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QUANTITATIVE AND QUALITATIVE KAC’S CHAOS ON THE
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BOLTZMANN’S SPHERE

KLEBER CARRAPATOSO

ABSTRACT. We investigate the construction of chaotic probability measures on the
Boltzmann’s sphere, which is the state space of the stochastic process of a many-
particle system undergoing a dynamics preserving energy and momentum.

Firstly, based on a version of the local Central Limit Theorem (or Berry-Essenn
theorem), we construct a sequence of probabilities that is Kac chaotic and we prove
a quantitative rate of convergence. Then, we investigate a stronger notion of chaos,
namely entropic chaos introduced in [3], and we prove, with quantitative rate, that
this same sequence is also entropically chaotic.

Furthermore, we investigate more general class of probability measures on the Boltz-
mann’s sphere. Using the HWI inequality we prove that a Kac chaotic probability
with bounded Fisher’s information is entropically chaotic and we give a quantitative
rate. We also link different notions of chaos, proving that Fisher’s information chaos,
introduced in [7], is stronger than entropic chaos, which is stronger than Kac’s chaos.
We give a possible answer to [3, Open Problem 11] in the Boltzmann’s sphere’s frame-
work.

Finally, applying our previous results to the recent results on propagation of chaos
for the Boltzmann equation [12], we prove a quantitative rate for the propagation of
entropic chaos for the Boltzmann equation with Maxwellian molecules.

Keywords: Kac’s chaos; entropic chaos; Fisher’s information chaos; many-particle
jump process; entropy; Fisher’s information; mean-field limit; Central Limit Theorem:;
Berry-Esseen; HWI inequality; Boltzmann equation.
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2 KLEBER CARRAPATOSO

1. INTRODUCTION

1.1. Motivation. In his celebrated paper [8], Kac introduced the notion of propagation
of chaos in order to connect a stochastic process of a system of N identical particles
undergoing binary collisions to its mean field equation.

Our interest in this paper is to investigate chaotic distributions supported by the
phase space of the stochastic process of the N-particle system as we shall explain. We
refer to [3] for a detailed introduction on this topic and on Kac’s paper [8].

Consider a system of N identical particles of mass p > 0 such that its evolution is
described by a jump process with binary collisions that preserves energy and momentum.
Let us denote by i, j the particles undergoing the collision, with pre-collisional velocities
Vi, Vj € R? and post-collisional velocities v;, V5 € R?. We have then the conservation of
momentum

pv; + pv; = pu; + puj,
and the conservation of energy

Posg P2 P2, P
;wP+;%P=§mP+§MP

If the system has initial energy & = %Zf\il plvi|?> € Ry and initial momentum M =
pm = Zf\il pv; € R then both energy and momentum will be unchanged under the
dynamics. The phase space of this process is then the manifold SV (\/E ,m) C RN
defined by

N N
SN(VE,m) = {V = (v1,...,ony) € R } %;p|vi|2 =¢, ;pvi = pm} ,

which is the intersection of a sphere of radius \/2€/p and a hyperplane. This space
SN(VE,m) is in fact a sphere in R* of dimension d(N—1)—1 with radius /2 /p — [m[2/N
and center (m,...,m)/v'N. We remark that we need |m|*> < 2N&/p in order to
SN(VE,m) be non empty.

Now choosing units such that the mass p of each particle is equal to 2, the total value
of kinetic energy is dN and, without loss of generality, choosing m = 0, the state space
of this dynamics is

N N
(1) Sl]gVZ:SN(\/dN,O):{V:(’l}l,...,'l)N)eRdN‘Z’Ui’2:dN,Z'Ui:()}
=1 =1

and we shall call the manifold Sév the Boltzmann’s sphere.
An example of this kind of dynamics is the space homogeneous Boltzmann model that

we shall explain. Given a pre-collisional system of velocities V = (v1,...,vy) € RN
and a collision kernel (for more information on the collision kernel we refer to [16, 12])
(2) B(z,cos0) =T'(z)b(cos 0)

the process is:

e for any 7' # j', pick a random time T'(I'(|vy — v;|)) of collision accordingly to
an exponential law of parameter I'(|vy — vj|) and choose the minimum time T}
and the colliding pair (v;,v;) such that

71 = T(0(fvs = ;) = min TP = vy]),
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e draw o € S“! € R according to the law b(cos 0;;), with

coslj = o - 7(|Ui — Uj|)a
Vi — ’Uj

e after collision the new velocities become

* * *
Vii=(v1,...,v],...,v5,...,0N)

where the post-collisional velocities v; and v} are given by

P _Vitv | |vi— v P Vitv | v
(3) Vi = + 5 O U=y 5

Iterating this construction we built then the associated Markov process (V;)i>0 on
RV, The equation of the associated law is given by, after a rescaling of time, (see [12])

ag.

1
N N N (1% N
4) 06N = LyGY = N%/g [N (V) — &Y (V)] B(Jvi — vy cos 6) do
with initial data G{' and where Vii = (v1,..,07,
known as the master equation.

Associated to this process, we have the (limit) spatially homogeneous Boltzmann
equation [12, 13, 16]

6 o) = |

RdxSd—1

.,v;,...,fuN). This equation is

Bl — wl. cos 6) (f(w") f(v") = f(w)f(v)) dwdo

with initial data f(0,-) = fo and where the post-collisional velocities v* and w* are
obtained by (3).

The program set by Kac in [8] was to investigate the behavior of solutions of the mean
field equation (5) in terms of the behaviour of the solutions of the master equation (4).
Moreover, the notion of propagation of chaos introduced by Kac means that if the initial
distribution GJ is fo-chaotic (Definition 1 below) then, for all ¢+ > 0, the solution GI¥
of (4) is fi-chaotic, where f; is the solution of (5). For more information on this topic
we refer to the recent results of Mischler, Mouhot and Wennberg [12, 13].

This paper is inspired by the works of Carlen, Carvalho, Le Roux, Loss and Villani
[3] and also of Hauray and Mischler [7], which investigate chaotic probabilities on the
usual sphere in RV with radius v N (also called Kac’s sphere). This sphere is the phase
space of Kac’s model, which is a one-dimensional simplification, introduced in [8], of
the model presented above, with energy conservation only.

The novelty here is that we investigate chaotic probability sequences in the Boltz-
mann’s sphere Sl]gv C R and, furthermore, we prove quantitative rates of chaos con-
vergence.

1.2. Definitions and main results. Let E be a Polish space, then we shall denote by
P(FE) the space of Borel probability measures on E. Furthermore, through this paper,
on the space EV we will only consider symmetric measures, more precisely, we say that
GN € P(EY) is symmetric if for all ¢ € Cy(EY) we have

/ sodGNz/ 0o dGV,
EN EN
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for any permutation o of {1,..., N}, and where
Po = QD(VO') = (10(,00'(1)7 s avcr(N))v
for V.= (vy,...,uy) € BN,

For GV € P(EY) and a integer ¢ € [1, N] we denote by GY¥ (or II;(G")) the (-
marginal of GV, defined by

Ve € Cy(EY), / pdGY — / 0 © 1200 gGN
E* EN

We can now give the notion of chaos formalized by Kac in [8], we also refer to [15]
for an introduction on this topic with a probabilistic approach and to [11] for a short
survey.

Definition 1 (Kac’s chaos). Consider f € P(E). We say that GN € P(EVN) is f-
chaotic (or f-Kac chaotic), if for each fixed positive integer {, Gév converges to f®¢ in
the sense of measures in P(E') when N goes to infinity, i.e. if for all ¢ € Cy(E"),

(© | ede —— [ war"
B N—oo JE¢

In fact, it is well known that we need condition (6) to hold for only one ¢ > 2 (see
for instance [15]).

We also introduce the Monge-Kantorovich-Wasserstein (MKW) distance and for more
information about it we refer to [17]. Consider an integer ¢ and p € [1,00), we define
then the space

P,(E") := {Ff € P(EY); My(F") := /Ee | X[PdFY(X) < oo}.

Then, for F¢,G* € P,(E") we define the MKW distance between F* and G* by

1/p
(1) W (PG = it ( [E (XYY dw(X,Y)) ,

where TI(F, GY) is the set of transfer plan between F’ and G*, which is the set of
probabilty measures on E¢ x E¢ with marginals F* and G respectively, and where we
define the distace dpe as

¢
VX = (3317 s ax€)7Y = (y17 o ayé) S EZ? dEZ(Xv Y) = ZdE(xz,yz)
i=1
In the paper we will use the Euclidean distance in E = R?, i.e. dg(z;,y;) = |x; — ;| for
all z;,y; € E. More precisely, we shall use
Y f,g € P1(RY), Wi(f,g) = inf / x —y| dm(x,
f.9 € P1(RY) 1(f,9) ot i 12 Yl AT(@,0)
and
. 2 1/2
vV f,g € Pao(R?), W,:inf(/ T — 7rx,>.
fg9 € Py(RY) 20fr0) = I foaza 1T T YE d(@Y)
Moreover, for FV GY € P(S§) we shall use in the definition of W,(FY,G") the

Euclidean distance inherited from RV, which means that for X,Y € Sév we shall use
dsg(X, Y)=|X-Y]|.
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Let v be the Gaussian probability measure on R?, v(v) = (2r)~¥2¢=*/2 and
1 € P(R?). We define the relative entropy of ; with respect to v by

(8) Huh) = [ | 1og— .

if 11 is absolutely continuous with respect to -, otherwise H(uly) = +oo.
Moreover, for GV e P(Sév ) we define the relative entropy with respect to vV, the
uniform probability measure on Sév , by

N
) H(GN ) = /S <log ZGN> leal

We shall now define a stronger notion of chaos, namely the entropic chaos introduced
in [3].

Definition 2 (Entropic chao s) We say that the sequence GN € P(SE) is entropically
f-chaotic, for some f € P(R?), if GV is f-chaotic in Kac’s sense (Definition 1) and
1 N N
~ H(G ) o H(fN)
with H(f|vy) < oc.

Finally, with these definitions at hand we can state the main results of the paper.

Theorem 3. For any f € Pg(RY) N LP(RY) with 1 < p < oo, there exists a sequence of
probability measures FN € P(SE) such that

(i) FN s f-chaotic. More precisely, for any £ > 1 fized there exists a constant
C = C(£) > 0 such that for N > {41 we have

C
W- 1_71]\77 (214 < ;
1( ¢ f ) = \/N
(ii) FN is entropically f-chaotic. More precisely, there exists a constant C > 0 such
that
~ H(FYyY) -

\N H(7h)| < <

Let us now define the relative Fisher’s information of a probability measure u € P(R?)
with respect to v by
2

d
(10) Ik i= [ V108 92| di
R4 d

and, as we did for entropy, we also define for GV € P(Sév ) the relative Fisher’s infor-
mation with respect to vV by
2

dGV,

(1) G = | |VS log 405
sy dyN
where Vs stands for the gradient on the Boltzmann’s sphere, i.e. the component of the
usual gradient in R?Y that is tangent to the sphere Sév .
We define then another stronger notion of chaos, the Fisher’s information chaos, in
an analogous way of Definition 2.
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Definition 4 (Fisher’s information chaos). We say that the sequence GV € P(S}) is
Fisher’s information f-chaotic, for some f € P(R?), if GV is f-chaotic in Kac’s sense
(Definition 1) and

1 N N
~§ HGT ) = I(fl)
with I(f]y) < oo.

Remark 5. The Fisher’s information chaos is introduced in [7] in a weaker way, which
is in fact equivalent to Definition 4 thanks to Theorem 6.

Next, we may compare as follows the several notions of chaos:

Theorem 6. Consider GN € P(SE), with k-th order moment My(GY) bounded, for
some k > 6, and suppose that GY — f in P(R?).
Then, each assertion listed below implies the further one:
(i) NTU(GN YY) = I(fly), with I(f|) < co.
(ii) N~ I(GN|yN) is bounded and GV is f-chaotic in Kac’s sense.
(iii) N“'H(GN|YN) = H(f|y), with H(f|y) < oc.
(iv) GN is f-chaotic in Kac’s sense.
As a consequence, in Definition 2 of the entropic chaos and in Definition 4 of Fisher’s
information chaos, we only need the convergence of the first marginal, i.e. GY — f,
instead of the convergence of all marginals. Hence, this theorem asserts that Fisher’s

information chaos implies entropic chaos, which in turns implies chaos (or Kac’s chaos).
Furthermore, we prove a quantitative rate for the implication (i) = (7).

Another main result of the paper is the following possible answer to [3, Open Problem
11] in the setting of Boltzmann’s sphere.

Theorem 7. Consider GN € P(SY) such that GV is f-chaotic, for some f € P(R?),
and suppose that

My(GY) < C, k> 2, %I(GNWN) <C.

Suppose further that f € WH(RY) and f(v1) > exp(—alv1|?) for some constant a > 0.
Then for any fized £, there exists a constant C = C(d, L, || fllw1.0c, Mp(GY, £)) > 0 such
that for all N > £+ 1 we have

H(GY |2 < CWi(GY, 1257k,

where 0(¢,d, k) is constructive and depends on ¢, d and k.

We can apply our previous results to the Boltzmann equation theory. Thanks to the
work [12] for the Boltzmann equation (4)-(5) we can establish the following theorem.

Theorem 8. Consider fo € Pg(RY) with I(fo|y) finite and G € P(S§) built as in
Theorem 3. Consider then, for all t > 0, the solution GI¥ of the Master equation (4)
with initial condition GY, and the solution f, of the limiting Boltzmann equation (5)
with initial data fo (both with Mazwellian molecules, see [12, 16]).
Then GY is entropically fi-chaotic. More precisely, for any
48

7d + 6)2(5d + 24)

e<(
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there exists a constant C := C(e€) such that

1 —e
sup | H (G [7™) = H(fil7)| < CN*.
>0
Theorem 8 improves the results of [12] where Kac’s chaos is established with a rate
but entropic chaos is proved without any rate.

1.3. Strategy. We construct a probability on Sl]gv based on tensorization and condition-
ing of some probabilty measure on R?. To this purpose, we use an explicit formula for
the marginals of the uniform probablity on Sév and a version of the local Central Limit
Theorem (also known as Berry-Esseen), which is the cornerstone of the proof.

In order to study more general probabilities on the Boltzmann’s sphere, we use an
interpolation-type inequality, relating entropy, Fisher’s information and the 2-MKW
distance, called HWT inequality from [14, 9, 17], to show that Kac chaotic probabilities
with finite Fisher’s information are entropically chaotic.

Finally, the application of our results to the Boltzmann equation is based on recent
results of propagation of chaos from [12] and on the relations of different notions of
measuring chaos from the work [7].

1.4. Previous works. In [8] it is proved that the N-fold tensorization of a smooth
probability on R conditioned to the Kac’s sphere, i.e. the usual sphere SV ~1(v/N), is
Kac chaotic. Then, the work [3] extends this result to a more general class of proba-
bilities on R, introduces the notion of entropic chaos and also proves that the N-fold
tensorization conditioned to the Kac’s sphere is entropically chaotic. Furthermore, the
recent work [7] gives quantitative rates of the results before, introduces the notion of
Fisher’s information chaos and links these three notions of chaos.

1.5. Organization of the paper. In Section 2 we shall study the uniform probability
measure on Sév . In Section 3 we construct a chaotic distribution on Boltzmann’s sphere
based on a probability measure on R?. Furthermore we prove a quantitative chaos
convergence rate and we prove point (i) of Theorem 3. Then, in Section 4 we investigate
the entropic chaos. First, we study the entropic chaos for the probability distribution
built before in Section 3 and we prove point (ii) of Theorem 3. Then, we investigate a
more general class of probability measures on Sév and we prove Theorem 6. Finally, in
Section 5 we use our previous results to prove a precise version of Theorem 8.

Acknowledgements. The author would like to thank S. Mischler and C. Mouhot for
their constant encouragement, fruitful discussions and careful reading of this paper.
The author also thanks M. Hauray for discussions on the representation of Fisher’s
information on the Boltzmann’s sphere and A. Einav for discussions on integration over
Boltzmann’s spheres.

2. UNIFORM PROBABILITY MEASURE

Consider V = (vy,...,vy) € R r € Ry and z € R%. We define the sphere

N N
SN(T,Z) = {V:(’Ul,...,'UN)GRdN‘ZU?:T‘Z,Z?}izz}.
1=1 1=1
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We denote by %{YZ the uniform probability measure on S™(r,z). We recall that
Sév := SN (VdN,0) is the Boltzmann sphere and we denote by vV := ’yym o its uniform
probability measure. Moreover, we also denote by S"~1(r) C R" the us{lal sphere of
dimension n— 1 and radius r, S"~! := S"~1(1) and by [S"~!| its measure. We can easily
compute the measure of SV (r, z) by

d(N—1)—1
(12) }SN(T z)} = ’Sd(N_l)_l} <r2 — ﬁ) i
) N + )

For V.= (v1,...,uN) € RN we shall use through_ the paper the notation V, =
(Ub s avf) € Rdf, W,N = (,Ué-i-lv s aUN) € RAUN=0) and V, = 2521 v; € R%.
We begin with the following result of a change of variables, proved in Appendix A.1.

Lemma 9. Consider Ve SN (r,z). We can make a change of coordinates (vy,. .. ,vyN) —
(u1,...,un) in the following way
v+ o)
uN = —\V e UN
VN
(13) )
Uy = ———=(v1 +---+ v — kv , 1<kE<N-1,
k k‘(k’—|—1)( 1 k k+l)
such that the Jacobian is equal to one, |ui|? + -+ + |luy|? = |[v1|*> + -+ + |on|? and
2 2 2 |Z|2
|’U1|2+“‘+|UN|2:7‘2 ‘Ul’ ++‘UN_1‘ =7r —W
(14) —
Vgt +UNa = 20 Lo j<a<d

u = ,
N,Oj \/N

With these definitions and notations at hand we can study some properties of the
uniform probability measure 4V on 5113\7 , which give us the following lemmas:

Lemma 10. We have the following properties
(i) for any ¢ < N — 1 the {-marginal of ¥V is given by v¥ (dVy) = v (Vi) dVy with

L, dN—=1)—2
Sd(N—Z—l)—l N% (dN _ |Vé|2 o %) 2
(15) ’}/év(Vg) = ‘ ’Sd(N—l)—l‘ } d(N71);2|— )

(N —0)% (dN)*5

where dVy = dv; . .. dvy is the Lebesque measure on R,

(ii) the moments ofyév are uniformly bounded in N, more precisely, for k > 1 we have
Mk(’yév) < Capye, where Cqyp o depends on d, k and £.

Before the proof, we refer to [6] where a Fubini-like theorem on S™(r, z) is proved,
which yields a generalization of (15) for the /-marginal of ’yﬁ\fz.

Proof. (i) We can define ’y,{\”z by

1.1 N
T = ZN o (1B§V(r+h) - 135(7«)) , BN(r)={VeR™;|V|<r, > v =z},
T2 =1
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where ZT],YZ is the normalization constant so that the integral of %{YZ is one.

Consider ¢ € C(R¥), for £ < N — 1, then
<]-B£V(r)7 P& ]-N_£>

= /RdN Ly, 2Vew[2<r2 10 qop g 4oton =2 $(Ve) Ve dVi N

= /Rdz ©(Ve) (/I%d(NZ) 1|Ve,N|2§T’2—|Ve\2lve+1+v~+vN:z—\7z dVZvN) dVe

d(N—t—1)

o, Z—V 2 2
=/W @ (Vo) BV <r2—|ve|2——‘ ‘ ) dvi,
+

N -/

where |BYN=¢=1)| is the measure of the unit ball in dimension d(N — ¢ —1). We
deduce then that the /-marginal of 7,]1\;, denoted by Hg(y,{\,fz), is given by

B d(N—0—1)
1 d e |z -V ‘2 2
Ny _ & |pd(N—e=D)| [ ,.2 _ 1y2 _ ¢
Ie(7y) 750 B | <r Vif? - £ >+
Bd(N—Z—l)’ | PN U S
— 2 2 2=V
_.Td(N—E—l)r<r 2 —W>+
Sd(N—Z—l)—l‘ A dN—t-1) -2
— 2 2 — Yz
oz (T B )
’ +
and in the particular case 72 = dN, z =0
‘Sd(N—é—l)—l‘ "7 ‘2 d(Nfl;l)*z
(16)  T(y™) =" = —x (dN)Y/? (dN - Vi - 3 e)
VdN ,0 —r) 4
N ._ 7N .
Now we shall compute 2" := Z VAN 0’ with
d(N—t—1)—2
12\ 2z
(17) ZN = ’Sd(N_é_l)_l’(dN)l/z/ dN_ |W|2_ "Q‘ d‘/g
Rd¢ N -/ N

We start by the integral

A(N—t—1)—2
“76’2 2
A:/ AN — V2 — dvi,
Rd( N — g +

with the changement of variable (13)-(14) (replacing N by ¢), with the notation
U=Up1 = (uy,...,up—1) and = = uy to simplify, we obtain

d(N—£—1)—2

A:/ (dN—\UP—L]x\z) © aUds.
Rt N -/ i
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Changing U to spherical coordinates in dimension d(¢ — 1), we have

d(N—£—1)—2

oo N 5
A d(—1)—1 <N— 2 2) d(e—1)—1
/}Rd/o IS [{dN = p" = 7=l N p dpdzx

oo N d(N—lQ—l)—2
_ ‘Sd(f—l)—l‘/o (/Rd (dN—p2 - Emz) dm) pd(é—l)—l dp.

Looking first to the integral over R? we obtain, changing « to spherical coordinates
in dimension d,

(18)

d(N—£—1)—2

{\/ 2
_ 2 2
B = /]Rd (dN P g\x! ) dz

d(N—£—1)—2
[ee] 7\7 2
= \S‘H!/O (diV P L 2) y*tdy,

and after some computations we get

-1 — 0?2 aN-n-2 1 PN
p- B (—N E) (AN —p*)| 2 / 11—y 0y
0

2 N

ST (N —é)d/Q( o)t T (4E==2 4 1) T (452 +1)

= (=) @v-»p .
2 N T (d(N—é—l)—2 + % +9

Plugging this expression in (18) we get

d(N—0—1)—2 d—2
— |sU-1)- ||Sd 1|<N—€>d/2r( 2 N F(2 +1)
AN—(—1)2 | 42
2 N I (A2 42 4y
d(N—£)—2

></ (AN —p*) = pMD Ny,
0

and we can compute the last integral

an-n-2 =11
C .= dN p ) dp
- l(dN)d(N;D*Z r (% + 1) r (W + 1)
5 r (d(N—2£)—2 =N 2)

Finally, plugging this in (17), we obtain

7N }SdN ——1)— HSd(e 1)—

M=) r (

(%)

N
(= 1)

(‘“N V)

(N )d/2 1 dN)d(Nle)fl

X

)1[\)2[\7

[\
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and using the fact that

271'”/2
(19) S" = Ty
I'(3)
we have
d/2
(20) N _ }Sd(N—l)—ll (dN)% (NT_E) / |

then we conclude by plugging (20) in (16).
(ii) Let k > 1 be a even integer. We have then to compute Mj(v}¥)

- s (35)°
/[EWWA Yo (Vo) dVy = ‘Sd(N—l)—1| d(N-1)—2

(21)

d(N—£—1)—2

K o Vi ;
x/ Wik (dn — 2 — A2 av.
RAE N -/ N

As in the proof of (i), we use the change of coordinates (13)-(14), then to
simplify we denote U = Uy—y = (uq,...,us—1) and x = uy. Hence we can compute
the integral

d(N—£—1)—2

! s Vil? ’
Ac= [ il (an = i - av,
Rd( N—é +
X N A(N—6—1)—2
_ 2 2\ 2 g2 2 2
_/W (102 + 1al?) (dN VP - el )+ iU da.

With another change of coordinates, U to spherical coordinates in dimension d(¢ —
1), = also to spherical coordinates in dimension d we have

d—1)=1| |ad—1| [/ ( 2 _ 2\3 2 Ny B Ad(—1)—1, d—1
Ak:’S HS ’/0/0 (p +y) (dN—p—my)+ P Yy dpdy

d(N—t—1)—2

o0 o0 N 2 _ _ _
e ‘Sd(é—l)—l‘ ‘Sd—l‘/ o / (dN 2o yz) 1 dy b pde=-14,
0 0 N —/ i

A(N—6—1)—2
_ _ o0 [oe) N P} _ _ _
+C‘Sd(é—l) 1‘ ‘Sd 1‘/ / S (dN—p2— y2> Y=ty b pde=n=1 g,
0 0 N —/ n

=11 + 5.
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For the first term we have (already computed in (i))

B a7 d(N—(—1) r d
I ’Sdé 1)- HSd 1’ <NN €>2 (r(2CWV22)) (2)
d(N—0)—2

» /Oo(dN ) R ek g
0

oA (NL=D p(d
’Sdz D=1 [s4| <NN £>z (F(ch(z\;z)) (%)
L gy (A8-0) p (=D
2

r (d(N—21)+k)

In the same way, we can compute the second term to get

_ 1 ‘Sd(f—l)_1’ ‘Sd—l‘ (N — E) &tk (d(N—2€(—1)))F (d-g_k)
N T (dN=O+k
d(N—0)—2+k ( ? )

X/ (dN _p2)72 pd(é—l)—l dp
0

‘Sd(f 1)— ’ ‘Sd 1‘ (N_g)# r (d(N—2€—1)) r (dz—k)
N T (450
an—yap T (AR (A1)
2 r (M)

(dN)

| =

Plugging this two estimates in (21) we obtain after some simplifications

’Sd(NZI) ’ (%%
M, ('VZ ) < ’Sd(N ‘ )d(N H—2 (I + 1)

r (W) P

[Ny

< (dN)? + (dN)3

d(N=1)+k d(e—1
Jese
Using the fact that for k& even we have

F(g+g) _ (n+/2<:—2) (n+/2<:—4)'”gr< )

2
(n+k— 2)(n+k—4)---nF<

k/2 terms

| -

SIE

2
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we conclude that

dN)
AN — 1)+ k—2[dN —1) +k—4 - [d(N — 1)]

x ([d(€ = 1)+ k= 2[d(C = 1) + = 4] [d(¢ — 1)]

My (') <

)

+(d+k—2)(d+k—4)---d)

(dN)
T d(N - 1)]3

[SIE

([d(e = 1) + k= 2)[d(¢ — 1) + & — 4]+ [d( — 1)]

+(d+k—2)(d+k—4)-d)
<25 ([d(C — 1) + k= 2)[d(¢ — 1) + & — 4]+ [d(¢ — 1)]

+(d+k—2)(d+k—4)-d)
< Cy ks

where Cy 1 ¢ depends only on d, k and /.
We proved then a uniform bound in N for k even. If k is odd we use |v|* <

lo[F=1 + |v|*+1 with the last estimate to conclude.
O

Now, using this explicit formula for ’yév computed above, we prove that v is 7-
chaotic, where v is the Gaussian probability measure in R?, i.e. v(v) = (27r)_d/ 2 o= lof?/ 2,
for v € R?. The proof presented here is an adaptation of [5], where it is proved that
the uniform probability measure on the sphere S"~!(\/n) C R™ is v;-chaotic, with
v1(x) = (27)"1/2 e=**/2 the one-dimensional Gaussian measure.

Lemma 11. The sequence of probability measure v~ € P(Sév) is y-chaotic, more pre-
cisely, for any ¢ such that d¢ < d(N — 2) — 3 we have

d(l+2)+2
dN —d(f+2)—2

v = ® ) < 2

Proof. Let £ be an even integer. Then we have

’Sd(N—é—l)—l’ 1 T (W)

|Sd(N—1)—1‘ o 2T (d(N—zé—l))

O (-5 050252

By the explicit formula of %gv in Lemma 10 we obtain

d B d(N—¢—1)—2
v (#5) (1-02) () (1_|W|2_ 72 ) :
+

T o AN T T AN AN  dN(N —0)
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Since 7}¥ and 7®¢ are probability densities, the L' norm of their difference can be

computed in the following way

N
g
(23) 2 =%l = Q/W <,Yég - ) v v,
+

and we shall denote
N N \?
Je ( )2 h(Ve) A

4@t \N — ¢
with
2 2 |‘7 |2 d(N7271)72
1vel? \4 i
= 1-— —
Ve) i=e ( AN dN(N—€)>+
and

A= (1_%)...(1_“%1)).

We obtain that

VP AN 1) -2 V| \45
log h(Ve) = =5+ > log |1 =N ~ aN(N =0
Vi[> d(N—£-1)-2 Vel
< _
= " > log A

and since the function o(z) = z/2+[(d(N —¢—1)—2)/2]log(1 — z/dN) has a maximum

for z = d(¢ + 1) + 2, we deduce

d(£+1)+2+d(N—€—1)—210g(1_d(€+1)+2)7

<
(24 logh(Vy) < S5 5 -

for d¢ < d(N —1) —3.
On the other hand, for the quantity A, we have

(25)
(d(4+1)+2) /2 )
d(t+1)+2 B 2]
oa[(1- 202 ] S (1 8)
(d(0+1)+2)/2 9
< 1 1—- —
_/0 0g< dN) dx

:_d(N—e—1)—2log<1_d(e+1)+2>_d(e+1)+2

2 dN 2

again for d¢ < d(N —1) — 3.
Combining (24) and (25) we obtain

dil+1)+2
1 1—-———~2 A <
Og{h(m< aN >]—0
and then

(1_d(€+1)+2>ﬁ _ (N —0)%
dN ¢ = N ’

ol

2

I
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which implies

Iﬁ_1< d(l+1)+2
~®¢ T dN —d(l+1)—-2
Plugging this expression in (23) we deduce

N

2d(0+1) +4
e =N <

T dN—-d(t+1)-2’

which is valid if £ is even.
Finally, if £ is odd, then £ 4 1 is even and we shall write

d(l+2) +2
< Ik =7 SQdNEd(EJ)r@—Q

N ¢
lve" =%l o

for d¢ < d(N — 2) — 3, which concludes the proof.

3. CHAOTIC SEQUENCES IN KAC’S SENSE

In this section, inpired by the work [3], we shall construct a chaotic sequence of
probability measure on the Boltzmann’s sphere based on the tensorization of some
suitable probabilty f on R? and conditioning to Sév . We shall give a quantitative rate
of the chaos convergence, proving a precise version of point (¢) in Theorem 3.

First of all, we define

(@) Zn(firo) =

SN(r,z)

f®N d’yN and  Zn(f;r, 2) :/ —f®N d’yN
T2 N PR} SN(nz) ’Y®N T2

for r € Ry and z € R?%, and we shall investigate their asymptotic behaviour. We remark
that, since ¥® is constant on SV (r,z), we have

Zn(fir2) = 7ZN,§/£;]\,:"” B

and we shall study in the sequel only the behaviour of Zj (f;r, z).
Define the space Py(RY) := {f € P(RY); My(f) := [|v|Ffdv < oo}, for some k > 1.
Let us consider f € Pg(R?)NLP(RY), for some p > 1, a probability measure that verifies

/ vf(w)dv =0, / v & f(v)dv = £,

R4 R4

[P f@yan=de =B, [ (vf B2 re)do =52,
R4 R4

where I; is the d-dimensional identity matrix.

(27)

3.1. Preliminary results. Before study the asymptotic behaviour of Z};, we shall
state some preliminary results that will be useful in the sequel.

Consider (Vj)jen+ a sequence of random variables i.i.d. in R? with same law f, then
the law of the couple (Vi, V?) is
(28) h(v,u) = f(v) 6yzpp2 € P(R? x RY).

Moreover, we have the following lemma.
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Lemma 12. The random variable Sy := ;-V:l(Vj, V;[?) has law s™ (z,u) dzdu with
SN (Vu, 2)
SN(Z7U) = ’ 1/2 ’ ZN(f7\/av Z),
2 (u - %) Nd/2

where z € RY and u € R,
Proof. Let ¢ € Cy(R% x R,), with the change of coordinates (13)-(14) v — u, we have

N N N N
Elo [ Svn il )| = [ eSSl ] s av
=1  j=1 R =1 =1

N

- /RdN . (\/NUN, Z |Uj|2> f®N dU.

j=1

Denoting 7% = Z;-vz_ll \uj\2 and splitting the integral, the last equation is equal to

/ / o(VNun,r? + Juy|?) {‘Sd(N_l)_l(r)‘ / N dag(N_l)_l} duy dr
0 JRd Sd(Nfl)fl(r)

where 0’5 ! is the uniform probability measure on S*~!(R). Making the change of
coordinates w = r? + |uy|? and z = v Nuy, we obtain

Sd(N—l)—l w— |22
/oo/ oz, w) N / FON dot=n-1 o .
0 JRd ’ 5 (w B J‘V_Z‘Z)lﬂ Nd/2 Sd(Nl)l( [ w— 2N2> m

r o)
_/0 Rdﬁp(z,w) 2(w_%)l/sz/2

ZN(f7 \/@7 Z) dz dwa

from which we conclude. O

Since Sy is the summation of independent random variables, its law’s density is also
given by

(29) sV (z,u) = h*N(z,u),

and we deduce from the lemma above

2 (u— )" N2 N (20
[SM(Vu, )]

Lemma 13. If f € Py (RY) then h € Py (RITL).

Proof. Let y = (v,u) € R with v € R? and u € R. Then we have

/ lyl* h(y) dy = /Rm (|v|2 + |u|2)k/2f(v)5u:|v|z dv du
<O ([ ol sy dor [ o sy dz)

from which we conclude. O

(30) Zn(fivVu,z) =
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Lemma 14. Suppose f € LP(R?) for some p > 1. Then h*? € LI(R1) if
(i) ford=1:1<qg<p andq<erl

(ii) ford=2: q<p
(iii) for d > 3: if f € Ly(R%) (s >0), for ¢ < p and

-2 -1+ sp
(d=2)(p—1)+s

Proof. We compute first 2*?(v, u) with v,v" € R? and u,u’ € R.

h*2 (v, u) = /Rd/Rh(v — v u—u)h(' ) du'd’

= /Rd flo =) f(v') {/}R5u_uf:|v_uf|25uf:u2du/} v’

= / flv— U/) f(’l)/) 5u=\v—v’|2—\v’|2 dv'.
Rd

> 1.

Moreover, we have

J

u=|v—o'|2—[v'|2 =

2 \0\2'
—9|V _.y
u—2’2 ”‘ T3

Then we can compute the L? norm of h*?,
(31)

e
= Je

— JRrRAJR

h*2(v, ) ‘q dv du

2 dv’ dv du

[ 0=,y e

(a—1)/q 1/q|?
(/ O\ 2 u_ 2 d”’) ( flo=0)1fFN6, oy e d”/)
Re |3V =314 R4 |3—v=5-"-

where we used Holder’s inequality.
We look to the integral over d, using w = & — v/

2
/ 0 o ‘zdw—Sd 1\/5 L e T ldr
Rd |wl"=15 =5

2

dv du.

where we changed to polar coordinates and then, with z = r

d—1
/d6| ‘2 . ‘U‘z |S | / u o2 ‘ Z (d—2)/2 dz
Rd W =35~ 2

_S*w u )
2 \2 4 )

Therefore we obtain, plugging (32) in (31) and using Fubbini,

fu
_ q—1
Sd_1’ U ‘UP (d—2)/2
< EAY] g ’ et bl !
_/Rd/Rdf(v v)? f(v') {/R[ 5 <2 1 5u:2|%_v,|2+#du dv dv
|Sd 1|‘1 ! 2)(g-1)
fuh |5 -

(32)

h*2(v, ) ‘q dv du

flo—=)f()dvd =:A




18 KLEBER CARRAPATOSO

Now we have the cases d=1,d =2 and d > 3:
(i) for d = 1: Splitting the expression, we have

_ ')
A< fv U)fl ddv—i—//fv—v (v")dv dv’
$-vi<t |5 =
=T+ 15
For the last estimate we have Ty < HfHLq < ||f|| (because ¢ < p and f is a

probability measure), and for the first term we use Holder’s inequality

) (r—a)/p a/p
/ _ \P "N\p /
T < (/|§—v'|§1 }%_U/}(q—l)p/(p—q) dvdv) </|%_v,|§f(v )P f(v) dvdv) .

Then, the first integral converges if (¢—1)p/(p—q) < 1, which give us 77 < C’||f||2L‘§,

if
2p
< —F.
1 p+1
(ii) for d = 2: In this case we have
Sl q—1
_|2q|1 /Rd/Rd v—v) f(v)dv dv’
\Sl\q 1 \Slr" 1

[l

A1z

(iii) for d > 3: We have, using w = v —v" and u = v/

Sd 1‘1 1
/Rd/Rd

|Sd-1|q 1

2q—1 2(d—2)(q—1) /]Rd/]Rd jw — u|(d_2)(q_1) fw)? f(u)ldw du

gd-1 q-1 o
< m{20 (/l%d |’LU|(d 2)(¢—1) f(,w)q dw> < » f(u)q du) }

< ClIFITalFIIg

(d 2)(¢—1)

fv =29 f(0")dv do'

where we have used |w — /@21 < ¢ (\w\(d_2)(q_1) + \u](d_z)(q_l)) and m =

(d—2)(g—1).

Finally, we have || f||%, < |/f||%, and with the hypothesis f € LP N Ly, we have
[ fllza < oo form=s(p—gq)/(p—1)and ¢ <p (see Lemma 31 in Appendix A.2),
more precisely for

(d—2)(p—1)+sp

1= a2 —D+s "
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3.2. Asymptotic of Z},. In this section we shall study the behaviour of Z}), when N
goes to infinity. First of all, let us state a version of the Central Limit Theorem, also
known as Berry-Esseen type theorem, which is the main ingredient of the proof of the
asymptotic of Z}, in Theorem 17. The proof of the CLT presented here is a slightly
adaptation of [7, Theorem 4.6] (see also [3, Theorem 27]).

Theorem 15 (Central Limit Theorem). Let g € P3(R”) such that, for some integer
k> 1, we have g** € LP(RP) for some p > 1. Moreover, assume that

(33) / xg(z)dx =0, / (x ®@x)g(x)dx = Ip, / lz|2g(z) dz < Cs.
RD RD RD
Then there exists a constant C = C(D,p, |g"*|lz») > 0 and N(k,p) such that for all
N > N(k,p) we have
C
gN —7liLee = sup |gn(z) —V(2)] < —=,
| | xeRD| () = y(z)| Vi

where gy (x) = NP/2g*N(\/Nz) is the normalized N -convolution power of g.

In the sequel we will need the following lemma, and we refer again to [3, Proposition
26] and [7, Lemma 4.8] for its proof.

Lemma 16. (i) Consider g € P3(RP) satisfying (33). Then, there exists 5 € (0,1)
such that
VEE B(0,6) (g <
(ii) Consider g € P(RP) N LP(RP) for 1 < p <
k(0) = k(Ms(9), |lgllz»,9) € (0,1) such that

sup [g(&)| < w(9).
€6

Proof of Theorem 15. We remark that

&Y ¢\
@ -i(2<) . wo=7(2)
We have ¢** € L' N LP, for p € (1, 0], and then by the Hausdorff-Young inequality we

deduce that (g**) = (§)¥ lies in L?' N L with p’ € (1, 00]. Furthermore, i () € L' for
any N > kp'. Hence we shall use the inverse Fourier transform to write

lov(@) (@) = @07 | [ ¢ @nle) = 7(6)) de
<@n)? [ low(©) -7 e

Spliting the last integral in low and high frequencies, we obtain

Lolav© -a@la< [ vl [ R

+ /|§|< P MOREIGIE:
=:T1+ 1T+ T3,

o0o. For any 0 > 0 there exists

(34)

for some § € (0,1).
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For the first term, we write

(&Y D/2 .
= Jeums PA\VE ) Inl>6 oln
N/k—p’
< NPP2 <sup 90) r) [ ta) dn
n>4 ‘77|26

< NPPa@NE Cpyllg™ 7

where ¢ € (0,1) is given by Lemma 16-(i) and x(J) is given by Lemma 16-(ii) applied to
g** (because we have supposed only g** € LP). We get the same estimate for the second
term, then we obtain that there exists a constant C' = C(D,p,|lg"* | L») such that

T+ 1T, <

Finally, for the third term we have
19N (&) =7 .13
T3 = S 2 7 dE
° 7 Je<vns 19k d

and we can estimate

Gn(©) =] _ 1 [g&/VN)Y —F(&/VN)N]

17 - NE2 €/VNI?
L g/ VNN eV IS ks
= X |20 GE/VNAE/NVN)N —k —1)).
N2 €/VNI? kz:%)
Moreover, point (i) in Lemma 16 implies
N-1 N-1 2 2
S aeVRIFEVIINID) < 3 e SRS < ve
k=0 k=0

Hence, we obtain

1 lg( e 3
< -
13 < N2 (SUP |77|3 ) / Ne™ s [£]° d¢
1
< —= (M + M. Ch,
s (Ms(0) + M5(7))
and we finish the proof gathering the estimates of T3, T» and T3 togheter with (34).
O

With these results we are able to state the following theorem about the asymptotic
behaviour of Z};.

Theorem 17. Consider f € Pg(R?) N LP(R?) satisfying (27). Then we have

Vad  (dN)*FEE %
2
e (r2 - %2)“ =

2|2 r2 — NE)?
- lexp <_2’5‘N - 222N) )*O(l/m)]

Zn(fir,2) =
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and in the particular case > = dN and z = 0, we have

— V2d N(d— E)?
Zn(f; VAN, 0) = P P~ 9y2 +0 (1/\/N) .
Proof. Let us introduce

g, u) = SEV?h(EV?v, E + Su) € PR,

with v € R? and u € R. Since h lies in P3(RT!) by Lemma 13 and 7*? € LI(R1) for
some ¢ € (1,p) thanks to Lemma 14, we have g € P3(R%!) and ¢*? € LI(R4T1).
Moreover g verifies (by construction)

/Rd+1 yy(y)dy =0, /Rdﬂ(y ©y) 9(y) dy = Lat1,

where Iz, is the identity matrix in dimension d + 1.
We can now apply Theorem 15 to g, which implies that there exists C' > 0 and Ny
such that for all N > Ny,

sSup ’gN(U7 u) - ’Y(Uv u)’ < —7=
(v,u)ERIXR N

where gy (v,u) = N@D/2g*N(\/Ny /Nu) is the normalized N-convolution power of
g, with
g N (VNu,VNu) = £ V2 p*N(£Y2\/Nv, NE + SV Nu),

e_‘v‘2/2 e_u2/2
’Y(U,U) = (27T)d/2 (271')1/2

is the Gaussian measure in dimension d + 1 (recall that we have v € R? and u € R). It
follows that

and

N (v, u) —

(35) sup
(v,u)ERIXR

N@rn/z 7 v SVN /| = VN N@+H2-
Gathering (35) and (30) we obtain
ZN(f7 T, Z)
a2 (2 122
B 2N (r - W) yn-lg—d/2 1 |2|? (r2 — NE)? o (1/\/ﬁ)
T S¥nal  N@OE go@nz PP\ TeN T T amN -
Using (12) we have

2Nd/2 (7,2 _ %)1/2 ) |Z|2 _% E—lg—d/? 1
ZN(fir2) = ‘Sd(N_l)_ly r= N N(d+1)/2 (27T)(d+1)/2
+

X [exp( 2" — (Tz_NE)2> —i—O(l/\/N)] .

26N 292N

Thanks to the formula
27Tn/2

n—1| __
s = T(n/2)
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and to Stirling’s formula,

T (an +b) = V2 (an) ™5 e (1 + O(1/n))

we have

d(N—-1)—1 d(N—1)—1

F<M> = \V2r(dN)" = 2 "7 e 2 (1+O0(1/N))

2
and then

l\'}|ﬂ[\) l\'}|;

Zn(fir,2) =
N(fvraz) Eé’d/Q (271_)% ) 22)d(N21)2 o
-y

V34 (e_g) (AN -

z|? r2 — NE)?
X [exp <_2‘5’N _ YN ) >+O(1/\/N)]7

which implies for the case r?> = dN and z = 0

Zh(f: VAN, 0) = ‘éi lex (—7(22 E) >+O(1/\/_)]

3.3. Conditioned tensor product. Consider now

FN = [N P Sl ol
SB ZN(fv\/Wvo)

the restriction of the N-fold tensor of f to the Boltzmann’s sphere Sg . Suppose also
that E = [|v|2f = d, i.e. f has the same second order moment that +.

We have then the following theorem, which is a precise version of point (i) in Theo-
rem 3.

N

Theorem 18. Consider [ € Pﬁ(Rd) N LP(RY), with p > 1. Then, the sequence of
probability measure FN € P(S§) defined by FN = [f®N]SN is f-chaotic.

More precisely, for any fixed ¢ there exists a constant C = C(¢) > 0 such that for
N > {4+ 1 we have

N (@ N _ o
Wi(F f25) < 1 = 0 \/—

Proof. With the notation V = (vy,...,vy) € RNV, = (vi)i<i<es VN = (Vi)er1<i<n
and V; = ¢, v;, we have from the deﬁmtlon of F N
FENWVIAN (@)
ZN(f; \% dN7 0)
f®€ 1 f®N—£ N
=—(V, V dV).
7@[( 5) Z],V(f,\/d_N,O) ,_Y®N_g( @,N)’Y ( )

We recall that vV = 7% 0 and we have

FN@V) =

7%70((“/) = ’7év(dvf) 7m7z(dw,N)
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where z = — Zle vi=—Vp. Wefix £ >1and N > ¢+ 1, then we have

R0 = [ PN v
RA(N—0)
e W) fere
= 300 GV D) Jov i) 2T o) e
®F A [ VAN — V]2, —
L =5 Z(ZMN_G) ") .

Let us first compute the ratio betwenn Z%_, and Z);, by Theorem 17 we have

Zy_y (f§ dN — [V 2, _‘75) B (d(N — E))d(N%;l)i2 e‘w
Ziy(f; VAN ,0) (anv — v - K2 )(Ni) A

Vel? (de — |[Va[?)? —1/2
- — N .
. leXp< (N —0)  222(N —0) +o(N712)
Using the later expression with Lemma 10 one obtains

d(N—0—1)—2 de
2

®L _
v = Ly 0

ez
d(N—0—1)—2 \ \
(av i - )
Vel d€—|W| 1/2
. lexp< 26(N —0) 25N
—f—
‘Sd(N—é—l)—l‘ ( ‘VZP -
X [SIN-DT]| d(N g
ot
Y, v df—lVl 1/2 )
=/ [exp< 26(N —0)  252(N —0) 1dN—M|2—%>o
SO v e N N
X ’Sd(N—l)—l} (dN)d(N -2 N _¢ (2me) 2 .
Since
N d/2
(m) =0(1),
we have

(36) FN (V) = f24(V) 07 (Vi) 05 (V)
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with
N _ WP (de—|v? iy
0y = [exp< QE(N —0) 222(N—€) +0 (N ) 1dN—|Ve|2 ‘VZ\ 2
(37) d(N—£—-1)— d(N—0—1)—2
S (N—¢-1)—-1 AN — ¢ d(N—£—1)—2 y
oy = } ‘ (d( b (2

‘Sd(N—l)—1’ (dN)

Thanks to Stirling’s formula again, we obtain

qd(N—t-1)—1 AN L

Moreover we can easily see by (37) that ||62V]| ;. < C uniformly in N, and
(38)
107 (Ve) = 1] = |67 (V) — 1Ly < + 107 (Vo) — 1Ly, =R

|Vel? (df — |Ve*)?
= <25(zv€—5) * 222(Né—€)> +0 (V)

7k
Lvi<r+CppLvi>r

R? RS U Vel”
<C W+W+O(1/ N) ) ver + Ol 7o Lvel=R:

for some R > 0 and b > 0.
Finally, choosing R = N'/8 and b = 4 one has

1EY — &0y = 106202 = D F "l s
< (65" = D)6 fN| .y +”(9{V_1)f®ZHL1

C 4 )4 )4
S_Hf® ”L%"i_ f® ”L f® ”L1

— u

\/— \/_
(0f

< v IMflley + \/—NHfHL} + \/—NHfHLg-

4. ENTROPIC AND FISHER’S INFORMATION CHAOS

We recall that in the Subsection 1.2 we defined the relative entropy and relative
Fisher’s information of a probability measure. Moreover, we defined strongers notions
of chaos, namely the entropic chaos in Definition 2 and the Fisher’s information chaos
in Definition 4. We prove in this section precise versions of point (ii) in Theorem 3,
Theorem 6 and Theorem 7.

4.1. Relations between the different notions of chaos. First of all, we start with
the following lemma and we refer to [3, 7, 10| and the references therein for a proof.
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Lemma 19. For all probabilities p,v € P(Z) on a locally compact metric space, we

have
H(ulv) = sup {/ gpdu—log(/ e“ﬁiu)}
peCy(Z) Z Z

= sup / wdpu.
@ECb(Z),fZ e dv=1"%
The following theorem is an adaptation of [3, Theorem 17], where the same result is

proved for probability measures on the usual sphere in RV,

Theorem 20. Consider g € Pg(RY) N LP(RY), for some p € (1,00], where g satisfies

/!’U!29=d

Consider GV a probability measure on Sév such that for some positive integer ¢, we have
GY — 7y in P(RY) when N goes to infinity.
Then, we have

1
_H ®¢ im i H GN QN
(melg™) < I}V—gonof N ( | [9 }Sg) '
Proof. Let fix a function ¢ := ¢(vy,...,v) € Cy(R¥) such that

(39) / e? g®r =1, H(m|g®%) < / pdrg+¢€
Rd¢ Rd¢
for some € > 0, which is possible thanks to Lemma 19. We introduce the function

q)(’Ul, "'aUN) = Qp(vly s aUZ) et (p(v(m—l)ﬁ—i-l) ce avmf)a

where m is the integer part of N/¢, i.e. N =mf + r with 0 < r < ¢ — 1. Thanks again
to Lemma 19 we have

1 N[ &N l/ N L / ® g [g®N
NH<G ]{g }SQ>EN SéVCI)G (dv) Nlog S]BVe d[g }Sg .

For the first term of the right-hand side, using the symmetry of GV and the conver-
gence of its f-marginal, we have

1
N
N/ eGTdV) N/ s T Jpae P T

We note that the second term of the right-hand side can be written in the following

way
1 g QN
@ 5[ @N @ N
e d = / e (—) d
/sg [g L‘g Zh(g; VAN, 0) Jsy ¥ 7
]y =
S5 Zn(g;VdN.,0)

Applying Theorem 17 and thanks to [ |v|> g = d we get

Z}(g; VAN, 0) = */(—C;(HO(l/\/_))

since
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where Y(g) is given by (27) applied to g, and then

1
(40) lim (— log Zn(g; VAN, 0)) = 0.
N—oco \ N
For the other term, denoting u = (v1,...,Ume), W = (Vmet1,--.,0N) and W = Ve +

-+ vy, we write

g RN
@)
SN(VAN,0)  \7Y
d(N—r—1)—2

/ gtV (dN — Juf? - g5) 7 < N )
= i ’Sgl(N—l)’ (dN)d(N—Ql)72 N _r

Nl

<g> ®r
~
@m
e? g®* N
X — d dw

{Lgm(m7_@) < fy®€ ) 2l /dN —|w|2,—w

where the integral in dw have to be taken over the region
{w e R |dN — |w|? — |w|*/(tm) > 0}.

We recognize that the last integral is equal to Z], (e‘p g%t /AN —w[?, —w) (where
Z!, is a multi-dimensional version of Z};, obtained replacing N by m/) and by Theorem

17 we have
z <e‘p g%\ JdN — lw|?, —w>

(d€ ) d(tm—1)—2 _dim
m 2 e 2
=0(1) x P dlem 12 _ (aN-|w]?)
w
(an = - 5E) ©

and using (19), we get

g QRN )2 g ®r
/ e® (—) N =C e 2 (—) dw
SN (V/dN,0) Y Rdr Y

— 0(1) x (2m)"/? /Rdr ¢ dw = O(1).

With these estimate at hand, we can deduce

i 1 o (Y oN N
liminf | —— log / e | = dy >0
N—o0 N SN (VAN ,0) v
and together with (40) we obtain
oo 1 N[ ®N 1 L Y
— > - > - _
lmlélofNH(G \[g }Sg)_g/ﬂwcpdm_eH(m]g ) —e€.
Since ¢ is arbitrary, we can conclude letting € — 0.

0

Our aim now is to give an analogous result of Theorem 20 for the Fisher’s information.
However the strategy here is different, it is not based on the asymptotic behaviour of
Z} like before, but on a geometric approach following [7], where this analogous result
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is proved in the Kac’s sphere setting. To this purpose, firstly we shall present some
results to conclude with the Theorem 22.

Consider W = (wyq,...,wy) €R¥N and V = (vy,...,vyn) € SE, where we recall that
V; = ('Ui,a)lgagdy w; = (’wi@)lgagd S R? for all 1 <i<N.

Let P, be the projection on the hyperplane {X € RN . Zf\il x; = 0}, then it can
be computed in the following way

d eV eV
P;J/V:W—Z(W-@) TN

a=1

where e = (eq, ..., eq) € RN with e, = (Jug)1<p<d € R%. Since |} | = /N we obtain
1 ¢ Ny N
(41) PhW:W—NO;(W-ea)ea.

Moreover, the projection P, on the sphere {X € R*™ ; SN |22 = dN} is given by

w

(42) P.W = VdN W

Hence the projection Ps on the Boltzmann’s sphere Sév can be computed as the com-
position of the others, i.e. Ps = P; o P, more precisely

PsW = (P, 0 P)W

_ VN W
(43) [P W]

= AN W - %Zg:I(W ) eg) eé\/
W= &Sl (W eed)el|

or in coordinates, for 1 < j < N and 1 < 8 < d,

VAN

PsW); s =
(44) (PsW); 3 }W—%Zizl(W'eg)eg}

1 N
(wa',/s “N wkﬁ) :
k=1

Consider V' € Sév and a smooth function F' defined on Sl]gv . Then the gradient Vj, on
{X e R™ ; N 2, =0} is (recall that V stands for the usual gradient on R%)

N d
Vi,F(V)=VF(V) - % >N 0 F(V)el.
i=1 a=1

Moreover, the gradient V on the sphere {X € R ; SN |22 = dN} is given by

V.E(V)=VF(V) - (|—¥| : VF(V))

v
VI
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Combining them we can compute the gradient on Sl]gv , which is given by

VeF(V) = VyF(V) — <|—¥| - th(V)) %
(49 U ;
—lV-VF(V)—NZZ oo F .V)]W
—VF zz —[V-W(vn%,

zlal

Slncee V= Z Vi = ObecauseVGSéV.

Let @ be a smooth vector field on R™ which written in composants is ®(V) =
(®1(V),...,2n(V)) with &;(V) = (®;1(V),...,P;q(V)) for 1 <i < N. We denote by
divs the divergence on Sév , then it can be computed in the following way

N d
divg (I)(V) = Z Z Vs® ”3 €58,
j=18=1

where e; 5 = (0108y) 1<k<N)(1<y<d) € RN, Using (45) and after some simplifications
we obtain
(46)
1 N od N N vig
divs ®(V) = div ®(V N;;; b 5 P ;;V.v%ﬁw)”ﬁ.

Lemma 21. Consider a function F and a vector field ®, smooth enough, defined on
Sév . Then we have the following integration by parts formula on Sév

d(N —1) —1

/sg {VSF(V) CB(V) + F (V) divs (V) — ==

FV)®(V) - V} dy™M (V) = 0.
Proof. The proof presented here is an adaptation of [7, Lemma 4.16]. Let y be a smooth
function with compact support on R and define for V € R

(V) = x(|PpV]) (F o Ps)(V) (® o Ps)(V).

We can compute div¢(V) and after some simplifications using the formulse for the
projections (41) and (43), the gradient (45) and the divergence (46) on Sf we get

div §(V) = % F(PsV) PsV - (PsV)
(47) +x(|P,V|) VsF(PsV) - ®(PsV) ’ﬁ
V|
VAN

X(|[PhV]) F(PsV) divs ®(PsV')

|P V|
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Integrating (47) we get

X (1P V1)
F(PsV)PsV - ®(PsV) =————=dV
o F(ESV) PV - @(PsV) ==
VdN
+/ [VsF(PsV) - ®(PsV) + F(PsV) divs ®(PsV)| x(IPV ) 5o dV = 0.
RN | P,V |
Using the change of coordinates V. = (vy,...,on) — U = (uq,...,un) given by
Lemma 9 and then the variables w = Y%, |u;|> and z = V/Nuy, we obtain that

the last expression is equal to

d(N—1)—2 / w — 122
Sd(N ‘ ’2‘2 2 N X N
//d w— — / FWV)V-®(V)dy, , dz dw
R

2 Nd/2 N SN (w,2) ' VAN
+/ / |Sd (N-1) 1| " ﬁ 2
Rd | 2N42 N

VsF(PsV) - ®(PsV) + F(PsV) divs ®(PsV)| dv. JEE) S g du,
/S‘N(w,z)[S(S) (PsV) (S)IVS(S)}’Y,}X(U) N)Mzw

and then we get

dN-1)—2 o o
/ /Rd< |2 !2> 2 X <\/dN7N) dz dw </SgF(V)V.<I>(V)d7N>

d(N-1)—3

+/ /]Rd < ZI2> 2 X ( w— %) dz dw </Sg [VSF(V) (V) + F(V) divs cp(v)} va)

Since we have

) d(N—1)—2
[(wo-BE) 7 (o) -
N N

we obtain the result

/SN {VSF (V) - ®(V) + F(V)divs ®(V) —

With these results at hand we are able to state the following theorem, which is
the Fisher’s information version of Theorem 20 and the proof is an adaptation of [7,
Theorem 4.15].
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Theorem 22. Consider G a probability measure on Sl]gv such that for some positive
integer £, we have Gév — 1y in P(R¥) when N goes to infinity.

Then, we have

1 4 | N|_N
< — .
I(mey™) < liminf = I(GT]77)

~|

Proof. Let us denote GY =: gV~4N. Using [7] we have the following representation
formula

LGN yY) = /SN Vslogg™?g" dy™

B

i} 2
= sup /N (VS log gV - ® — %) g dyN
PeCE(RIN;RIN) /S

and we obtain by Lemma 21
(48)

d(N —-1) -1 , o(V)|?
I(GN ) = sup / (% O(V)-V —divs ®(V) — %) gV dyN.
PeC} (RINRIN) JSE

Furthermore for 7, we have, also from [7],

2
I(my®) = sup / <<p -V —divy — |(L> .
ey (RetRet) R 4

Let us fix € > 0 and choose ¢ such that

—[(W\’Y / letp—M U
L - @ 4

Denote N =gl +r, 0 <r < {, and define Viy = (Vg1,..., Vi 4, Vi). Choosing (V) :=
(e(V21), .- ¢(Vig),0) € CHRIN; R we obtain from (48) and the symmetry of GV

1 Nvony o 1 / diN-1) -1 U e()IP
v (G 2 s N P(Vy) - Vv — divs ©(Vy) 1 G (dVn)
q dN—-1)—1 . ERAIRP (N)

> N /Rdz <T o(Ve) - Ve — divp(Vy) — 1 Gy (dVe) + N

with
(4, ) .
ROV = [ S35 (5 Gusons + 3y Gusirg)viguns) G (Vi)
k=1i=1 =1

The last expression is bounded if V¢ decreases rapidly enough at infinity. Hence, passing
to the limit we obtain

2
lim inf — 7(GV / el
1m1n nf GN YN _€ < —dive 1)

Z I(ﬂ-fh/@é) -

~|

and we conclude letting € — 0. g
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We can prove now precise versions of implications (i) = (ii) and (iii) = (iv) of
Theorem 6 as follows.

Theorem 23. Consider GV € P(S%) such that GY — f in P(R?). We have the
following properties:

(i) If H(fly) < oo and
L N N
~ H(GT 1Y) = H(f ),
then G is f-chaotic (in Kac’s sense).
(i) If I(f]y) < oo and
1 N|.N
~ HGT ) o L),

then GV is f-chaotic (in Kac’s sense).

Proof. Since GYY — f in P(RY), by [15] there exists a subsequence Gévl and 7, € P(R%)
such that G " —~ 7y in P(RY), when N’ goes to infinity, for all £ > 1 (and in particular

™ = f)
(7). By Theorem 20 we have

1 4L s 1 N | N
_ < — = .
EH(WW ) —lwgofNH(G YY) = H(f|v)

Since we also have the reverse inequality by superadditivity of the entropy functional,
we obtain

" /
H (™) ~ LH(f1) = [ moiog 75 ¢ [ flos=
®¢
:/ﬂglog%—/mlog%
v v

=0

which implies 7, = f®¢ a.e. on {f®* > 0}, since the function z + zlog z — z + 1 is equal
to 0 in z = 1. Thanks to 7, f&¢ € P(R%), we obtain

/ T = ©f— 1.
{re¢>0} {ref>0}

It follows that m, = f®¢ a.e on R¥, so the whole sequence Gév converges to f®¢ and
thus GV is f-chaotic.

(ii). The proof of point (ii) being similar, thanks to Theorem 22 and the superadditivity

of the Fisher’s information [2], we skip it.
O



32 KLEBER CARRAPATOSO

4.2. Entropic chaos for the conditioned tensor product. We shall study now the
entropic chaoticity of the probability measure FV = [f®N ls sy with quantitative rate in

the following theorem, which is a precise version of point (i7) of Theorem 3.

Theorem 24. Let f € Pg(RY) N LP(R?) for some p > 1. Then, the sequence of
probabilities FN := [f®N]Sév € P(SY) is entropically f-chaotic. More precisely, there
exists C > 0 such that we have

Proof. We write

N

1 f®N N
_1 1 dF

N /sg (Og 23 (f;v/dN, 0) ’Y®N>
_ i) N_ 1 s
_ /R d <log L) drY — < tos Ziy(£: VN 0).

Thanks to the assumptions on f, we can use Theorem 17 to obtain

§ HER) = [ (togd)ar + oa/m).

Using (36)-(37) we have F{¥(v) = 61V (v) 04 (v) f(v) or more precisely

FY(0) = £(0) (55 1.0 (V) ) (1 4+0(1/) =07 (0) £(0),
and then
1 N Ny _ N f
@) G HENY) =m0 = [ Y =17 (1sL) +oam.
We estime now the first term of the right-hand side, denoted by T',

71< [ 0% 11 f Nlogldo+ [ 10~ 1] £ 1o fl v
Rd Rd

g/ \HN—l\fC(1+\v\2)dv+/ 6N — 1) f|log f| dv
Rd R4
=T+ T5.

We recall that (already computed in equation (38))

R? R4 1

N_1q1<
0N — 1 c(N Sy

|Vel*
>1|w<R+C 7k LVilzR
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for some k> 0 and R > 0. Then, for the first term we have

T < [ 10V UL @R+ [ 18V =1 f (1 1of?)

R2 R4 1 1
. (W PR \/_N> 171+ 5 (Me() + Mol )
e
=N

where we have chosen R = N'/8 and k = 4.
For the last term Tj, define A > 1 and Bg = {v € R%; |v| < R}, then we have

Tl < [ 0% 1l fllog s+ [ 16Y ~ 111 [log fl1pa
Bp BS
[N =11 Nog flticpeat [ 10N —11F 1108 f11, ey
BR BR

N_
+/Bg|9 1] £ |og | Lo o, o2

Now we compute each one of this five terms. First, we deduce that

R? Rt 1 R2 Rt 1
Toq| < | =+ —+ — / 1 =|—=+—+—]0Cy.

For the second term, we use that f|log f| < f04P)/2 < fP/AP=1/2 oyer {f > A,|V}| >
R}, and then
[ral

Al-1)/2"
Using f|log f| < f|log A| over {1 < f < A,|V;| > R} for the third one, we obtain
log A
T23] < —% Mi(f)-

Thanks to f |log f| < f|v[2 < flv[™"2/R™ over {e "> < f < 1,|V;| > R}, we get

|Ts 0| <

1
T2,4] < T mt2(f)-

Finally, by f|log f| < 4y/F < 4e™P/2 over {0 < f < e~"F |Vj| > R}
T4 < Ce .
Putting togheter all this terms, we have
S5
VN
choosing AP~1/2 = Rk R = N1/8 | =6 and m = 4.
We have then |T| < C' N~/2 and we conclude plugging it in (49).

<
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4.3. On a more general class of chaotic probabilities. In the subsection before
we have constructed a particular probability measure on Sév that is entropically chaotic.
Hence, a natural question is whether it is true for a more general class of probabilities
on the Boltzmann’s sphere. Theorem 28, which is a precise version of (ii) = (iii) in
Theorem 6, gives an answer with a quantitative rate.

First of all, let us present some results concerning different forms of measuring chaos
that will be useful in te sequel.

Lemma 25. Consider f,g € P(R?) and FN,GN € P(RN). Let us define My(F,G) :=
For any k > 2 we have

(50) Walf,g) < 28 My(f, )70 Wy (f, g) 5D
and
1 k—2
N AN N AN\ 266-D N AN\ 201
JN N N

The proof of Lemma 25 come from [12, Lemma 4.1] for (50) and (51) is a simple
generalization of (50) to the case of N variables.

We denote by W the MKW distance (7) defined with a bounded distance in R?,
more precisely, for all f,g € P1(R%),

Wi(f,g) = WE{_?(EI,Q) /]Rded min{|z — y|, 1} w(dzx, dy).

Consider GN € P(R™N) and f € P(R%). We define then GV, §; € P(P(RY)) by, for all
S Cb(P(Rd))v

AN _ N\ AN N_ 1 al d
- /P(Rd) () CVp) = [ Bd)GV@V).  uf = >, € PIE)
L @) 3(dp) = B(p)
P(RY)

Furthermore, W stands for the Wasserstein distance on P(P(R?)). More precisely, for
some distance D on P(R?) we define

Vv € P(P(RY), Wp(v) = weli'ln(lft V)/P(Rd)XP(Rd

In the particular case of GV and d¢ we have I(G™, df) = {GN @ d¢} and then

AN _ N N
(53) Wo(G¥67) = [ DG, N6~ av).
We have the following result from [7].

Lemma 26. Consider f,g € P(RY) and FN,GN € P(SE). Let us define My(F,G) =
My (F) + Mi(G).
For any k > 2 we have

(54) Wa(f,g) <2

: D(f,g)dr(f,g).

wlw
==
N
==

Mk(f7 g) Wl(f7 g)
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and
1

1_1
WQ(FN,GN) <2% (Mk(FN,GN)>k <W1(FN,GN)>2 E

(55) T~ ~ ~

For any 0 < a; < 1/(d +1) and k > d(a;' —d — 1)~" there exists a constant
C:=C(d,ai, k) > 0 such that

(56) le(éNaéf) < OM(GN, )V (Wl(Gév,fga) N %>a1 '

For any 0 < ag < 1/d" and k > d'(a5 " — d')~", with d' := max(d,2), there exists a
constant C := C(d, o, k) > 0 such that
My (f)M*

Noz

The equations (54) and (55) come from [7, Lemmas 2.1 and 2.2], and (56)-(57) are
proved in [7, Theorem 1.2].

(57) WA(GN, 1) = Wi (GN6p)| < C

As a consequence of Lemma 26 we have the following result.

Lemma 27. Consider GN € P(S§) and f € P(R?) such that My(GY) and My(f) are
finite. Let us denote My, :== My(GY) + My(f).

Then for any 0 < oy < 1/(d+1) and oy < k(dk +d+ k)™, 0 < ay < 1/d" and
ag < k(d'k + d)7t, with d' := max(d,?2), there exists a constant C := C(d, k, a1, az)
such that

N ®N 1, R
% < OME (Wi(GY, f52) 4 N7 4 N72)*

Proof. First of all, we remark that N~'My(G") is equivalent to M (GY) since GV is
symmetric. Then, using Lemma 26 we have

WQ(GN,f®N) ) 1 (Wl(GN,fQ@N))%_

==

< 23 k
o Sr M N

=

Wl
ey

2

IN
= ol

M (OMk(f)E

v W, (GN, 5f)>

< 2%CMI§ (N—az + (Wl(Gév,fm) +N‘1)a1)%

1
E

where we have used successively (55), (57) and (56), with a; and a9 defined as above.
U

We can now state a precise version of (i7) = (4i7) in Theorem 6.

Theorem 28. Consider GN ¢ P(Sév). Moreover we suppose that GV is f-chaotic, for
some f € P(RY), and also that

1 1
Mi(GY) <Cr, k26, L HGYWY) <G, L HGYY) <G
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Then GN is entropically f-chaotic. More precisely, there exists C = C(Cy,Cy,C3) >
0 and for any B < (k — 2)[4(dk +d + k)]~ a constant C' := C'"(B) such that

N N
¥ HE )~ H ()| < © (%f” + cfzv—ﬂ) .

Proof. First of all, thanks to Theorem 20 (with ¢ =~ and ¢ = 1) we have
H(fy) < liminf — HGN YY) < G,
N—oo N

Thanks to [1, Example 2] (see also [4] for related inequalities) we obtain

NN
16 p) < ¢ G0

and passing to the limit inferior we deduce

I(flv) <C

which implies that I(f) < oco. Indeed, I(f|y) = I(f) + Ma2(f) — 2d, from which we
conclude.

Furthermore, since I(f) < C, f lies in LP(R?) for some p > 1 by Sobolev embeddings.
Moreover M (f) < oo for some k > 6 since My(GY) is bounded and G — f weakly
in P(R%). We have then all the conditions on f to construct FV = | f®N ] sy satisfying

Theorems 18 and 24.
Let us denote

f®N
Zn(f;vaN,0) |

and we compute the relative Fisher’s information with respect to vV

N _ N _. fNoN

1 [,
N[(FN‘ N/

where we recall that Vs is the tangent component to the sphere Sl]gv of the usual gradient
V in R™V, Since |[VsfV|? < |VfV|?, let us compute the usual gradient of fV

VN N S|
orf_ger]

=1

= ! al ’Vz'fi’2 .
ZN(fa \/d—N,O) ; fz fl fl—l fl—l-l fN

where f; = f(v;).
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We can return to the Fisher’s information to obtain

1 ‘VfN\
I(FN ANy < = dyN
1 1 |V fl N
e fiy foag - Fad
=¥ sy Zn(f ﬁoz Z fie1 fi1 - [y dy
_ Vo, f1I° Zn_1(f; — Jv1]? N
Re f1 ZN(f; \/dN,O) v

In the proof of Theorem 18 we computed the quantity

Z/ /AN — 2 _
N_l(; m7 P2 ) = 0 (o) (0)
N ) b

with [0 (v1)] < C'. Now, we use the fact that

(VAN =T %, —v1) 1 Zy (fi VAN = [un|?, —

Zn(f; VdN,0) ¥(v1) Z(f; VAN, 0)
to obtain
1 N ’mel’
(58) S IFNY) < /Rd S0 (0) doy < .

Since Sév has positive Ricci curvature (because it has positive curvature), by [17,
Theorem 30.22] and [9] the following HWT inequalities hold

H(FNN) = BHGNRY) < S\ I(FN 3N ) Wa(FN G

H(GN YY) = HFN3Y) < o JI(GN Y N) W (Y, GV).
Remark 29. In the original HWI inequality, the 2-MKW distance is defined with the
geodesic distance on Sl]gv , however here we use on Sl]gv the Euclidean distance inherited

from RV, Fortunately, these distance are equivalent, hence the HWI inequality holds
in our case adding a factor 7/2 on the right-hand side of the inequality.

(59)

wlﬁwl

Multiplying both sides by 1/N we obtain

1 1 7 [ I(FN|yN) FN GN)
— H(FN YN N -

n HETT) = 5 HG ™) =9\"nw ’
1 1 I(GN|yN) W- FN aM)
— H(GVN) - = HEF ) < Z ™) Wal .
N N =79 N VN

Since N~UI(FN|yN) and N=1I(GN|+V) are bounded, we deduce

Wo(FN, GN).

(60) L H(FN ) - H(G%N)} <ot

N
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Finally, we write
1 1
(G PY) = (7| < | HE W) - 5 HEYY)
+|§ HEY DY)~ H ()

and thanks to the later estimate (60) with the triangle inequality for the first term of
the right-hand side and Theorem 24 for the second one, we obtain

WQ(GN,f®N)+W2(FN,f®N)+ 1
VN VN VN )

Now we have to estimate the second term of the right-hand side. Hence, thanks to
Lemma 27 we have

i

@ |5 e - rm| <

W2(FN7f®N) ®2\a1 (5} %)) %_%
T<CMk( L(EN o) p N N ) ,
and from Theorem 18 we have Wi (Fy", f®2) < Wy (F{, f9?) < CN~1/2, which yields
WQ(FN7f®N) / % —a1/2 —ao %_%
— N < C'M; (N + N )
< ON-FED,
with a1 < k(dk + d + k)~!. We conclude putting this last estimate in (61). O

We give a possible answer to [3, Open problem 11] in the Boltzmann’s sphere frame-
work, which is a precise version of Theorem 7.

Theorem 30. Consider GV € P(S}) such that GV is f-chaotic, for some f € P(R%),
and suppose that

1
My(GY) <C k>2 < IGYPY) <C
Suppose further that
(62) f e Whe(R9) and f(v1) > exp(—alvi|?)

for some constant a > 0.
Then for any fived ¢, there exists a constant C = C(d, ¥, || f|lw1.e, Mi(GY, f)) > 0
such that for all N > ¢+ 1 we have

H(GY %) < oWy (GY, fo4Hidh)

where 0(0,d, k) = k[d({ + k + 2) + 2k +4]71. As a consequence, H(GY|f®*) — 0 when
N — 0.

As remarked in [7], the assumptions (62) of Theorem 30 are natural since they are
propagated in time for the Boltzmann model presented in Section 1. However, the
conditioned tensor product assumption can be assumed at initial time for the Boltzmann
model but it is not propagated along time.
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Proof. We write
H(GY|1%) = [HGYh®) — HEh™)] + [(GY ~ 1) log ™

+ [ = G og 1
=T+ 15+ T;.

Let us split the proof in several steps.

Step 1. For the first term we use the HWT inequality on R% [14],

Ty = H(GY' |v®') = H(f'®) < IGY &) Wa(GY, f49).

The Fisher’s information I(G)[y®¢) is bounded thanks to N~1I(GN[y") < C. More-
over, we have thanks to Lemma 25 applied for G¥', f®* € P(R%)

Wa(GY, £91) < C My(GY, £29 750 Wy (G, f24) 20D

where My, (GY, ) := My(GY) + My(f®%). We conclude then

(63) T < CMk(Gévij) 2(k171) Wl(Gév,fW)%,

Step 2. Let us denote by Bp the ball centered at origin with radius R > 0 on R%, by B
its complementary and let v = (vy,...,v) € R¥. Since logy®* = —(d/2)log 27 —|v|?/2,
we can write

1 1
L=y [ =Dl [ (% -G
2 /Bg 2 /B,

The function ¢(v) = |v|? lies in Lip(Bg) with V@l (g = 2R. We obtain

[ ust-apr<or sw | fore-ahf

llollLipg) <1
(64 <on s { for®-a}
”d)”Lip(Rdl)Sl
= 2RW1(GY, f),

where the last equality comes from the duality form for the WW; distance (see for instance
[17]). Next we write

1 Mk(GN7f®é)
©) [, U@ < g [ G = S

Choosing R such that (64) is equal to (65) we get

>~

—2

(66) Ty < 257 My(GY, £ 7T Wy(GY, £,
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Step 3. Finally, let us investigate the third term T3. We write

(67) Ty = /B (f& = G})log f&° + /B (f& =G} log £

R
For the first integral in (67) we have, since f € W5 and f®(v) > e~alvl*,
/BR(fW — G)log f¥* < (NOngHLw(BR) + aRz) 172 = G Ml 213 -

Let g = f®' — G, p € C®°(R¥) be a mollifier and p.(v) = e~¢p(¢71v), then we have
HgHLl(BR) < llg* PeHLl(BR) + llg * pe = QHLl(BR)'
The first term

g * pell 1) = /BR {/ |pe(w —v)| | (v) — GV (v)] dv} dw

IV 02l oo 3y Wi(GE £2) [ dw

Bpr
LRCMW GN st
cd+1 1( ¢ o f )

IN

IN

The second term
llg * pe — QHLl(BR) < 5||V9HL17

and ||Vg]| ;1 is finite since N7'I(GV|yY) is finite and then also is I(f]7y) (see proof of
Theorem 28). We have then

C
91l L1 (Br) < cdr1 RYW(GY, &) + Ce

< CRIT WG, £,
where we have optimized €. For the second integral in (67) we have

Mk(Gévv f®£)

®E_GN 1 ®€<€l -
[ - G 1og 12 < reg 1,

We conclude then, optimizing in R,
(68)

_de_ 1 M GN, ®L
T3 <C (KlongHLoo(BR) + aRz) R W (GY, fEY 7= + Llog || f|| Mi(GP, ™)

Rk
< CWL(GY, f&0 T
Finally, gathering (63), (66) and (68), we obtain
HGY | <C (W1(Gévaf®€)2‘(kk—21> + Wl(G%f@é)% + W1(Gév,f®£)m>

k
< CWA(GY, &) Trmraanea,

where C' = C(d, £, || fllw1ee, Mp(GY, ).
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5. APPLICATION TO THE BOLTZMANN EQUATION

We can apply our results to the spatially homogeneous Boltzmann equation (equa-
tions (5) and (4) in Section 1) with Maxwellian molecules (see [16, 12]).
We prove now Theorem 8.

Proof of Theorem 8. We split the proof in several steps.

Step 1. Let G’ be built as in Theorem 18, i.e. GYY = [f(j@N]Sév, which is possible since
fo € Pg(R?) and I(foly) is finite. We know from [12, Lemma 7.13] that for all ¢ > 0
the normalized Fisher’s information N~'I(GYN|y") is bounded since N~ I(GN|yV) <
N7Y(GY|¥Y) and the later one is bounded by construction (see equation (58)). Since
the Boltzmann equation propagates moments and the Fisher’s information’s bound, we
have, for all t > 0, Mg(f;) and I(f;]y) bounded.

We can then apply Theorem 28 to GI¥ (taking G = G and f = f; in the notation
of that theorem) and we obtain that for any 8 < (k — 2)[4(dk + d + k)] ! there exists
C" = C'(B) such that

(69) FHGY ) - H ()| < 00 (

Wa(GY FEN) | s
N — 4+ N .

VN

We have then to estimate the first term of the right-hand side and we shall use the
result of propagation of chaos proved in [12].

Step 2. Thanks to the result of propagation of chaos in [12, Theorems 5.1 and 5.3] we
have, for s > 2+ d/4,

m 1671 12, <, (05,52

where we recall that G, §t, € P(P(RY)) are defined in (52) and Wi, (G, d,) in (53),
more precisely

Wi (G,05,) = [ Walulf fo) G5 (aV)

We recall that we want to estimate the first term of the right-hand side of (69) and
we shall explain how we can obtain it from (70). On the one hand, for the right-hand
side of (70) we shall obtain a estimate of the type

Wi, (G, 85,) < € (Wi (Ia(GY), £5) +N‘62]61

since we can estimate Wy (I1a(GY), f&?) from Theorem 18. On the other hand, for the
left-hand side of (70), we shall deduce an estimate like
L
VN

to be able to conclude.

03

Wa(GY, f2N) < o) - 522
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Step 3. First of all, we deduce from (54) in Lemma 26,

Wl
==

Wi, (G .53,) < 25 ME Wi, (G 65,)

Then, thanks to (56) in Lemma 26 we obtain

==

1
2

Wi, (GY.67,) < 25 M} <0a1M,§ (W2 (112(G). £52) +N—1)°‘1> ,
and using Theorem 18, which tell us W1 (Ilo(GY), f0®2) < CN~1/2, we deduce
(71) Wir, (GY,65,) < Cay N™F (577,
where we recall that a; < k(dk +d + k)~

Step 3. Thanks to [7, Lemma 2.1] applied to ITy(GY) and f2? € P(R??), for any s > d/2
(with d > 2) there exists C' := C(d, s) such that

2d

Wi (GN), f72) < OMy(I(GY), f22) 2verms

2k
2d+2ks

I (GY) — [ s

Furthermore, from Lemma 27 we obtain that there exists a constant C' := C(d, k, a1, a2)
such that

W2(G1]€V7 PN)
VN

Finally, gathering these two estimates with (70) and (71) we obtain that there exists
C :=C(d,s, a1, az, My(fo), M (111 (GY'))) such that

WQ(Gi\T’ t®N)
(72) VN

W=
==

1,
< OME (Wi(Ta(GY), f72)™ + N~ 4 N7°2)

SIS
ey

<C (N—af(ﬁ)(%_%) + N~™ +N—a2)

< ON~,

() G-1)
Nd+ks)\2 &k

( k—2 )2 k
2(dk +d+k)) d+ks

where

€

A

_ ( k—2 >2 4k
2k +d+k)) dk+ad+ sk
using oy < k(dk +d+ k)~ and s > 2+ d/4 from (70). We conclude taking k = 6 and
gathering (72) with (69).
U

APPENDIX A. AUXILIARY RESULTS

We prove here some auxiliary results used in Section 2 and Section 3.
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A.1. Change of variables. We present the proof of Lemma 9 in Section 2.
Proof of Lemma 9. Thanks to (13) we have

N-1 N
lun|? = (Z lvg]? + 2 Z Zvl v])

i=1 j>1
and, for 1 <k <N —1,

k—1 k
‘uk‘2 ]{7—1—1 (Z‘UZ‘2+2ZZUZ 'U]+]€2"Uk+1’2—2kz1)2 Uk+1) .

=1 j>1

We deduce from these estimates that |uy|? + --- + |un|? =: I + Ig with

N—1
1
I — 2, 2 2
! (k;(k:Jrl Z”f’ k+1‘”’“+1‘>+ Z‘”‘

=1

zﬁM

=: Z A+ AN
k=1

and
N-1 | kel ok |k | N1 N

e D o o R I S
N-1

:2[ZBk+BN

k=1

First of all, looking to I; we easily see that |vy|? appears only in Ay_1 and Ay, so
its coefficient is (N — 1)/N + 1/N = 1. For m such that 2 < m < N — 1, |v,,|? appears
in Ap_1,Am,...,Ayv_1 and Ay, hence its coefficient is given by

m—1 =1 1

m +J§j(j—|—1) TN T
The coefficient of |v1|? is the same of |vz|? since there is no Ag. We conclude then
= 1]+ -+ |on|?
We can compute I in the same way. For 1 < m < N — 1, v, - vy appears only in

By_1 and By, so its coefficient is —1/N +1/N = 0. Moreover, for 1 <m <p < N —1,
Ump, - Up appears in B,_1, By, ..., By_1 and By, hence its coefficient is given by

1 = 1
p+jz:: PRV
Finally, we conclude that |u; |+ -+ |un|> = |v1 >4+ -+ |ox|> = r? and uy = z/VN
follows easily from (13).
The last point to prove is that the Jacobien is equal to one. To simplify we consider
d = 1, the general case being the same. Consider the matrix My that represents
the linear application in (13), i.e. Myu = v, where u = (uy,...,uy) € RY and
v=(v1,...,05) € RN,
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We claim that det(Mpy) = 1. Indeed we have

1 1
i w0 !
1 1 2
V6 V6 V6
S S 1 __(N-D
(N-1)N V(IN-1)N V(N-1)N
1 1

and it can be written in the form My = Dy Ay with a diagonal matrix Dy,
1

2 X 1 -1 0 - 0
V6 1 1 =2 :
My = - : . .
. : : . 0
VIN-DN 1 o0 ... 1 —(N-1)
1 1 cvr e . 1
VN

Let us prove the claim by recurrence. For N = 2 is clear that det(D2) = 1/2 and
det(As) = 2, which implies det(Ms) = 1. Then, supposing that det(My_1) = 1 we have

N2 1
(73) det(MN_l) = (};{1 \/k(k} mn 1) X \/(N — 1)) det(AN_l) =1

since det(Dy_1) is easily computed. Moreover, we have the following relation det(Ay) =
N det(An_1). Hence we deduce that

1
det MN

<H \/Tﬂ ) det(Ay)

i ! ! 1 N det(A
I o v < 7)) Vet

k=1
1

thanks to (73), which concludes the proof of the claim.

A.2. Regularity lemma.

Lemma 31. Let f € P(R?). Suppose f € LP N Ly(RY) for p > 1 and s > 0. Then
fe L (R withq<pandm =s(p—q)(p—1).

Proof. Let us compute the LI norm of f,
m/2
1715, = [ @+l r@)do
<c (/f(v)qdv —|—/|v|mf(v)qdv> .
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For the first term we have ||f[|%, < ||f||%, and for the second one we obtain

o

by Holder’s inequality for some » > 1 and 0 < o < ¢g. Now choosing r = p/a and
choosing « such that (¢ — a)r/(r —1) =1, ie. a =p(g—1)/(p — 1) we obtain

/Ivl v)dv < (/ jp|mp=1/=a f(v)>(”‘q>/<1’—1> (/f(@p)(q—l)/(p—l)‘

Finally, choosing m = s(p — ¢q)/(p — 1) we conclude with

[

2

3]

[4

[5

[6

(7]

8]

[9]
[10]
[11]

[12]
[13]

[14]
[15]
[16]

(17]

1718, < € (L% + LA™/ @D | /@),
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