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Abstract

We develop a technique allowing 3D gridding of large sets of 1D resistiv-

ity models obtained after inversion of extensive airborne EM surveys. The

method is based on the assumption of a layered-earth model. 2D kriging

is used for interpolation of geophysical model parameters and their corre-

sponding uncertainties. The 3D grid is created from the interpolated data,

its structure accurately follows the geophysical model, providing a lightweight

file for a good rendering. Propagation of errors is tracked through the quan-

tification of uncertainties from both inversion and interpolation procedures.

The 3D grid is exported to a portable standard, which allows flexible vi-

sualization and volumetric computations, and improves interpretation. The

method is validated and illustrated by a case-study on Santa Cruz Island, in

the Galapagos Archipelago.
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1. Introduction

Airborne Electromagnetic (AEM) surveying can cover extensive areas in

a short space of time, collecting thousands of soundings along hundreds of

kilometers of flight lines. Numerous field surveys, based on frequency (FEM)

and time-domain (TEM) electromagnetics have been successfully conducted

in various complex environments and reported in literature (Bosch et al.,

2009; Mogi et al., 2009; Steuer et al., 2009; Supper et al., 2009).

Recent advances to provide 3D imaging of the subsurface (Cox et al.,

2010) are not widespread and may not significantly improve the quality of

resistivity mapping (Viezzoli et al., 2010). As a consequence, most AEM

datasets are inverted with a 1D model and are typically viewed as cross

sections or 2D interpolated maps (e.g. Mullen and Kellett (2007); d’Ozouville

et al. (2008a); Viezzoli et al. (2008). Some attempts are made to visualize

the results in 3D (Bosch et al., 2009; Palamara et al., 2010), but without

quantification of related uncertainties.

There is a need for an efficient and reliable methodology to visualize in

3D the structures identified by AEM surveys. To this end, it is important to

understand under which assumptions, a 1D model description can reasonably

resolve 2D and 3D structures.

An early paper on the subject (Newman et al., 1986) calculate the TEM

response caused by 3D electromagnetic scattering and shows that the thick-

ness of conductive overburdens and the depth to sedimentary layers beneath
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volcanic structures can be successfully resolved with 1D inversion. However,

3D conductors are often replaced by a conducting layer at similar depth

and 1D inversion of 3D structures invariably results in non-unique models.

Auken et al. (2008) studied the problem by calculating the EM forward re-

sponse over theoretical 2D/3D buried valley structures and inverted with a

1D laterally constrained least-squares inversion code Auken and Christiansen

(2004). It is found that resistivities are well resolved when the slope of the

dipping structures is below 30% and that resistivity contrasts are not much

higher than 1:10. Advances in inversion techniques improve images of the

subsurface and also offer, crucially, estimates on the model fit and resolution

of model parameters. Spatially constrained inversion (Viezzoli et al., 2008),

implements spatial constraints between models allowing the user to bias the

outcome of the inversion to reflect the geological variability of the area. The

effect of the constraints is that the model description is 3D with local 1D in-

version kernels. It is clear that while 1D inversion does not produce flawless

reconstructions of the subsurface, results over 3D structures are acceptable

when the structures are much larger than the footprint of the geophysical

system (see Reid et al. (2006)).

The problem addressed in this paper is not the 3D visualization of the

inversion results, but of accurately representing a scattered dataset of 1D

models as a 3D grid. In turn, a 3D grid allows volumetric computations and

is convenient to use for 3D visualization. In order to produce worthwhile

and accurate images, two requirements shall be addressed by the gridding

method:

1. At each 1D model location, the 3D grid should honor the model – i.e.
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resistivity and layer interfaces shall be preserved.

2. Away from the 1D models (between flight lines) the 3D grid of resistiv-

ity should be reliable enough to allow interpretation – i.e., uncertainties

have to be quantified and should remain below some quality threshold.

After a presentation of the methodology to translate datasets of 1D mod-

els into a 3D grid of resistivity, we describe how to quantify the propagation

of uncertainty from both the inversion and interpolation procedure. The

method is validated on a case study in volcanic settings, the Galapagos Is-

lands.

2. Methodology

The most straightforward technique to represent the resistivity in 3D

from a collection of 1D vertical inversion models is to use 3D interpolation.

Currently known 3D interpolation algorithms require discrete data in all

directions, discarding the layered approach used in the inversion, and leading

to a smoothing effect between previously defined layer boundaries. The other

alternative, presented in this paper, is to interpolate the geophysical model

parameters of the 1D models (layers resistivities and e.g. layer thicknesses)

in the 2D horizontal space.

We start from the model vector m = (m1, . . . ,mN)T , a set of N verti-

cal resistivity models obtained after the inversion of N soundings over the

region of interest. Each vertical inversion model mi = (pi,1, . . . , pi,2L)T is

described by a vector of 2L scalars pi,k describing the resistivity and geom-

etry (thickness, or depth, or elevation) of the L layers. Inversion models

have the same number of layers throughout the study area. In some cases,
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the initial distribution of the geometry parameters is sufficiently close to

normal so that transformation is not necessary before interpolation. Trans-

formation of variables (e.g. by the logarithmic function) may be required

before interpolation of some parameters, in particular resistivities. Note

m′i = (p′i,1, . . . , p
′
i,2L)T , the vector of transformed parameters of inversion

model i and m′ = (m′1, . . . ,m
′
N)T the whole set of transformed inversion

models.

Layer thicknesses are not required in the case of “smooth” inversions with

numerous layers whose thicknesses are fixed. To obtain a finite thickness of

the 3D model, the thickness of the last layer (usually assumed to be infinite)

is arbitrarily fixed to two or three times the thickness of the overlying layer.

The construction of the 3D grid of resistivity can be described by the

succession of two operations.

First (Fig. 1, A), the 2L transformed model parameters p′1, dots, p
′
2L in m′

are interpolated in the 2D horizontal space to matrices P̂′1, . . . , P̂
′
1, whose size

is equal to the number of cells discretizing the 2D domain. To obtain coherent

3D grids, the discretization must be the same for all parameters. These

matrices are gathered into the 2L-vector M̂′ = P̂′1, . . . , P̂
′
1 containing all

interpolated parameters (resistivity and geometry) of the layered resistivity

model over the study area.

In a second phase (Fig. 1, B), the 3D log-resistivity field Ĝ′ is deduced

from M̂′. It is represented by a 3D grid composed by hexahedral cells.

The horizontal resolution of the grid is identical to the resolution of the

2D matrices. Vertically, there is one cell per geophysical layer so that the

resolution of the grid follows the resolution of the resistivity model in that
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Figure 1: 3D gridding of resistivity (top to bottom). (A) From the set of 1D vertical

inversion models, geophysical model parameters are interpolated in the 2D horizontal

space. (B) The 3D grid is constructed from 3D vertex positions and filled with resistivity

values from corresponding resistivity maps.
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direction. The vertical coordinates, z, of the cell vertices are deduced from

the digital elevation model (DEM) and the interpolated geometry parameter.

When dealing with 1D models where layer thicknesses vary, the choice

of the geometry parameter to be interpolated (layer thickness, depth or el-

evation) has to be made with care. If the geometry of geological formation

is expected to follow the topography, layer thickness or interface depth is

preferred, while interpolation of interface elevation should be chosen in other

cases (Chilès and Delfiner, 2011).

The model parameters are interpolated by kriging. Among linear pre-

dictors, kriging is optimal in the sense that it minimizes the variance of the

prediction error. Moreover, it provides a “prediction” or “kriging” variance

σ2
KRI which quantifies the magnitude of the interpolation error. Kriging as-

sumes that the spatial covariance or variogram of the parameters are known.

An experimental variogram has to be computed for each parameter and var-

iogram models have to be fitted.

Kriging requires no special assumption relative to the distribution of the

studied parameter. Nevertheless, when the spatial distribution of the pa-

rameter is Gaussian, kriging provides the best linear unbiased estimator.

Therefore it is recommended to apply kriging to variables whose histogram

is not too far from a normal distribution (Chilès and Delfiner, 2011). Resis-

tivity often has a lognormal distribution and is therefore transformed into its

logarithm. In contrast, the parameter describing the geometry is often not

too far from normality.

Interpolation is performed by kriging with the Gstat package (Pebesma

and Wesseling, 1998). The search radius shall be chosen to be larger than the
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spacing between flight lines in order to obtain continuous 3D model. However,

extending it to an unreasonable distance would slow the kriging algorithm

without significant improvement. The resolution of the 2D grids must be

adjusted depending on the variability of model parameters, the expected

precision, and the acceptable computation time. Values of resistivity are

predicted as “block” values, which allows the prediction of averaged values

in the cell (Pebesma, 2001). Since the 3D cells of the grid are defined by their

vertices, the parameters of the 3D grid (layer thickness, depth, or elevation)

are also interpolated at cell vertices.

3. Uncertainties and validation

3.1. Management of uncertainties

Two sources of error affect the quality of the 3D grid of resistivity: the

uncertainty on model parameters estimated by geophysical inversion, and the

uncertainty due to the interpolation.

The inversion uncertainty, if provided by the inversion code, can be incor-

porated into the grid together with resistivity. Geophysical inversion based

on a least-squares criterion provides an estimation of the uncertainty on es-

timated parameters from the linearized approximation to the covariance of

the estimation error (Auken and Christiansen, 2004). The magnitude of the

inversion uncertainty on pi,k the k-th model parameter at inversion model i

is quantified by the standard deviations σINV |i,k. The 1D model at sound-

ing i is extended to mi = (pi,1, . . . , pi,2L, σINV |i, 1, . . . , σINV |i, 2L)T . The

inversion uncertainty can be due to poor signal quality during the sound-

ing procedure or a lack of compatibility between the proposed geophysical
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model and the measured data during the inversion procedure (Auken and

Christiansen, 2004). In spatially constrained inversion, an additional source

of uncertainty may occur when a sounding is closely surrounded by others,

with significant contrast in the signal. These sources of uncertainty are often

likely to be spatially correlated and as a consequence, the standard deviations

should be propagated by interpolation. Similarly to the inversion model pa-

rameters pk, the inversion standard deviations σINV |k can be interpolated

by kriging, leading to matrices ŜINV |1, . . . , ŜINV |1 in the 2D horizontal space.

The magnitude of the uncertainty due to the interpolation of model pa-

rameters pk is characterized by the kriging standard deviations matrices

ŜKRI|1, . . . , ŜKRI|1. These 2L matrices are obtained as by-products of the

kriging of the parameters pk. As explained previously, the inversion vari-

ance σ2
INV |k(x, y) depends on the quality of the soundings and the success

of the inversion, while the kriging variance σ2
KRI|k(x, y) depends on the spa-

tial variability of the parameter and the distance to data points. As a re-

sult, the two variances are considered as independent and can be summed

to form the total uncertainty variance on model parameter pk, defined as

σ̂2
TOT,k(x, y) = σ̂2

INV,k(x, y) + σ̂2
KRI,k(x, y). If uncertainties from inversion are

handled, the vector of 2D matrices of interpolated model parameters are

therefore extended to M̂ = P̂1, . . . , P̂2L, . . . , Ŝ1, . . . , Ŝ2L with total standard

deviation matrices defined by Eq. 1. This leads to the construction of a 3D

grid containing not only resistivity values but also related uncertainty.

widehatS′TOT,k =
√

Ŝ′2INV,k + Ŝ′2KRI,k (1)

To facilitate interpretation, log-transformed parameters such as resistivi-
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ties are back-transformed by exponentiation (in the Gaussian case, they are

therefore median estimators). The related uncertainties are expressed by the

Standard Deviation Factors (STDF) obtained by exponentiation of the log-

resistivity total standard deviations. For parameter pk at location (x,y) of

the discretized 2D space, the standard deviation factor is obtained from Eq.

2:

STDFk(x, y) = exp
(
σTOT |k(x, y)

)
(2)

Under the assumption that the error on log-resistivity is Gaussian and

independent of the kriged estimate, the (1 − α) confidence interval can be

inferred with Eq. 3, where p̂k(x, y) = exp(p̂′k(x, y) is the back-transformed

estimate p̂′k(x, y) and zβ is the normalized Gaussian value corresponding to

the cumulative probability (1 − α/2). With zβ = 1, we obtain the 68%

confidence interval.

p̂k(x, y)

STDFk(x, y)zβ
≤ pk(x, y) ≤ p̂k(x, y) · STDFk(x, y)zβ (3)

The confidence intervals of parameters that have not been transformed

(e.g. layer thicknesses) can be derived directly from the total variances.

These confidence intervals are however approximations because thicknesses

are not exactly Gaussian.

3.2. Validation of the 3D grid

Two aspects deserve to be addressed in order to validate the 3D resistivity

grid. Before kriging, the applicability of the interpolation method to the
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given data set must be investigated. After kriging, the consistence of the

interpolated parameters and inversion models should be estimated.

Figure 2: Validation of the prediction method using data split into two subsets S1 (blue)

and S2 (red). Values at locations of S2 are predicted from S1. Example from SkyTEM

data set collected by d’Ozouville et al. (2008a).

In order to validate the prediction method, the collection of 1D models

is split into two subsets S1 and S2 similar to the white and black squares

of a chessboard (Fig. 2). Parameters of inversion models falling within

the “black” squares (within S2) are predicted from values falling within the
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“white” squares (within S1). For the method to be relevant, artificial gaps of

data have to be at least as big as natural gaps, determined by spacing between

flight lines. At inversion model i in S2, the misfit between estimated values

and original model parameters, the prediction error e(i), is obtained from

Eq. 4.

e(i) = p̂′k(xi, yi)− p′k(i) (4)

where p′k(i) is the k-th parameter of the i-th inversion model, and p̂′k(i) the

estimate at model location (xi, yi). If the statistical model is compatible with

the dataset and the variogram model fits the experimental model, errors cal-

culated on S2 should have a zero mean and for variance the kriging variance

ˆsigma
2

KRI (Chilès and Delfiner, 2011). Moreover, interpolated model param-

eters values should be found at 68% probability within the interval ± ˆσKRI

from the estimates. As an additional precaution, it is recommended to re-

peat the operation switching S1 and S2. Under those conditions, kriging is

considered applicable to the dataset, and predicted values p̂′k(i) will be pro-

vided with the confidence interval ± ˆσKRI(xi, yi) at 68%. After kriging with

all data (S1 and S2), the fit between interpolated parameters and the inver-

sion models should finally be estimated. If the validation step was successful

and the horizontal resolution of the grid sufficiently fine, the fit between 2D

matrix of interpolated parameter pk and original 1D models is expected to be

good. It can be assessed with the root mean square error (RMSE) expressed

in Eq. 5 where pk(i) stands for the value of parameter k at the i-th 1D in-

version model and the estimate of parameter pk at location (xi,yi) of the 2D

discretized horizontal space, the closest to the i-th 1D inversion model.
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RMSE(pk) =

√√√√ 1

N

N∑
i=1

(
p̂k(xi, yi)− pk(i)

)2
(5)

4. Case study: Galapagos Islands, Ecuador

4.1. Presentation of the survey

In the frame of the project Galapagos Islands Integrated Water Studies

(GIIWS) a large variety of investigations are under progress on the main

inhabited island of Galapagos Archipelago, Santa Cruz. This basaltic island,

whose last significant shield-building phase has been dated to approx. 500

000 y.b.p (Bow, 1979) is arid with the exception of the highlands. Rapid

population growth rates have promoted the use of expensive desalination

techniques while the lack of a sewage system leads to high contamination

levels in the basal aquifer. There is an obvious need for a better understand-

ing of hydrogeological processes on the island. To this end, an extensive

SkyTEM survey has been conducted on the southern windward side of Santa

Cruz (Fig. 3). Thousands of soundings have been collected along the 500

km of flight lines. Due to the nature of airborne surveys, the distribution

of soundings is inhomogeneous, with a high density of soundings along flight

lines (one sounding every 10 meters), and gaps of data in between (usually

250 meters wide). Results revealed interesting buried low-resistivity bod-

ies in Santa Cruz, presented by d’Ozouville et al. (2008a) and Auken et al.

(2009).

The soundings have been newly processed and inverted using the Spa-

tially Constrained Inversion scheme (SCI) (Viezzoli et al., 2008) to a 19 layer
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N
10 km
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Figure 3: Location of SkyTEM survey: Santa Cruz Island, Galapagos Archipelago. Red

dots show the flight lines, yellow box shows the data extent in Fig. 6
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“smooth” resistivity model, where the layer thicknesses are distributed log-

arithmically from the surface down to 250 m below topography. While the

use of a spatially constrained inversion scheme is not compulsory, it provides

more consistent sets of neighboring models, and leads to the construction of

more coherent 3D grids of resistivity.
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Figure 4: Sample variograms (red dots) and models (blue lines) used for the interpolation

of the first layer. (A) For the log-transformed resistivity log(R), a first order Matérn or

K-Bessel model (ν = 1, a=92 m, CF = 0.33, CN = 0) fits well to the data. (B) For the

standard deviation from inversion σINV , an exponential model is more appropriate (a =

7.28 m, CF = 4.15× 10−3, CN = 3.05× 10−4).

For each layer, experimental variograms are computed for the log-transformed

resistivity and the standard deviation from inversion. Fig. 4 presents the

two variograms used for the first layer. The parameters of the variogram

models for all the 19 layers are gathered in Table 1. The variograms of

log-transformed resistivity fit well to isotropic Matérn models (also known

as K-Bessel models) with shape parameter ν = 1 (Chilès and Delfiner,

2011; Pebesma and Wesseling, 1998). The variogram model reads γ(h) =
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Layer Variogram model of log(R) Variogram model of σINV

Bessel model Exponential model

CN a [m] CF CN a [m] CF

1 0 92.6 3.28E-01 3.05E-04 7.3 4.15E-03

2 0 87.8 2.81E-01 5.26E-04 6.9 3.40E-03

3 0 87.3 2.42E-01 5.10E-04 6.6 3.46E-03

4 0 106.6 2.64E-01 2.50E-04 6.7 2.85E-03

5 0 107.6 2.82E-01 2.91E-04 6.8 2.77E-03

6 0 105.0 2.92E-01 2.56E-04 6.9 2.77E-03

7 0 131.5 3.60E-01 2.86E-06 6.8 2.11E-03

8 0 172.9 5.61E-01 2.45E-05 6.9 2.08E-03

9 0 164.5 5.38E-01 3.79E-05 6.9 2.06E-03

10 0 163.5 5.10E-01 3.58E-05 6.8 2.02E-03

11 0 159.1 5.00E-01 2.59E-05 6.8 2.01E-03

12 0 152.5 4.91E-01 0.00E+00 7.1 1.56E-03

13 0 127.5 4.15E-01 0.00E+00 7.1 1.55E-03

14 0 114.3 3.85E-01 0.00E+00 7.5 1.09E-03

15 0 100.4 4.09E-01 0.00E+00 7.5 1.07E-03

16 0 94.1 5.57E-01 9.11E-06 7.6 1.06E-03

17 0 97.5 7.51E-01 3.16E-05 9.7 2.92E-04

18 0 80.0 8.85E-01 3.34E-05 10.0 2.89E-04

19 0 68.8 1.36E+00 4.67E-05 10.9 2.84E-04

Table 1: Variogram model parameters of the log-transformed resistivity (R, [ohm.m])

fitted to 1st order K-Bessel model, and σINV fitted to exponential model for the 19 layers

of the Santa Cruz SkyTEM dataset. CN is the nugget, a the scale parameter, and CF the

variance of the continuous component.
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CN + CF

(
1 − h

a
K1(

h
a
)
)

where CN is the nugget effect, K1 is the modified

Bessel function of the second kind of order ν = 1, a and CF are the model

parameters, and h is the distance. The variograms of standard deviation

from inversion σINV fits better to the isotropic exponential model defined by

(Pebesma and Wesseling, 1998). As presented in Table 1, the variograms of

log-transformed resistivity, don’t present a nugget effect (CN = 0), and the

sill (CF in this case) increases for deeper layers. This is interpreted as the

consequence of the sharp resistivity contrasts induce by sea water intrusion.

The variograms of standard deviation from inversion σINV present a nugget

effect, which represent the random component of inversion error. For deeper

layer, a rise of the scale parameter a is observed, while CF and CN decrease.

This correspond to a smaller sill and a larger range and traduces that for

deeper layers, σINV is less variable and more spatially correlated.

4.2. Validation of the method

Before interpolation of parameters and construction of the 3D model, the

applicability of the prediction method was investigated for the Santa Cruz

survey. As described in section 3.2, the data set was split into two halves,

S1 and S2, with a 1 km-resolution regular grid (Fig. 2). Parameter values at

locations of S2 were predicted from the parameter values in the subset S1.

As depicted in Fig. 5A, the misfit of predicted values of resistivities in

S2 have a mean close to zero and a variance of σ2 = 0.08, which is close to

the average prediction variances on this parameter σ2
KRI = 0.1. In Fig. 5

(B), the misfit logically increases with kriging variances (i.e., with distance to

data points in S1), but remains within the ±σKRI confidence interval at 68%.

This means not only that prediction is relatively accurate, but as well that
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A B

Figure 5: Analysis of misfit between original models and interpolated from S1 subset over

S2 area using resistivity of the 1st layer as an example. (A) Misfit has a mean close to

zero and standard deviation close to the average value of σK . (B) Misfits increase with

distance to inversion models and remains within about ±σK at 68%.
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the estimation of uncertainty provided by kriging is reliable on this dataset.

The behavior is similar for all other parameters of this model without marked

differences. Yet, prediction performs better for layers where the distribution

of resistivity is closer to log-normal. Finally, we tested that inverting the

two subsets S1 and S2 had no significant effect on preceding conclusions.

As a consequence, the interpolation method can be considered as applicable

on this dataset. After kriging of parameters with the whole dataset, the

agreement between interpolated 2D matrices of model parameters and 1D

inversion models is quantified. For this dataset interpolated at 30 m resolu-

tion, averaged RMSE of log-transformed resistivity is 0.06, corresponding to

an error factor of 1.06 for resistivity, which is acceptable.

4.3. Management of uncertainties

Once the model is built, the analysis of uncertainties away from data (i.e.

between flight-lines) is made possible from the prediction of standard devia-

tion σKRI , available at each cell of the 2D matrices (Fig. 6, A). As expected,

the kriging standard deviation increases with the distance to flight lines. It is

shown that in this context, values of log-transformed resistivity, interpolated

between the 250 m-spaced flight lines, have a kriging standard deviation of

about 0.1. When combining interpolation uncertainty with inversion uncer-

tainty (Fig. 6, B), the uncertainty increases but remains within an acceptable

range, with a total standard deviation of about 0.2 (STDF=1.2).

These results were presented for the 1st layer of the geophysical model.

Conclusions remain roughly the same for other layers, at the exception of

deeper layers where an increase of kriging standard deviation is observed.

This loss of accuracy is due to sharp resistivity contrasts for these layers,
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Figure 6: Uncertainty on log-transformed resistivity of the first layer. The area corresponds

to the yellow perimeter outlined on Fig. 3. Left (A): kriging standard deviation σKRI

increases away from flight lines (red crosses). Right (B): the total standard deviation

σTOT combines uncertainties from inversion and kriging.
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which is a consequence of sea water intrusion. Yet, larger misfit on resistivity

is restricted to a fringe located at the end of the area of detection of sea water

intrusion.

4.4. 3D Visualization

The 3D grid is exported into binary VTK file format, which allows a

flexible visualization in VTK-compatible software such as Paraview R©R

(www.paraview.org). The VTK file containing all geometry and data (re-

sistivity, uncertainties on resistivity and thickness) is easily loadable on a

standard machine (tested on 2.4GHz Intel Core 2 Duo R©, with 4GB RAM).

Fig. 7 shows the combined 3D view of “classic” cross-sections, together with

a subset of cells extracted by a threshold on resistivity between 30 and 70

ohm.m, and covered by the shaded relief map of a high-resolution DEM

(d’Ozouville et al., 2008b). This image highlights the 3D geometry of a large

low-resistivity body, first identified by (d’Ozouville et al., 2008a). This fea-

ture covers about 50 km2 and appears to be relatively continuous, with a

total volume of 6 km3 and a mean thickness of about a 30 m. The 3D map

of total uncertainty on resistivity (Fig. 8), expressed as standard deviation

factor, illustrates that this feature is well-resolved, with a mean STDF of 1.2.

Although the execution of exploration drill holes is still missing to validate

this hypothesis, available climatic and geological data can be compatible with

the existence of a water saturated and potentially clayey formation, which

could fit in the resistivity range of this feature.
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Figure 7: 3D view of SkyTEM survey on Santa Cruz Island reveals the geometry of a large

6 km3 low-resistivity formation, extracted with a 30-70 ohm.m threshold on resistivity

values and draped by a high resolution DEM (d’Ozouville et al., 2008b). The red line on

inset shows the location and orientation of the virtual camera.
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Figure 8: 3D view of total uncertainty on resistivity, integrating error from both inversion

and interpolation processes, and expressed as standard deviation factor (STDF). In the

background low uncertainty traces (dark-blue) are the imprints of flight lines. The low

resistivity formation extracted from resistivity threshold is well resolved. The red line on

inset shows the location and orientation of the virtual camera.
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5. Conclusion

To date, most airborne AEM datasets are inverted with a 1D model

description and most of them are visualized as 2D interpolated maps. Nu-

merous extensive AEM datasets have been collected in various 3D geological

contexts. They have proven to perform successfully as long as 3D hetero-

geneities in the subsurface are bigger than the footprint of the soundings.

The methodology presented in this paper allows 3D visualization of inver-

sion models and volumetric computations. The 2D interpolation by kriging

of the model parameters is based on the “layered-earth approach”. It insures

a good coherence with 1D models and conserves the vertical resolution of

the inversion, while providing fast grid generation and lightweight files. The

quantification of errors combines uncertainties from interpolation and inver-

sion. Using a volcanic case-study, we showed that for a flight line spacing of

250 m, the total uncertainty remains within an acceptable range. However,

the uncertainty may increase with larger line spacing and sharp contrasts in

resistivity. Because the method is fast and simple, a 3D grid of resistivity

can be easily built from extensive surveys covering large scale 3D geological

structures. Visualization options include thresholding of resistivity and un-

certainty, allowing the user to extract different 3D geological bodies based

on resistivity ranges and conceal the data with high uncertainty. This is a

step toward enhanced interpretation of AEM datasets.
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