBC = 0 or DBC = 50. The system to be solved is then ∆u(x, y) -u 2 = f for all (x, y) ∈ Ω = B(O, 1) ⊂ R 2 , (14) u(x, y) = DBC for all (x, y) on ∂Ω.

(15)

In this case, we will the following exact solution :

u ex = DBC + sin(x 2 + y 2 -1).

Then, we compute the corresponding right hand side f (x, y) using Maple such as :

We present here the corresponding script to compute the rate of convergence in space of the code solving the Elliptic non linear equation (14

Rate of convergence for the Heat equation

Let Ω =]0, 1[2 , we want to solve the Heat equation :

    
∂u ∂t -µ • ∆u = f (x, y, t) for all (x, y) ∈ Ω ⊂ R 2 , t, µ ∈ R + , u(x, y, 0) = u 0 (x, y), u = 0 on ∂Ω.

(16)

Space discretization

Let T h be the triangulation of Ω and V h = {v h ∈ C 0 (Ω); v h | T ∈ P 1 (T), ∀T ∈ T h , v h = 0 on ∂Ω}.

Then the approximation of the variational formulation will be : Find u h ∈ V h such that ∀v h ∈ V h we have :

∂u h ∂t ; v h -µ • ∆u h ; v h = f ; v h Thus ∂u h ∂t ; v h + µ • ∇u h ; ∇v h = f ; v h (17)

Time discretization

We will use here a θ-scheme to discretize the Heat equation (17) as :

u n+1 h -u n h ∆t ; v h + µ • θ ∇u n+1 h ; ∇v h + µ • (1 -θ) ∇u n h ; ∇v h = θ • f n+1 ; v h + (1 -θ) • f n ; v h .

 FreeFem ++ : + , -, * , / , ^, <, >, <= , >= , & , | , // where a & b = a and b , a | b = a or b = , += , -= , /= , *= , != , ==.

Figure 1 :Figure 3 :

 13 Figure 1: Visualising of the solution using ffglut

Figure 4 :

 4 Figure 4: Visualising of the solution using Mathematica

Figure 6 :Figure 7 :

 67 Figure 6: Plot of the border (left) and the mesh (right)

Figure 8 :

 8 Figure 8: mesh Th by build(C(50))

Figure 9 :

 9 Figure 9: mesh without hole Figure 10: mesh with hole

7. 2

 2 Neumann B.C. The Neumann B.C. on a border Γ n ⊂ R, like ∂u ∂n | Γn = g, appear in the Weak formulation of the problem after integrating by parts, for example ∂u ∂n ; Φ Γn = g; Φ Γn = Γn g • Φ dx = int1d(Th,gamman)(g*phi). 7.3 Robin B.C. The Robin B.C. on a border Γ r ⊂ R; like au + κ ∂u ∂n = b on Γ r where a = a(x, y) ≥ 0, κ = κ(x, y) ≥ 0 and b = b(x, y); also appear in the Weak formulation of the problem after integrating by parts, for example -κ ∂u ∂n ; Φ Γr = au -b; Φ Γr = Γr au • Φ dx -Γr b • Φ dx = int1d(Th,gammar)(a*u*phi)-int1d(Th,gammar)(b*phi). Important: it is not possible to write in the same integral the linear part and the bilinear part such as in int1d(Th,gammar)(a*u*phi-b*phi). 7.4 Periodic B.C. In the case of Bi-Periodic B.C., they are achieved in the definition of the periodic F.E.S. such as : fespace Vh (Th , P1 , periodic =[[1 , x] ,[3 , x] ,[2 , y] ,[4 , y]]) ;

 solve poisson (uh , vh , init =i , solver = LU) = // Solve Poisson Equation int2d (Th) (Grad (uh) '* Grad (vh)) // bilinear form -int2d (Th) (f * vh) // linear form + on (1 ,2 ,3 ,4 , uh =0) ; // Dirichlet B . C .

 ++ as : int m =10 , n =10; mesh Th = square (m , n ,[x , y]) ; fespace Vh (Th , P1) ; Vh uh , vh ; macro Grad (u) [dx (u) , dy (u)] // in 2 D func f =1; varf a (uh , vh) = int2d (Th) (Grad (uh) '* Grad (vh)) // bilinear ¯form + on (1 ,2 ,3 ,4 , uh =0) ; // Dirichlet B . C . matrix A = a (Vh , Vh) ; // build the matrix varf l (unused , vh) = int2d (Th) (f * vh) ; // linear form Vh F ; F [] = l (0 , Vh) ; // build the right hand side vector set (A , solver = sparsesolver) ; uh [] = A ^-1* F []; plot (uh) ; And in 3D : load " msh3 " load " medit " int m =10 , n =10; mesh Th2 = square (m , n ,[x , y]) ; mesh3 Th = buildlayers (Th2 ,10 , zbound =[0 ,1]) ; fespace Vh (Th , P13d) ; Vh uh , vh ; macro Grad (u) [dx (u) , dy (u) , dz (u)] // in 2 D func f =1; varf a (uh , vh) = int3d (Th) (Grad (uh) '* Grad (vh)) // bilinear ¯form + on (0 , 1 ,2 ,3 ,4 ,5 , uh =0) ; // Dirichlet B . C . matrix A = a (Vh , Vh) ; // build the matrix varf l (unused , vh) = int3d (Th) (f * vh) ; // linear form Vh F ; F [] = l (0 , Vh) ; // build the right hand side vector set (A , solver = sparsesolver) ; uh [] = A ^-1* F []; medit (" sol " ,Th , uh) ; 9 Learning by examples 9.1 Rate of convergence for the Poisson equation

u

 d unapply sin pi$x $sin pi$y , x, y ; u := x, y /sin p x sin p y f dK diff u x, y , x, x K diff u x, y , y, y ; f := 2 sin p x p 2 sin p y with CodeGeneration ; C, Fortran, IntermediateCode, Java, LanguageDefinition, Matlab, Names, Save, Translate, VisualBasic Matlab %%, resultname = "f" ; f = 0.2e1 * sin(pi * x) * pi ^ 2 * sin(pi * y);

Figure 11 :

 11 Figure 11: Initial photo.

Figure 12 :

 12 Figure 12: Using Photoshop.Figure13: Last photo.

Figure 13 :

 13 Figure 12: Using Photoshop.Figure13: Last photo.

): verbosity =0.; int nraff =7; real [int] L2error (nraff) ; // initialize the L2 error array 9.4 Rate of convergence for an Elliptic non linear equation with big Dirichlet B.C.

 -Click on Save & Close. Now nodepad++ is configured.

2. For MacOS : Install Smultron which is available at http://smultron.sourceforge.net. It comes ready with color syntax for .edp file. To teach it to launch FreeFem ++ files, do a "command B" (i.e. the menu Tools/Handle Command/new command) and create a command which does /usr/local/bin/FreeFem++-CoCoa %%p 3. For Linux : Install Kate which is available at ftp://ftp.kde.org/pub/kde/stable/3.5.10/src/ kdebase-3.5.10.tar.bz2

Table 1 :

 1 L 2 norm of the error and the rate of convergence.

	6. http://www.maplesoft.com/

Table 3 :

 3): cout << " L2error " << n << " = " << L2error [n] << endl ; for (int n =1; n < nref ; n ++) cout <<" convergence rate = " << log (L2error [n -1]/ L2error [n]) / ¯log (2.) << endl ;N n E(u, h n), DBC=0 r(u, h n), DBC=0 E(u, h n), DBC=50 r(u, h n), L2norm of the error and the rate of convergence.

	DBC=50

Acknowledgements : This work was done during the CIMPA School -Caracas 16-27 of April 2012. I would like to thank Frédéric Hecht (LJLL, Paris), Antoine Le Hyaric (LJLL, Paris) and Olivier Pantz (CMAP, Paris) for fruitful discussions and remarks.

*/ nc = isoline (Th , f1 , iso = vm , close =0 , Curves , beginend = be , smoothing ¯=.005 , ratio =0.1) ; verbosity =1; } int ic0 = be (0) , ic1 = be (1) -1;

plot ([Curves (0 , ic0 : ic1) , Curves (1 , ic0 : ic1)] , wait =1) ; // end smoothing the curve macro GG (i) border G # i (t =0 ,1) { P = Curve (Curves , be (i *2) , be (i *2+1) -1 , t) ; label = i +1; } real lg # i = Curves (2 , be (i *2+1) -1) ; // GG (0) GG (1) GG (2) GG (3) GG (4) // number of closing curve real hh = -10; cout << " .. " << endl ; func bord = G0 (lg0 / hh) + G1 (lg1 / hh) + G2 (lg2 / hh) + G3 (lg3 / hh) + G4 (lg4 / hh ¯) ; plot (bord , wait =1) ; mesh Th = buildmesh (bord) ; cout << " ... " << endl ; plot (Th , wait =1) ; Th = adaptmesh (Th ,5. , IsMetric =1 , nbvx =1 e6) ; plot (Th , wait =1) ; savemesh (Th , " fila . msh ") ; we can create the mesh of our domain (cf. Figure 14), and then read this mesh in order to solve the Poisson equation on this domain (cf. Figure 15) mesh Th (" fila . msh ") ; plot (Th) ; fespace Vh (Th , P1) ; Vh uh , vh ; for (int n =0; n < nraff ; n ++) { int N =2^(n +4) ; // space discretization real R =1.; // radius border C (t =0. ,2.* pi) { x = R * cos (t) ; y = R * sin (t) ; label =1;}; mesh Th = buildmesh (C (N)) ; fespace Vh (Th , P1) ; Vh uh , uh0 =0 , V = uh0 ^2 , vh ; Vh uex = sin ((x ^2 + y ^2 -1)) ; Vh f =0.4 e1 * sin ((x ^2 + y ^2 -1)) * (x ^2) -0.4 e1 * cos ¯((x ^2 + y ^2 -1)) + 0.4 e1 * sin ((x ^2 + y ^2 -1)) ¯* (y ^2) + sin ((x ^2 + y ^2 -1)) -sin ((x ^2 + y 2 -1)) * cos ((x ^2 + y ^2 -1)) ^2; macro Grad (u)

) To resolve (18) with FreeFem ++ , we will write it as a linear system of the form :

where, M is the degree of freedom, the matrix A i,j and the arrays X j and B i are defining as :

We note that the θ-scheme is stable under the CFL condition (when θ ∈ [0, 1/2[) :

In our test, we will consider that ∆x = ∆y and that CF L ∈]0, 1], then when θ ∈ [0, 1/2[, the θ-scheme is stable under this condition :

and for θ ∈ [1/2, 1], the θ-scheme is always stable. We note also that due to the consistency error :

, the θ-scheme is consistent of order 1 in time and 2 in space when θ = 0 (with the CFL condition) and when θ = 1 (with ∆t = (∆x) 2) and the θ-scheme is consistent of order 2 in time and in space when θ = 1/2 (with ∆t = ∆x) (cf. Table 4).

Remark. When we use finite element, mass lumping is usual with explicit time-integration schemes (as when θ ∈ [0, 1/2[). It yields an easy-to-invert mass matrix at each time step, while improving the CFL condition [START_REF] Thomas | The finite element method[END_REF]. In FreeFem ++ , mass lumping are defined as int2d(Th,qft=qf1pTlump).

In order to test numerically the rate of convergence in space and in time of the θ-scheme, we will consider the following exact solution :

Then, we compute the corresponding right hand side f (x, y) using Maple such as : we remind that the rate of convergence in time is

Conclusion

We presented here a basic introduction to FreeFem ++ for the beginner with FreeFem ++ . For more information, go to the following link http://www.freefem.org/ff++.